File size: 18,344 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
from sympy.core.random import _randint
from sympy.external.gmpy import gcd, invert, sqrt as isqrt
from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power
from sympy.ntheory import isprime
from math import log, sqrt


class SievePolynomial:
    def __init__(self, modified_coeff=(), a=None, b=None):
        """This class denotes the seive polynomial.
        If ``g(x) = (a*x + b)**2 - N``. `g(x)` can be expanded
        to ``a*x**2 + 2*a*b*x + b**2 - N``, so the coefficient
        is stored in the form `[a**2, 2*a*b, b**2 - N]`. This
        ensures faster `eval` method because we dont have to
        perform `a**2, 2*a*b, b**2` every time we call the
        `eval` method. As multiplication is more expensive
        than addition, by using modified_coefficient we get
        a faster seiving process.

        Parameters
        ==========

        modified_coeff : modified_coefficient of sieve polynomial
        a : parameter of the sieve polynomial
        b : parameter of the sieve polynomial
        """
        self.modified_coeff = modified_coeff
        self.a = a
        self.b = b

    def eval(self, x):
        """
        Compute the value of the sieve polynomial at point x.

        Parameters
        ==========

        x : Integer parameter for sieve polynomial
        """
        ans = 0
        for coeff in self.modified_coeff:
            ans *= x
            ans += coeff
        return ans


class FactorBaseElem:
    """This class stores an element of the `factor_base`.
    """
    def __init__(self, prime, tmem_p, log_p):
        """
        Initialization of factor_base_elem.

        Parameters
        ==========

        prime : prime number of the factor_base
        tmem_p : Integer square root of x**2 = n mod prime
        log_p : Compute Natural Logarithm of the prime
        """
        self.prime = prime
        self.tmem_p = tmem_p
        self.log_p = log_p
        self.soln1 = None
        self.soln2 = None
        self.a_inv = None
        self.b_ainv = None


def _generate_factor_base(prime_bound, n):
    """Generate `factor_base` for Quadratic Sieve. The `factor_base`
    consists of all the points whose ``legendre_symbol(n, p) == 1``
    and ``p < num_primes``. Along with the prime `factor_base` also stores
    natural logarithm of prime and the residue n modulo p.
    It also returns the of primes numbers in the `factor_base` which are
    close to 1000 and 5000.

    Parameters
    ==========

    prime_bound : upper prime bound of the factor_base
    n : integer to be factored
    """
    from sympy.ntheory.generate import sieve
    factor_base = []
    idx_1000, idx_5000 = None, None
    for prime in sieve.primerange(1, prime_bound):
        if pow(n, (prime - 1) // 2, prime) == 1:
            if prime > 1000 and idx_1000 is None:
                idx_1000 = len(factor_base) - 1
            if prime > 5000 and idx_5000 is None:
                idx_5000 = len(factor_base) - 1
            residue = _sqrt_mod_prime_power(n, prime, 1)[0]
            log_p = round(log(prime)*2**10)
            factor_base.append(FactorBaseElem(prime, residue, log_p))
    return idx_1000, idx_5000, factor_base


def _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000, seed=None):
    """This step is the initialization of the 1st sieve polynomial.
    Here `a` is selected as a product of several primes of the factor_base
    such that `a` is about to ``sqrt(2*N) / M``. Other initial values of
    factor_base elem are also initialized which includes a_inv, b_ainv, soln1,
    soln2 which are used when the sieve polynomial is changed. The b_ainv
    is required for fast polynomial change as we do not have to calculate
    `2*b*invert(a, prime)` every time.
    We also ensure that the `factor_base` primes which make `a` are between
    1000 and 5000.

    Parameters
    ==========

    N : Number to be factored
    M : sieve interval
    factor_base : factor_base primes
    idx_1000 : index of prime number in the factor_base near 1000
    idx_5000 : index of prime number in the factor_base near to 5000
    seed : Generate pseudoprime numbers
    """
    randint = _randint(seed)
    approx_val = sqrt(2*N) / M
    # `a` is a parameter of the sieve polynomial and `q` is the prime factors of `a`
    # randomly search for a combination of primes whose multiplication is close to approx_val
    # This multiplication of primes will be `a` and the primes will be `q`
    # `best_a` denotes that `a` is close to approx_val in the random search of combination
    best_a, best_q, best_ratio = None, None, None
    start = 0 if idx_1000 is None else idx_1000
    end = len(factor_base) - 1 if idx_5000 is None else idx_5000
    for _ in range(50):
        a = 1
        q = []
        while(a < approx_val):
            rand_p = 0
            while(rand_p == 0 or rand_p in q):
                rand_p = randint(start, end)
            p = factor_base[rand_p].prime
            a *= p
            q.append(rand_p)
        ratio = a / approx_val
        if best_ratio is None or abs(ratio - 1) < abs(best_ratio - 1):
            best_q = q
            best_a = a
            best_ratio = ratio

    a = best_a
    q = best_q

    B = []
    for val in q:
        q_l = factor_base[val].prime
        gamma = factor_base[val].tmem_p * invert(a // q_l, q_l) % q_l
        if gamma > q_l / 2:
            gamma = q_l - gamma
        B.append(a//q_l*gamma)

    b = sum(B)
    g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b)

    for fb in factor_base:
        if a % fb.prime == 0:
            continue
        fb.a_inv = invert(a, fb.prime)
        fb.b_ainv = [2*b_elem*fb.a_inv % fb.prime for b_elem in B]
        fb.soln1 = (fb.a_inv*(fb.tmem_p - b)) % fb.prime
        fb.soln2 = (fb.a_inv*(-fb.tmem_p - b)) % fb.prime
    return g, B


def _initialize_ith_poly(N, factor_base, i, g, B):
    """Initialization stage of ith poly. After we finish sieving 1`st polynomial
    here we quickly change to the next polynomial from which we will again
    start sieving. Suppose we generated ith sieve polynomial and now we
    want to generate (i + 1)th polynomial, where ``1 <= i <= 2**(j - 1) - 1``
    where `j` is the number of prime factors of the coefficient `a`
    then this function can be used to go to the next polynomial. If
    ``i = 2**(j - 1) - 1`` then go to _initialize_first_polynomial stage.

    Parameters
    ==========

    N : number to be factored
    factor_base : factor_base primes
    i : integer denoting ith polynomial
    g : (i - 1)th polynomial
    B : array that stores a//q_l*gamma
    """
    from sympy.functions.elementary.integers import ceiling
    v = 1
    j = i
    while(j % 2 == 0):
        v += 1
        j //= 2
    if ceiling(i / (2**v)) % 2 == 1:
        neg_pow = -1
    else:
        neg_pow = 1
    b = g.b + 2*neg_pow*B[v - 1]
    a = g.a
    g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b)
    for fb in factor_base:
        if a % fb.prime == 0:
            continue
        fb.soln1 = (fb.soln1 - neg_pow*fb.b_ainv[v - 1]) % fb.prime
        fb.soln2 = (fb.soln2 - neg_pow*fb.b_ainv[v - 1]) % fb.prime

    return g


def _gen_sieve_array(M, factor_base):
    """Sieve Stage of the Quadratic Sieve. For every prime in the factor_base
    that does not divide the coefficient `a` we add log_p over the sieve_array
    such that ``-M <= soln1 + i*p <=  M`` and ``-M <= soln2 + i*p <=  M`` where `i`
    is an integer. When p = 2 then log_p is only added using
    ``-M <= soln1 + i*p <=  M``.

    Parameters
    ==========

    M : sieve interval
    factor_base : factor_base primes
    """
    sieve_array = [0]*(2*M + 1)
    for factor in factor_base:
        if factor.soln1 is None: #The prime does not divides a
            continue
        for idx in range((M + factor.soln1) % factor.prime, 2*M, factor.prime):
            sieve_array[idx] += factor.log_p
        if factor.prime == 2:
            continue
        #if prime is 2 then sieve only with soln_1_p
        for idx in range((M + factor.soln2) % factor.prime, 2*M, factor.prime):
            sieve_array[idx] += factor.log_p
    return sieve_array


def _check_smoothness(num, factor_base):
    """Here we check that if `num` is a smooth number or not. If `a` is a smooth
    number then it returns a vector of prime exponents modulo 2. For example
    if a = 2 * 5**2 * 7**3 and the factor base contains {2, 3, 5, 7} then
    `a` is a smooth number and this function returns ([1, 0, 0, 1], True). If
    `a` is a partial relation which means that `a` a has one prime factor
    greater than the `factor_base` then it returns `(a, False)` which denotes `a`
    is a partial relation.

    Parameters
    ==========

    a : integer whose smootheness is to be checked
    factor_base : factor_base primes
    """
    vec = []
    if num < 0:
        vec.append(1)
        num *= -1
    else:
        vec.append(0)
     #-1 is not included in factor_base add -1 in vector
    for factor in factor_base:
        if num % factor.prime != 0:
            vec.append(0)
            continue
        factor_exp = 0
        while num % factor.prime == 0:
            factor_exp += 1
            num //= factor.prime
        vec.append(factor_exp % 2)
    if num == 1:
        return vec, True
    if isprime(num):
        return num, False
    return None, None


def _trial_division_stage(N, M, factor_base, sieve_array, sieve_poly, partial_relations, ERROR_TERM):
    """Trial division stage. Here we trial divide the values generetated
    by sieve_poly in the sieve interval and if it is a smooth number then
    it is stored in `smooth_relations`. Moreover, if we find two partial relations
    with same large prime then they are combined to form a smooth relation.
    First we iterate over sieve array and look for values which are greater
    than accumulated_val, as these values have a high chance of being smooth
    number. Then using these values we find smooth relations.
    In general, let ``t**2 = u*p modN`` and ``r**2 = v*p modN`` be two partial relations
    with the same large prime p. Then they can be combined ``(t*r/p)**2 = u*v modN``
    to form a smooth relation.

    Parameters
    ==========

    N : Number to be factored
    M : sieve interval
    factor_base : factor_base primes
    sieve_array : stores log_p values
    sieve_poly : polynomial from which we find smooth relations
    partial_relations : stores partial relations with one large prime
    ERROR_TERM : error term for accumulated_val
    """
    sqrt_n = isqrt(N)
    accumulated_val = log(M * sqrt_n)*2**10 - ERROR_TERM
    smooth_relations = []
    proper_factor = set()
    partial_relation_upper_bound = 128*factor_base[-1].prime
    for idx, val in enumerate(sieve_array):
        if val < accumulated_val:
            continue
        x = idx - M
        v = sieve_poly.eval(x)
        vec, is_smooth = _check_smoothness(v, factor_base)
        if is_smooth is None:#Neither smooth nor partial
            continue
        u = sieve_poly.a*x + sieve_poly.b
        # Update the partial relation
        # If 2 partial relation with same large prime is found then generate smooth relation
        if is_smooth is False:#partial relation found
            large_prime = vec
            #Consider the large_primes under 128*F
            if large_prime > partial_relation_upper_bound:
                continue
            if large_prime not in partial_relations:
                partial_relations[large_prime] = (u, v)
                continue
            else:
                u_prev, v_prev = partial_relations[large_prime]
                partial_relations.pop(large_prime)
                try:
                    large_prime_inv = invert(large_prime, N)
                except ZeroDivisionError:#if large_prime divides N
                    proper_factor.add(large_prime)
                    continue
                u = u*u_prev*large_prime_inv
                v = v*v_prev // (large_prime*large_prime)
                vec, is_smooth = _check_smoothness(v, factor_base)
        #assert u*u % N == v % N
        smooth_relations.append((u, v, vec))
    return smooth_relations, proper_factor


#LINEAR ALGEBRA STAGE
def _build_matrix(smooth_relations):
    """Build a 2D matrix from smooth relations.

    Parameters
    ==========

    smooth_relations : Stores smooth relations
    """
    matrix = []
    for s_relation in smooth_relations:
        matrix.append(s_relation[2])
    return matrix


def _gauss_mod_2(A):
    """Fast gaussian reduction for modulo 2 matrix.

    Parameters
    ==========

    A : Matrix

    Examples
    ========

    >>> from sympy.ntheory.qs import _gauss_mod_2
    >>> _gauss_mod_2([[0, 1, 1], [1, 0, 1], [0, 1, 0], [1, 1, 1]])
    ([[[1, 0, 1], 3]],
     [True, True, True, False],
     [[0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 1]])

    Reference
    ==========

    .. [1] A fast algorithm for gaussian elimination over GF(2) and
    its implementation on the GAPP. Cetin K.Koc, Sarath N.Arachchige"""
    import copy
    matrix = copy.deepcopy(A)
    row = len(matrix)
    col = len(matrix[0])
    mark = [False]*row
    for c in range(col):
        for r in range(row):
            if matrix[r][c] == 1:
                break
        mark[r] = True
        for c1 in range(col):
            if c1 == c:
                continue
            if matrix[r][c1] == 1:
                for r2 in range(row):
                    matrix[r2][c1] = (matrix[r2][c1] + matrix[r2][c]) % 2
    dependent_row = []
    for idx, val in enumerate(mark):
        if val == False:
            dependent_row.append([matrix[idx], idx])
    return dependent_row, mark, matrix


def _find_factor(dependent_rows, mark, gauss_matrix, index, smooth_relations, N):
    """Finds proper factor of N. Here, transform the dependent rows as a
    combination of independent rows of the gauss_matrix to form the desired
    relation of the form ``X**2 = Y**2 modN``. After obtaining the desired relation
    we obtain a proper factor of N by `gcd(X - Y, N)`.

    Parameters
    ==========

    dependent_rows : denoted dependent rows in the reduced matrix form
    mark : boolean array to denoted dependent and independent rows
    gauss_matrix : Reduced form of the smooth relations matrix
    index : denoted the index of the dependent_rows
    smooth_relations : Smooth relations vectors matrix
    N : Number to be factored
    """
    idx_in_smooth = dependent_rows[index][1]
    independent_u = [smooth_relations[idx_in_smooth][0]]
    independent_v = [smooth_relations[idx_in_smooth][1]]
    dept_row = dependent_rows[index][0]

    for idx, val in enumerate(dept_row):
        if val == 1:
            for row in range(len(gauss_matrix)):
                if gauss_matrix[row][idx] == 1 and mark[row] == True:
                    independent_u.append(smooth_relations[row][0])
                    independent_v.append(smooth_relations[row][1])
                    break

    u = 1
    v = 1
    for i in independent_u:
        u *= i
    for i in independent_v:
        v *= i
    #assert u**2 % N == v % N
    v = isqrt(v)
    return gcd(u - v, N)


def qs(N, prime_bound, M, ERROR_TERM=25, seed=1234):
    """Performs factorization using Self-Initializing Quadratic Sieve.
    In SIQS, let N be a number to be factored, and this N should not be a
    perfect power. If we find two integers such that ``X**2 = Y**2 modN`` and
    ``X != +-Y modN``, then `gcd(X + Y, N)` will reveal a proper factor of N.
    In order to find these integers X and Y we try to find relations of form
    t**2 = u modN where u is a product of small primes. If we have enough of
    these relations then we can form ``(t1*t2...ti)**2 = u1*u2...ui modN`` such that
    the right hand side is a square, thus we found a relation of ``X**2 = Y**2 modN``.

    Here, several optimizations are done like using multiple polynomials for
    sieving, fast changing between polynomials and using partial relations.
    The use of partial relations can speeds up the factoring by 2 times.

    Parameters
    ==========

    N : Number to be Factored
    prime_bound : upper bound for primes in the factor base
    M : Sieve Interval
    ERROR_TERM : Error term for checking smoothness
    threshold : Extra smooth relations for factorization
    seed : generate pseudo prime numbers

    Examples
    ========

    >>> from sympy.ntheory import qs
    >>> qs(25645121643901801, 2000, 10000)
    {5394769, 4753701529}
    >>> qs(9804659461513846513, 2000, 10000)
    {4641991, 2112166839943}

    References
    ==========

    .. [1] https://pdfs.semanticscholar.org/5c52/8a975c1405bd35c65993abf5a4edb667c1db.pdf
    .. [2] https://www.rieselprime.de/ziki/Self-initializing_quadratic_sieve
    """
    ERROR_TERM*=2**10
    idx_1000, idx_5000, factor_base = _generate_factor_base(prime_bound, N)
    smooth_relations = []
    ith_poly = 0
    partial_relations = {}
    proper_factor = set()
    threshold = 5*len(factor_base) // 100
    while True:
        if ith_poly == 0:
            ith_sieve_poly, B_array = _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000)
        else:
            ith_sieve_poly = _initialize_ith_poly(N, factor_base, ith_poly, ith_sieve_poly, B_array)
        ith_poly += 1
        if ith_poly >= 2**(len(B_array) - 1): # time to start with a new sieve polynomial
            ith_poly = 0
        sieve_array = _gen_sieve_array(M, factor_base)
        s_rel, p_f = _trial_division_stage(N, M, factor_base, sieve_array, ith_sieve_poly, partial_relations, ERROR_TERM)
        smooth_relations += s_rel
        proper_factor |= p_f
        if len(smooth_relations) >= len(factor_base) + threshold:
            break
    matrix = _build_matrix(smooth_relations)
    dependent_row, mark, gauss_matrix = _gauss_mod_2(matrix)
    N_copy = N
    for index in range(len(dependent_row)):
        factor = _find_factor(dependent_row, mark, gauss_matrix, index, smooth_relations, N)
        if factor > 1 and factor < N:
            proper_factor.add(factor)
            while(N_copy % factor == 0):
                N_copy //= factor
            if isprime(N_copy):
                proper_factor.add(N_copy)
                break
            if(N_copy == 1):
                break
    return proper_factor