Spaces:
Sleeping
Sleeping
File size: 18,344 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
from sympy.core.random import _randint
from sympy.external.gmpy import gcd, invert, sqrt as isqrt
from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power
from sympy.ntheory import isprime
from math import log, sqrt
class SievePolynomial:
def __init__(self, modified_coeff=(), a=None, b=None):
"""This class denotes the seive polynomial.
If ``g(x) = (a*x + b)**2 - N``. `g(x)` can be expanded
to ``a*x**2 + 2*a*b*x + b**2 - N``, so the coefficient
is stored in the form `[a**2, 2*a*b, b**2 - N]`. This
ensures faster `eval` method because we dont have to
perform `a**2, 2*a*b, b**2` every time we call the
`eval` method. As multiplication is more expensive
than addition, by using modified_coefficient we get
a faster seiving process.
Parameters
==========
modified_coeff : modified_coefficient of sieve polynomial
a : parameter of the sieve polynomial
b : parameter of the sieve polynomial
"""
self.modified_coeff = modified_coeff
self.a = a
self.b = b
def eval(self, x):
"""
Compute the value of the sieve polynomial at point x.
Parameters
==========
x : Integer parameter for sieve polynomial
"""
ans = 0
for coeff in self.modified_coeff:
ans *= x
ans += coeff
return ans
class FactorBaseElem:
"""This class stores an element of the `factor_base`.
"""
def __init__(self, prime, tmem_p, log_p):
"""
Initialization of factor_base_elem.
Parameters
==========
prime : prime number of the factor_base
tmem_p : Integer square root of x**2 = n mod prime
log_p : Compute Natural Logarithm of the prime
"""
self.prime = prime
self.tmem_p = tmem_p
self.log_p = log_p
self.soln1 = None
self.soln2 = None
self.a_inv = None
self.b_ainv = None
def _generate_factor_base(prime_bound, n):
"""Generate `factor_base` for Quadratic Sieve. The `factor_base`
consists of all the points whose ``legendre_symbol(n, p) == 1``
and ``p < num_primes``. Along with the prime `factor_base` also stores
natural logarithm of prime and the residue n modulo p.
It also returns the of primes numbers in the `factor_base` which are
close to 1000 and 5000.
Parameters
==========
prime_bound : upper prime bound of the factor_base
n : integer to be factored
"""
from sympy.ntheory.generate import sieve
factor_base = []
idx_1000, idx_5000 = None, None
for prime in sieve.primerange(1, prime_bound):
if pow(n, (prime - 1) // 2, prime) == 1:
if prime > 1000 and idx_1000 is None:
idx_1000 = len(factor_base) - 1
if prime > 5000 and idx_5000 is None:
idx_5000 = len(factor_base) - 1
residue = _sqrt_mod_prime_power(n, prime, 1)[0]
log_p = round(log(prime)*2**10)
factor_base.append(FactorBaseElem(prime, residue, log_p))
return idx_1000, idx_5000, factor_base
def _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000, seed=None):
"""This step is the initialization of the 1st sieve polynomial.
Here `a` is selected as a product of several primes of the factor_base
such that `a` is about to ``sqrt(2*N) / M``. Other initial values of
factor_base elem are also initialized which includes a_inv, b_ainv, soln1,
soln2 which are used when the sieve polynomial is changed. The b_ainv
is required for fast polynomial change as we do not have to calculate
`2*b*invert(a, prime)` every time.
We also ensure that the `factor_base` primes which make `a` are between
1000 and 5000.
Parameters
==========
N : Number to be factored
M : sieve interval
factor_base : factor_base primes
idx_1000 : index of prime number in the factor_base near 1000
idx_5000 : index of prime number in the factor_base near to 5000
seed : Generate pseudoprime numbers
"""
randint = _randint(seed)
approx_val = sqrt(2*N) / M
# `a` is a parameter of the sieve polynomial and `q` is the prime factors of `a`
# randomly search for a combination of primes whose multiplication is close to approx_val
# This multiplication of primes will be `a` and the primes will be `q`
# `best_a` denotes that `a` is close to approx_val in the random search of combination
best_a, best_q, best_ratio = None, None, None
start = 0 if idx_1000 is None else idx_1000
end = len(factor_base) - 1 if idx_5000 is None else idx_5000
for _ in range(50):
a = 1
q = []
while(a < approx_val):
rand_p = 0
while(rand_p == 0 or rand_p in q):
rand_p = randint(start, end)
p = factor_base[rand_p].prime
a *= p
q.append(rand_p)
ratio = a / approx_val
if best_ratio is None or abs(ratio - 1) < abs(best_ratio - 1):
best_q = q
best_a = a
best_ratio = ratio
a = best_a
q = best_q
B = []
for val in q:
q_l = factor_base[val].prime
gamma = factor_base[val].tmem_p * invert(a // q_l, q_l) % q_l
if gamma > q_l / 2:
gamma = q_l - gamma
B.append(a//q_l*gamma)
b = sum(B)
g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b)
for fb in factor_base:
if a % fb.prime == 0:
continue
fb.a_inv = invert(a, fb.prime)
fb.b_ainv = [2*b_elem*fb.a_inv % fb.prime for b_elem in B]
fb.soln1 = (fb.a_inv*(fb.tmem_p - b)) % fb.prime
fb.soln2 = (fb.a_inv*(-fb.tmem_p - b)) % fb.prime
return g, B
def _initialize_ith_poly(N, factor_base, i, g, B):
"""Initialization stage of ith poly. After we finish sieving 1`st polynomial
here we quickly change to the next polynomial from which we will again
start sieving. Suppose we generated ith sieve polynomial and now we
want to generate (i + 1)th polynomial, where ``1 <= i <= 2**(j - 1) - 1``
where `j` is the number of prime factors of the coefficient `a`
then this function can be used to go to the next polynomial. If
``i = 2**(j - 1) - 1`` then go to _initialize_first_polynomial stage.
Parameters
==========
N : number to be factored
factor_base : factor_base primes
i : integer denoting ith polynomial
g : (i - 1)th polynomial
B : array that stores a//q_l*gamma
"""
from sympy.functions.elementary.integers import ceiling
v = 1
j = i
while(j % 2 == 0):
v += 1
j //= 2
if ceiling(i / (2**v)) % 2 == 1:
neg_pow = -1
else:
neg_pow = 1
b = g.b + 2*neg_pow*B[v - 1]
a = g.a
g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b)
for fb in factor_base:
if a % fb.prime == 0:
continue
fb.soln1 = (fb.soln1 - neg_pow*fb.b_ainv[v - 1]) % fb.prime
fb.soln2 = (fb.soln2 - neg_pow*fb.b_ainv[v - 1]) % fb.prime
return g
def _gen_sieve_array(M, factor_base):
"""Sieve Stage of the Quadratic Sieve. For every prime in the factor_base
that does not divide the coefficient `a` we add log_p over the sieve_array
such that ``-M <= soln1 + i*p <= M`` and ``-M <= soln2 + i*p <= M`` where `i`
is an integer. When p = 2 then log_p is only added using
``-M <= soln1 + i*p <= M``.
Parameters
==========
M : sieve interval
factor_base : factor_base primes
"""
sieve_array = [0]*(2*M + 1)
for factor in factor_base:
if factor.soln1 is None: #The prime does not divides a
continue
for idx in range((M + factor.soln1) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
if factor.prime == 2:
continue
#if prime is 2 then sieve only with soln_1_p
for idx in range((M + factor.soln2) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
return sieve_array
def _check_smoothness(num, factor_base):
"""Here we check that if `num` is a smooth number or not. If `a` is a smooth
number then it returns a vector of prime exponents modulo 2. For example
if a = 2 * 5**2 * 7**3 and the factor base contains {2, 3, 5, 7} then
`a` is a smooth number and this function returns ([1, 0, 0, 1], True). If
`a` is a partial relation which means that `a` a has one prime factor
greater than the `factor_base` then it returns `(a, False)` which denotes `a`
is a partial relation.
Parameters
==========
a : integer whose smootheness is to be checked
factor_base : factor_base primes
"""
vec = []
if num < 0:
vec.append(1)
num *= -1
else:
vec.append(0)
#-1 is not included in factor_base add -1 in vector
for factor in factor_base:
if num % factor.prime != 0:
vec.append(0)
continue
factor_exp = 0
while num % factor.prime == 0:
factor_exp += 1
num //= factor.prime
vec.append(factor_exp % 2)
if num == 1:
return vec, True
if isprime(num):
return num, False
return None, None
def _trial_division_stage(N, M, factor_base, sieve_array, sieve_poly, partial_relations, ERROR_TERM):
"""Trial division stage. Here we trial divide the values generetated
by sieve_poly in the sieve interval and if it is a smooth number then
it is stored in `smooth_relations`. Moreover, if we find two partial relations
with same large prime then they are combined to form a smooth relation.
First we iterate over sieve array and look for values which are greater
than accumulated_val, as these values have a high chance of being smooth
number. Then using these values we find smooth relations.
In general, let ``t**2 = u*p modN`` and ``r**2 = v*p modN`` be two partial relations
with the same large prime p. Then they can be combined ``(t*r/p)**2 = u*v modN``
to form a smooth relation.
Parameters
==========
N : Number to be factored
M : sieve interval
factor_base : factor_base primes
sieve_array : stores log_p values
sieve_poly : polynomial from which we find smooth relations
partial_relations : stores partial relations with one large prime
ERROR_TERM : error term for accumulated_val
"""
sqrt_n = isqrt(N)
accumulated_val = log(M * sqrt_n)*2**10 - ERROR_TERM
smooth_relations = []
proper_factor = set()
partial_relation_upper_bound = 128*factor_base[-1].prime
for idx, val in enumerate(sieve_array):
if val < accumulated_val:
continue
x = idx - M
v = sieve_poly.eval(x)
vec, is_smooth = _check_smoothness(v, factor_base)
if is_smooth is None:#Neither smooth nor partial
continue
u = sieve_poly.a*x + sieve_poly.b
# Update the partial relation
# If 2 partial relation with same large prime is found then generate smooth relation
if is_smooth is False:#partial relation found
large_prime = vec
#Consider the large_primes under 128*F
if large_prime > partial_relation_upper_bound:
continue
if large_prime not in partial_relations:
partial_relations[large_prime] = (u, v)
continue
else:
u_prev, v_prev = partial_relations[large_prime]
partial_relations.pop(large_prime)
try:
large_prime_inv = invert(large_prime, N)
except ZeroDivisionError:#if large_prime divides N
proper_factor.add(large_prime)
continue
u = u*u_prev*large_prime_inv
v = v*v_prev // (large_prime*large_prime)
vec, is_smooth = _check_smoothness(v, factor_base)
#assert u*u % N == v % N
smooth_relations.append((u, v, vec))
return smooth_relations, proper_factor
#LINEAR ALGEBRA STAGE
def _build_matrix(smooth_relations):
"""Build a 2D matrix from smooth relations.
Parameters
==========
smooth_relations : Stores smooth relations
"""
matrix = []
for s_relation in smooth_relations:
matrix.append(s_relation[2])
return matrix
def _gauss_mod_2(A):
"""Fast gaussian reduction for modulo 2 matrix.
Parameters
==========
A : Matrix
Examples
========
>>> from sympy.ntheory.qs import _gauss_mod_2
>>> _gauss_mod_2([[0, 1, 1], [1, 0, 1], [0, 1, 0], [1, 1, 1]])
([[[1, 0, 1], 3]],
[True, True, True, False],
[[0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 1]])
Reference
==========
.. [1] A fast algorithm for gaussian elimination over GF(2) and
its implementation on the GAPP. Cetin K.Koc, Sarath N.Arachchige"""
import copy
matrix = copy.deepcopy(A)
row = len(matrix)
col = len(matrix[0])
mark = [False]*row
for c in range(col):
for r in range(row):
if matrix[r][c] == 1:
break
mark[r] = True
for c1 in range(col):
if c1 == c:
continue
if matrix[r][c1] == 1:
for r2 in range(row):
matrix[r2][c1] = (matrix[r2][c1] + matrix[r2][c]) % 2
dependent_row = []
for idx, val in enumerate(mark):
if val == False:
dependent_row.append([matrix[idx], idx])
return dependent_row, mark, matrix
def _find_factor(dependent_rows, mark, gauss_matrix, index, smooth_relations, N):
"""Finds proper factor of N. Here, transform the dependent rows as a
combination of independent rows of the gauss_matrix to form the desired
relation of the form ``X**2 = Y**2 modN``. After obtaining the desired relation
we obtain a proper factor of N by `gcd(X - Y, N)`.
Parameters
==========
dependent_rows : denoted dependent rows in the reduced matrix form
mark : boolean array to denoted dependent and independent rows
gauss_matrix : Reduced form of the smooth relations matrix
index : denoted the index of the dependent_rows
smooth_relations : Smooth relations vectors matrix
N : Number to be factored
"""
idx_in_smooth = dependent_rows[index][1]
independent_u = [smooth_relations[idx_in_smooth][0]]
independent_v = [smooth_relations[idx_in_smooth][1]]
dept_row = dependent_rows[index][0]
for idx, val in enumerate(dept_row):
if val == 1:
for row in range(len(gauss_matrix)):
if gauss_matrix[row][idx] == 1 and mark[row] == True:
independent_u.append(smooth_relations[row][0])
independent_v.append(smooth_relations[row][1])
break
u = 1
v = 1
for i in independent_u:
u *= i
for i in independent_v:
v *= i
#assert u**2 % N == v % N
v = isqrt(v)
return gcd(u - v, N)
def qs(N, prime_bound, M, ERROR_TERM=25, seed=1234):
"""Performs factorization using Self-Initializing Quadratic Sieve.
In SIQS, let N be a number to be factored, and this N should not be a
perfect power. If we find two integers such that ``X**2 = Y**2 modN`` and
``X != +-Y modN``, then `gcd(X + Y, N)` will reveal a proper factor of N.
In order to find these integers X and Y we try to find relations of form
t**2 = u modN where u is a product of small primes. If we have enough of
these relations then we can form ``(t1*t2...ti)**2 = u1*u2...ui modN`` such that
the right hand side is a square, thus we found a relation of ``X**2 = Y**2 modN``.
Here, several optimizations are done like using multiple polynomials for
sieving, fast changing between polynomials and using partial relations.
The use of partial relations can speeds up the factoring by 2 times.
Parameters
==========
N : Number to be Factored
prime_bound : upper bound for primes in the factor base
M : Sieve Interval
ERROR_TERM : Error term for checking smoothness
threshold : Extra smooth relations for factorization
seed : generate pseudo prime numbers
Examples
========
>>> from sympy.ntheory import qs
>>> qs(25645121643901801, 2000, 10000)
{5394769, 4753701529}
>>> qs(9804659461513846513, 2000, 10000)
{4641991, 2112166839943}
References
==========
.. [1] https://pdfs.semanticscholar.org/5c52/8a975c1405bd35c65993abf5a4edb667c1db.pdf
.. [2] https://www.rieselprime.de/ziki/Self-initializing_quadratic_sieve
"""
ERROR_TERM*=2**10
idx_1000, idx_5000, factor_base = _generate_factor_base(prime_bound, N)
smooth_relations = []
ith_poly = 0
partial_relations = {}
proper_factor = set()
threshold = 5*len(factor_base) // 100
while True:
if ith_poly == 0:
ith_sieve_poly, B_array = _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000)
else:
ith_sieve_poly = _initialize_ith_poly(N, factor_base, ith_poly, ith_sieve_poly, B_array)
ith_poly += 1
if ith_poly >= 2**(len(B_array) - 1): # time to start with a new sieve polynomial
ith_poly = 0
sieve_array = _gen_sieve_array(M, factor_base)
s_rel, p_f = _trial_division_stage(N, M, factor_base, sieve_array, ith_sieve_poly, partial_relations, ERROR_TERM)
smooth_relations += s_rel
proper_factor |= p_f
if len(smooth_relations) >= len(factor_base) + threshold:
break
matrix = _build_matrix(smooth_relations)
dependent_row, mark, gauss_matrix = _gauss_mod_2(matrix)
N_copy = N
for index in range(len(dependent_row)):
factor = _find_factor(dependent_row, mark, gauss_matrix, index, smooth_relations, N)
if factor > 1 and factor < N:
proper_factor.add(factor)
while(N_copy % factor == 0):
N_copy //= factor
if isprime(N_copy):
proper_factor.add(N_copy)
break
if(N_copy == 1):
break
return proper_factor
|