Spaces:
Sleeping
Sleeping
File size: 23,097 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 |
"""
Primality testing
"""
from itertools import count
from sympy.core.sympify import sympify
from sympy.external.gmpy import (gmpy as _gmpy, gcd, jacobi,
is_square as gmpy_is_square,
bit_scan1, is_fermat_prp, is_euler_prp,
is_selfridge_prp, is_strong_selfridge_prp,
is_strong_bpsw_prp)
from sympy.external.ntheory import _lucas_sequence
from sympy.utilities.misc import as_int, filldedent
# Note: This list should be updated whenever new Mersenne primes are found.
# Refer: https://www.mersenne.org/
MERSENNE_PRIME_EXPONENTS = (2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203,
2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049,
216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583,
25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933)
def is_fermat_pseudoprime(n, a):
r"""Returns True if ``n`` is prime or is an odd composite integer that
is coprime to ``a`` and satisfy the modular arithmetic congruence relation:
.. math ::
a^{n-1} \equiv 1 \pmod{n}
(where mod refers to the modulo operation).
Parameters
==========
n : Integer
``n`` is a positive integer.
a : Integer
``a`` is a positive integer.
``a`` and ``n`` should be relatively prime.
Returns
=======
bool : If ``n`` is prime, it always returns ``True``.
The composite number that returns ``True`` is called an Fermat pseudoprime.
Examples
========
>>> from sympy.ntheory.primetest import is_fermat_pseudoprime
>>> from sympy.ntheory.factor_ import isprime
>>> for n in range(1, 1000):
... if is_fermat_pseudoprime(n, 2) and not isprime(n):
... print(n)
341
561
645
References
==========
.. [1] https://en.wikipedia.org/wiki/Fermat_pseudoprime
"""
n, a = as_int(n), as_int(a)
if a == 1:
return n == 2 or bool(n % 2)
return is_fermat_prp(n, a)
def is_euler_pseudoprime(n, a):
r"""Returns True if ``n`` is prime or is an odd composite integer that
is coprime to ``a`` and satisfy the modular arithmetic congruence relation:
.. math ::
a^{(n-1)/2} \equiv \pm 1 \pmod{n}
(where mod refers to the modulo operation).
Parameters
==========
n : Integer
``n`` is a positive integer.
a : Integer
``a`` is a positive integer.
``a`` and ``n`` should be relatively prime.
Returns
=======
bool : If ``n`` is prime, it always returns ``True``.
The composite number that returns ``True`` is called an Euler pseudoprime.
Examples
========
>>> from sympy.ntheory.primetest import is_euler_pseudoprime
>>> from sympy.ntheory.factor_ import isprime
>>> for n in range(1, 1000):
... if is_euler_pseudoprime(n, 2) and not isprime(n):
... print(n)
341
561
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler_pseudoprime
"""
n, a = as_int(n), as_int(a)
if a < 1:
raise ValueError("a should be an integer greater than 0")
if n < 1:
raise ValueError("n should be an integer greater than 0")
if n == 1:
return False
if a == 1:
return n == 2 or bool(n % 2) # (prime or odd composite)
if n % 2 == 0:
return n == 2
if gcd(n, a) != 1:
raise ValueError("The two numbers should be relatively prime")
return pow(a, (n - 1) // 2, n) in [1, n - 1]
def is_euler_jacobi_pseudoprime(n, a):
r"""Returns True if ``n`` is prime or is an odd composite integer that
is coprime to ``a`` and satisfy the modular arithmetic congruence relation:
.. math ::
a^{(n-1)/2} \equiv \left(\frac{a}{n}\right) \pmod{n}
(where mod refers to the modulo operation).
Parameters
==========
n : Integer
``n`` is a positive integer.
a : Integer
``a`` is a positive integer.
``a`` and ``n`` should be relatively prime.
Returns
=======
bool : If ``n`` is prime, it always returns ``True``.
The composite number that returns ``True`` is called an Euler-Jacobi pseudoprime.
Examples
========
>>> from sympy.ntheory.primetest import is_euler_jacobi_pseudoprime
>>> from sympy.ntheory.factor_ import isprime
>>> for n in range(1, 1000):
... if is_euler_jacobi_pseudoprime(n, 2) and not isprime(n):
... print(n)
561
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Jacobi_pseudoprime
"""
n, a = as_int(n), as_int(a)
if a == 1:
return n == 2 or bool(n % 2)
return is_euler_prp(n, a)
def is_square(n, prep=True):
"""Return True if n == a * a for some integer a, else False.
If n is suspected of *not* being a square then this is a
quick method of confirming that it is not.
Examples
========
>>> from sympy.ntheory.primetest import is_square
>>> is_square(25)
True
>>> is_square(2)
False
References
==========
.. [1] https://mersenneforum.org/showpost.php?p=110896
See Also
========
sympy.core.intfunc.isqrt
"""
if prep:
n = as_int(n)
if n < 0:
return False
if n in (0, 1):
return True
return gmpy_is_square(n)
def _test(n, base, s, t):
"""Miller-Rabin strong pseudoprime test for one base.
Return False if n is definitely composite, True if n is
probably prime, with a probability greater than 3/4.
"""
# do the Fermat test
b = pow(base, t, n)
if b == 1 or b == n - 1:
return True
for _ in range(s - 1):
b = pow(b, 2, n)
if b == n - 1:
return True
# see I. Niven et al. "An Introduction to Theory of Numbers", page 78
if b == 1:
return False
return False
def mr(n, bases):
"""Perform a Miller-Rabin strong pseudoprime test on n using a
given list of bases/witnesses.
References
==========
.. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers:
A Computational Perspective", Springer, 2nd edition, 135-138
A list of thresholds and the bases they require are here:
https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants
Examples
========
>>> from sympy.ntheory.primetest import mr
>>> mr(1373651, [2, 3])
False
>>> mr(479001599, [31, 73])
True
"""
from sympy.polys.domains import ZZ
n = as_int(n)
if n < 2:
return False
# remove powers of 2 from n-1 (= t * 2**s)
s = bit_scan1(n - 1)
t = n >> s
for base in bases:
# Bases >= n are wrapped, bases < 2 are invalid
if base >= n:
base %= n
if base >= 2:
base = ZZ(base)
if not _test(n, base, s, t):
return False
return True
def _lucas_extrastrong_params(n):
"""Calculates the "extra strong" parameters (D, P, Q) for n.
Parameters
==========
n : int
positive odd integer
Returns
=======
D, P, Q: "extra strong" parameters.
``(0, 0, 0)`` if we find a nontrivial divisor of ``n``.
Examples
========
>>> from sympy.ntheory.primetest import _lucas_extrastrong_params
>>> _lucas_extrastrong_params(101)
(12, 4, 1)
>>> _lucas_extrastrong_params(15)
(0, 0, 0)
References
==========
.. [1] OEIS A217719: Extra Strong Lucas Pseudoprimes
https://oeis.org/A217719
.. [2] https://en.wikipedia.org/wiki/Lucas_pseudoprime
"""
for P in count(3):
D = P**2 - 4
j = jacobi(D, n)
if j == -1:
return (D, P, 1)
elif j == 0 and D % n:
return (0, 0, 0)
def is_lucas_prp(n):
"""Standard Lucas compositeness test with Selfridge parameters. Returns
False if n is definitely composite, and True if n is a Lucas probable
prime.
This is typically used in combination with the Miller-Rabin test.
References
==========
.. [1] Robert Baillie, Samuel S. Wagstaff, Lucas Pseudoprimes,
Math. Comp. Vol 35, Number 152 (1980), pp. 1391-1417,
https://doi.org/10.1090%2FS0025-5718-1980-0583518-6
http://mpqs.free.fr/LucasPseudoprimes.pdf
.. [2] OEIS A217120: Lucas Pseudoprimes
https://oeis.org/A217120
.. [3] https://en.wikipedia.org/wiki/Lucas_pseudoprime
Examples
========
>>> from sympy.ntheory.primetest import isprime, is_lucas_prp
>>> for i in range(10000):
... if is_lucas_prp(i) and not isprime(i):
... print(i)
323
377
1159
1829
3827
5459
5777
9071
9179
"""
n = as_int(n)
if n < 2:
return False
return is_selfridge_prp(n)
def is_strong_lucas_prp(n):
"""Strong Lucas compositeness test with Selfridge parameters. Returns
False if n is definitely composite, and True if n is a strong Lucas
probable prime.
This is often used in combination with the Miller-Rabin test, and
in particular, when combined with M-R base 2 creates the strong BPSW test.
References
==========
.. [1] Robert Baillie, Samuel S. Wagstaff, Lucas Pseudoprimes,
Math. Comp. Vol 35, Number 152 (1980), pp. 1391-1417,
https://doi.org/10.1090%2FS0025-5718-1980-0583518-6
http://mpqs.free.fr/LucasPseudoprimes.pdf
.. [2] OEIS A217255: Strong Lucas Pseudoprimes
https://oeis.org/A217255
.. [3] https://en.wikipedia.org/wiki/Lucas_pseudoprime
.. [4] https://en.wikipedia.org/wiki/Baillie-PSW_primality_test
Examples
========
>>> from sympy.ntheory.primetest import isprime, is_strong_lucas_prp
>>> for i in range(20000):
... if is_strong_lucas_prp(i) and not isprime(i):
... print(i)
5459
5777
10877
16109
18971
"""
n = as_int(n)
if n < 2:
return False
return is_strong_selfridge_prp(n)
def is_extra_strong_lucas_prp(n):
"""Extra Strong Lucas compositeness test. Returns False if n is
definitely composite, and True if n is an "extra strong" Lucas probable
prime.
The parameters are selected using P = 3, Q = 1, then incrementing P until
(D|n) == -1. The test itself is as defined in [1]_, from the
Mo and Jones preprint. The parameter selection and test are the same as
used in OEIS A217719, Perl's Math::Prime::Util, and the Lucas pseudoprime
page on Wikipedia.
It is 20-50% faster than the strong test.
Because of the different parameters selected, there is no relationship
between the strong Lucas pseudoprimes and extra strong Lucas pseudoprimes.
In particular, one is not a subset of the other.
References
==========
.. [1] Jon Grantham, Frobenius Pseudoprimes,
Math. Comp. Vol 70, Number 234 (2001), pp. 873-891,
https://doi.org/10.1090%2FS0025-5718-00-01197-2
.. [2] OEIS A217719: Extra Strong Lucas Pseudoprimes
https://oeis.org/A217719
.. [3] https://en.wikipedia.org/wiki/Lucas_pseudoprime
Examples
========
>>> from sympy.ntheory.primetest import isprime, is_extra_strong_lucas_prp
>>> for i in range(20000):
... if is_extra_strong_lucas_prp(i) and not isprime(i):
... print(i)
989
3239
5777
10877
"""
# Implementation notes:
# 1) the parameters differ from Thomas R. Nicely's. His parameter
# selection leads to pseudoprimes that overlap M-R tests, and
# contradict Baillie and Wagstaff's suggestion of (D|n) = -1.
# 2) The MathWorld page as of June 2013 specifies Q=-1. The Lucas
# sequence must have Q=1. See Grantham theorem 2.3, any of the
# references on the MathWorld page, or run it and see Q=-1 is wrong.
n = as_int(n)
if n == 2:
return True
if n < 2 or (n % 2) == 0:
return False
if gmpy_is_square(n):
return False
D, P, Q = _lucas_extrastrong_params(n)
if D == 0:
return False
# remove powers of 2 from n+1 (= k * 2**s)
s = bit_scan1(n + 1)
k = (n + 1) >> s
U, V, _ = _lucas_sequence(n, P, Q, k)
if U == 0 and (V == 2 or V == n - 2):
return True
for _ in range(1, s):
if V == 0:
return True
V = (V*V - 2) % n
return False
def proth_test(n):
r""" Test if the Proth number `n = k2^m + 1` is prime. where k is a positive odd number and `2^m > k`.
Parameters
==========
n : Integer
``n`` is Proth number
Returns
=======
bool : If ``True``, then ``n`` is the Proth prime
Raises
======
ValueError
If ``n`` is not Proth number.
Examples
========
>>> from sympy.ntheory.primetest import proth_test
>>> proth_test(41)
True
>>> proth_test(57)
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Proth_prime
"""
n = as_int(n)
if n < 3:
raise ValueError("n is not Proth number")
m = bit_scan1(n - 1)
k = n >> m
if m < k.bit_length():
raise ValueError("n is not Proth number")
if n % 3 == 0:
return n == 3
if k % 3: # n % 12 == 5
return pow(3, n >> 1, n) == n - 1
# If `n` is a square number, then `jacobi(a, n) = 1` for any `a`
if gmpy_is_square(n):
return False
# `a` may be chosen at random.
# In any case, we want to find `a` such that `jacobi(a, n) = -1`.
for a in range(5, n):
j = jacobi(a, n)
if j == -1:
return pow(a, n >> 1, n) == n - 1
if j == 0:
return False
def _lucas_lehmer_primality_test(p):
r""" Test if the Mersenne number `M_p = 2^p-1` is prime.
Parameters
==========
p : int
``p`` is an odd prime number
Returns
=======
bool : If ``True``, then `M_p` is the Mersenne prime
Examples
========
>>> from sympy.ntheory.primetest import _lucas_lehmer_primality_test
>>> _lucas_lehmer_primality_test(5) # 2**5 - 1 = 31 is prime
True
>>> _lucas_lehmer_primality_test(11) # 2**11 - 1 = 2047 is not prime
False
See Also
========
is_mersenne_prime
References
==========
.. [1] https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test
"""
v = 4
m = 2**p - 1
for _ in range(p - 2):
v = pow(v, 2, m) - 2
return v == 0
def is_mersenne_prime(n):
"""Returns True if ``n`` is a Mersenne prime, else False.
A Mersenne prime is a prime number having the form `2^i - 1`.
Examples
========
>>> from sympy.ntheory.factor_ import is_mersenne_prime
>>> is_mersenne_prime(6)
False
>>> is_mersenne_prime(127)
True
References
==========
.. [1] https://mathworld.wolfram.com/MersennePrime.html
"""
n = as_int(n)
if n < 1:
return False
if n & (n + 1):
# n is not Mersenne number
return False
p = n.bit_length()
if p in MERSENNE_PRIME_EXPONENTS:
return True
if p < 65_000_000 or not isprime(p):
# According to GIMPS, verification was completed on September 19, 2023 for p less than 65 million.
# https://www.mersenne.org/report_milestones/
# If p is composite number, then n=2**p-1 is composite number.
return False
result = _lucas_lehmer_primality_test(p)
if result:
raise ValueError(filldedent('''
This Mersenne Prime, 2^%s - 1, should
be added to SymPy's known values.''' % p))
return result
def isprime(n):
"""
Test if n is a prime number (True) or not (False). For n < 2^64 the
answer is definitive; larger n values have a small probability of actually
being pseudoprimes.
Negative numbers (e.g. -2) are not considered prime.
The first step is looking for trivial factors, which if found enables
a quick return. Next, if the sieve is large enough, use bisection search
on the sieve. For small numbers, a set of deterministic Miller-Rabin
tests are performed with bases that are known to have no counterexamples
in their range. Finally if the number is larger than 2^64, a strong
BPSW test is performed. While this is a probable prime test and we
believe counterexamples exist, there are no known counterexamples.
Examples
========
>>> from sympy.ntheory import isprime
>>> isprime(13)
True
>>> isprime(15)
False
Notes
=====
This routine is intended only for integer input, not numerical
expressions which may represent numbers. Floats are also
rejected as input because they represent numbers of limited
precision. While it is tempting to permit 7.0 to represent an
integer there are errors that may "pass silently" if this is
allowed:
>>> from sympy import Float, S
>>> int(1e3) == 1e3 == 10**3
True
>>> int(1e23) == 1e23
True
>>> int(1e23) == 10**23
False
>>> near_int = 1 + S(1)/10**19
>>> near_int == int(near_int)
False
>>> n = Float(near_int, 10) # truncated by precision
>>> n % 1 == 0
True
>>> n = Float(near_int, 20)
>>> n % 1 == 0
False
See Also
========
sympy.ntheory.generate.primerange : Generates all primes in a given range
sympy.functions.combinatorial.numbers.primepi : Return the number of primes less than or equal to n
sympy.ntheory.generate.prime : Return the nth prime
References
==========
.. [1] https://en.wikipedia.org/wiki/Strong_pseudoprime
.. [2] Robert Baillie, Samuel S. Wagstaff, Lucas Pseudoprimes,
Math. Comp. Vol 35, Number 152 (1980), pp. 1391-1417,
https://doi.org/10.1090%2FS0025-5718-1980-0583518-6
http://mpqs.free.fr/LucasPseudoprimes.pdf
.. [3] https://en.wikipedia.org/wiki/Baillie-PSW_primality_test
"""
n = as_int(n)
# Step 1, do quick composite testing via trial division. The individual
# modulo tests benchmark faster than one or two primorial igcds for me.
# The point here is just to speedily handle small numbers and many
# composites. Step 2 only requires that n <= 2 get handled here.
if n in [2, 3, 5]:
return True
if n < 2 or (n % 2) == 0 or (n % 3) == 0 or (n % 5) == 0:
return False
if n < 49:
return True
if (n % 7) == 0 or (n % 11) == 0 or (n % 13) == 0 or (n % 17) == 0 or \
(n % 19) == 0 or (n % 23) == 0 or (n % 29) == 0 or (n % 31) == 0 or \
(n % 37) == 0 or (n % 41) == 0 or (n % 43) == 0 or (n % 47) == 0:
return False
if n < 2809:
return True
if n < 65077:
# There are only five Euler pseudoprimes with a least prime factor greater than 47
return pow(2, n >> 1, n) in [1, n - 1] and n not in [8321, 31621, 42799, 49141, 49981]
# bisection search on the sieve if the sieve is large enough
from sympy.ntheory.generate import sieve as s
if n <= s._list[-1]:
l, u = s.search(n)
return l == u
# If we have GMPY2, skip straight to step 3 and do a strong BPSW test.
# This should be a bit faster than our step 2, and for large values will
# be a lot faster than our step 3 (C+GMP vs. Python).
if _gmpy is not None:
return is_strong_bpsw_prp(n)
# Step 2: deterministic Miller-Rabin testing for numbers < 2^64. See:
# https://miller-rabin.appspot.com/
# for lists. We have made sure the M-R routine will successfully handle
# bases larger than n, so we can use the minimal set.
# In September 2015 deterministic numbers were extended to over 2^81.
# https://arxiv.org/pdf/1509.00864.pdf
# https://oeis.org/A014233
if n < 341531:
return mr(n, [9345883071009581737])
if n < 885594169:
return mr(n, [725270293939359937, 3569819667048198375])
if n < 350269456337:
return mr(n, [4230279247111683200, 14694767155120705706, 16641139526367750375])
if n < 55245642489451:
return mr(n, [2, 141889084524735, 1199124725622454117, 11096072698276303650])
if n < 7999252175582851:
return mr(n, [2, 4130806001517, 149795463772692060, 186635894390467037, 3967304179347715805])
if n < 585226005592931977:
return mr(n, [2, 123635709730000, 9233062284813009, 43835965440333360, 761179012939631437, 1263739024124850375])
if n < 18446744073709551616:
return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022])
if n < 318665857834031151167461:
return mr(n, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37])
if n < 3317044064679887385961981:
return mr(n, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41])
# We could do this instead at any point:
#if n < 18446744073709551616:
# return mr(n, [2]) and is_extra_strong_lucas_prp(n)
# Here are tests that are safe for MR routines that don't understand
# large bases.
#if n < 9080191:
# return mr(n, [31, 73])
#if n < 19471033:
# return mr(n, [2, 299417])
#if n < 38010307:
# return mr(n, [2, 9332593])
#if n < 316349281:
# return mr(n, [11000544, 31481107])
#if n < 4759123141:
# return mr(n, [2, 7, 61])
#if n < 105936894253:
# return mr(n, [2, 1005905886, 1340600841])
#if n < 31858317218647:
# return mr(n, [2, 642735, 553174392, 3046413974])
#if n < 3071837692357849:
# return mr(n, [2, 75088, 642735, 203659041, 3613982119])
#if n < 18446744073709551616:
# return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022])
# Step 3: BPSW.
#
# Time for isprime(10**2000 + 4561), no gmpy or gmpy2 installed
# 44.0s old isprime using 46 bases
# 5.3s strong BPSW + one random base
# 4.3s extra strong BPSW + one random base
# 4.1s strong BPSW
# 3.2s extra strong BPSW
# Classic BPSW from page 1401 of the paper. See alternate ideas below.
return is_strong_bpsw_prp(n)
# Using extra strong test, which is somewhat faster
#return mr(n, [2]) and is_extra_strong_lucas_prp(n)
# Add a random M-R base
#import random
#return mr(n, [2, random.randint(3, n-1)]) and is_strong_lucas_prp(n)
def is_gaussian_prime(num):
r"""Test if num is a Gaussian prime number.
References
==========
.. [1] https://oeis.org/wiki/Gaussian_primes
"""
num = sympify(num)
a, b = num.as_real_imag()
a = as_int(a, strict=False)
b = as_int(b, strict=False)
if a == 0:
b = abs(b)
return isprime(b) and b % 4 == 3
elif b == 0:
a = abs(a)
return isprime(a) and a % 4 == 3
return isprime(a**2 + b**2)
|