Spaces:
Sleeping
Sleeping
File size: 9,013 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
from mpmath.libmp import (fzero, from_int, from_rational,
fone, fhalf, bitcount, to_int, mpf_mul, mpf_div, mpf_sub,
mpf_add, mpf_sqrt, mpf_pi, mpf_cosh_sinh, mpf_cos, mpf_sin)
from sympy.external.gmpy import gcd, legendre, jacobi
from .residue_ntheory import _sqrt_mod_prime_power, is_quad_residue
from sympy.utilities.decorator import deprecated
from sympy.utilities.memoization import recurrence_memo
import math
from itertools import count
def _pre():
maxn = 10**5
global _factor
global _totient
_factor = [0]*maxn
_totient = [1]*maxn
lim = int(maxn**0.5) + 5
for i in range(2, lim):
if _factor[i] == 0:
for j in range(i*i, maxn, i):
if _factor[j] == 0:
_factor[j] = i
for i in range(2, maxn):
if _factor[i] == 0:
_factor[i] = i
_totient[i] = i-1
continue
x = _factor[i]
y = i//x
if y % x == 0:
_totient[i] = _totient[y]*x
else:
_totient[i] = _totient[y]*(x - 1)
def _a(n, k, prec):
""" Compute the inner sum in HRR formula [1]_
References
==========
.. [1] https://msp.org/pjm/1956/6-1/pjm-v6-n1-p18-p.pdf
"""
if k == 1:
return fone
k1 = k
e = 0
p = _factor[k]
while k1 % p == 0:
k1 //= p
e += 1
k2 = k//k1 # k2 = p^e
v = 1 - 24*n
pi = mpf_pi(prec)
if k1 == 1:
# k = p^e
if p == 2:
mod = 8*k
v = mod + v % mod
v = (v*pow(9, k - 1, mod)) % mod
m = _sqrt_mod_prime_power(v, 2, e + 3)[0]
arg = mpf_div(mpf_mul(
from_int(4*m), pi, prec), from_int(mod), prec)
return mpf_mul(mpf_mul(
from_int((-1)**e*jacobi(m - 1, m)),
mpf_sqrt(from_int(k), prec), prec),
mpf_sin(arg, prec), prec)
if p == 3:
mod = 3*k
v = mod + v % mod
if e > 1:
v = (v*pow(64, k//3 - 1, mod)) % mod
m = _sqrt_mod_prime_power(v, 3, e + 1)[0]
arg = mpf_div(mpf_mul(from_int(4*m), pi, prec),
from_int(mod), prec)
return mpf_mul(mpf_mul(
from_int(2*(-1)**(e + 1)*legendre(m, 3)),
mpf_sqrt(from_int(k//3), prec), prec),
mpf_sin(arg, prec), prec)
v = k + v % k
if v % p == 0:
if e == 1:
return mpf_mul(
from_int(jacobi(3, k)),
mpf_sqrt(from_int(k), prec), prec)
return fzero
if not is_quad_residue(v, p):
return fzero
_phi = p**(e - 1)*(p - 1)
v = (v*pow(576, _phi - 1, k))
m = _sqrt_mod_prime_power(v, p, e)[0]
arg = mpf_div(
mpf_mul(from_int(4*m), pi, prec),
from_int(k), prec)
return mpf_mul(mpf_mul(
from_int(2*jacobi(3, k)),
mpf_sqrt(from_int(k), prec), prec),
mpf_cos(arg, prec), prec)
if p != 2 or e >= 3:
d1, d2 = gcd(k1, 24), gcd(k2, 24)
e = 24//(d1*d2)
n1 = ((d2*e*n + (k2**2 - 1)//d1)*
pow(e*k2*k2*d2, _totient[k1] - 1, k1)) % k1
n2 = ((d1*e*n + (k1**2 - 1)//d2)*
pow(e*k1*k1*d1, _totient[k2] - 1, k2)) % k2
return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
if e == 2:
n1 = ((8*n + 5)*pow(128, _totient[k1] - 1, k1)) % k1
n2 = (4 + ((n - 2 - (k1**2 - 1)//8)*(k1**2)) % 4) % 4
return mpf_mul(mpf_mul(
from_int(-1),
_a(n1, k1, prec), prec),
_a(n2, k2, prec))
n1 = ((8*n + 1)*pow(32, _totient[k1] - 1, k1)) % k1
n2 = (2 + (n - (k1**2 - 1)//8) % 2) % 2
return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
def _d(n, j, prec, sq23pi, sqrt8):
"""
Compute the sinh term in the outer sum of the HRR formula.
The constants sqrt(2/3*pi) and sqrt(8) must be precomputed.
"""
j = from_int(j)
pi = mpf_pi(prec)
a = mpf_div(sq23pi, j, prec)
b = mpf_sub(from_int(n), from_rational(1, 24, prec), prec)
c = mpf_sqrt(b, prec)
ch, sh = mpf_cosh_sinh(mpf_mul(a, c), prec)
D = mpf_div(
mpf_sqrt(j, prec),
mpf_mul(mpf_mul(sqrt8, b), pi), prec)
E = mpf_sub(mpf_mul(a, ch), mpf_div(sh, c, prec), prec)
return mpf_mul(D, E)
@recurrence_memo([1, 1])
def _partition_rec(n: int, prev) -> int:
""" Calculate the partition function P(n)
Parameters
==========
n : int
nonnegative integer
"""
v = 0
penta = 0 # pentagonal number: 1, 5, 12, ...
for i in count():
penta += 3*i + 1
np = n - penta
if np < 0:
break
s = prev[np]
np -= i + 1
# np = n - gp where gp = generalized pentagonal: 2, 7, 15, ...
if 0 <= np:
s += prev[np]
v += -s if i % 2 else s
return v
def _partition(n: int) -> int:
""" Calculate the partition function P(n)
Parameters
==========
n : int
"""
if n < 0:
return 0
if (n <= 200_000 and n - _partition_rec.cache_length() < 70 or
_partition_rec.cache_length() == 2 and n < 14_400):
# There will be 2*10**5 elements created here
# and n elements created by partition, so in case we
# are going to be working with small n, we just
# use partition to calculate (and cache) the values
# since lookup is used there while summation, using
# _factor and _totient, will be used below. But we
# only do so if n is relatively close to the length
# of the cache since doing 1 calculation here is about
# the same as adding 70 elements to the cache. In addition,
# the startup here costs about the same as calculating the first
# 14,400 values via partition, so we delay startup here unless n
# is smaller than that.
return _partition_rec(n)
if '_factor' not in globals():
_pre()
# Estimate number of bits in p(n). This formula could be tidied
pbits = int((
math.pi*(2*n/3.)**0.5 -
math.log(4*n))/math.log(10) + 1) * \
math.log2(10)
prec = p = int(pbits*1.1 + 100)
# find the number of terms needed so rounded sum will be accurate
# using Rademacher's bound M(n, N) for the remainder after a partial
# sum of N terms (https://arxiv.org/pdf/1205.5991.pdf, (1.8))
c1 = 44*math.pi**2/(225*math.sqrt(3))
c2 = math.pi*math.sqrt(2)/75
c3 = math.pi*math.sqrt(2/3)
def _M(n, N):
sqrt = math.sqrt
return c1/sqrt(N) + c2*sqrt(N/(n - 1))*math.sinh(c3*sqrt(n)/N)
big = max(9, math.ceil(n**0.5)) # should be too large (for n > 65, ceil should work)
assert _M(n, big) < 0.5 # else double big until too large
while big > 40 and _M(n, big) < 0.5:
big //= 2
small = big
big = small*2
while big - small > 1:
N = (big + small)//2
if (er := _M(n, N)) < 0.5:
big = N
elif er >= 0.5:
small = N
M = big # done with function M; now have value
# sanity check for expected size of answer
if M > 10**5: # i.e. M > maxn
raise ValueError("Input too big") # i.e. n > 149832547102
# calculate it
s = fzero
sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
sqrt8 = mpf_sqrt(from_int(8), p)
for q in range(1, M):
a = _a(n, q, p)
d = _d(n, q, p, sq23pi, sqrt8)
s = mpf_add(s, mpf_mul(a, d), prec)
# On average, the terms decrease rapidly in magnitude.
# Dynamically reducing the precision greatly improves
# performance.
p = bitcount(abs(to_int(d))) + 50
return int(to_int(mpf_add(s, fhalf, prec)))
@deprecated("""\
The `sympy.ntheory.partitions_.npartitions` has been moved to `sympy.functions.combinatorial.numbers.partition`.""",
deprecated_since_version="1.13",
active_deprecations_target='deprecated-ntheory-symbolic-functions')
def npartitions(n, verbose=False):
"""
Calculate the partition function P(n), i.e. the number of ways that
n can be written as a sum of positive integers.
.. deprecated:: 1.13
The ``npartitions`` function is deprecated. Use :class:`sympy.functions.combinatorial.numbers.partition`
instead. See its documentation for more information. See
:ref:`deprecated-ntheory-symbolic-functions` for details.
P(n) is computed using the Hardy-Ramanujan-Rademacher formula [1]_.
The correctness of this implementation has been tested through $10^{10}$.
Examples
========
>>> from sympy.functions.combinatorial.numbers import partition
>>> partition(25)
1958
References
==========
.. [1] https://mathworld.wolfram.com/PartitionFunctionP.html
"""
from sympy.functions.combinatorial.numbers import partition as func_partition
return func_partition(n)
|