File size: 9,013 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
from mpmath.libmp import (fzero, from_int, from_rational,
    fone, fhalf, bitcount, to_int, mpf_mul, mpf_div, mpf_sub,
    mpf_add, mpf_sqrt, mpf_pi, mpf_cosh_sinh, mpf_cos, mpf_sin)
from sympy.external.gmpy import gcd, legendre, jacobi
from .residue_ntheory import _sqrt_mod_prime_power, is_quad_residue
from sympy.utilities.decorator import deprecated
from sympy.utilities.memoization import recurrence_memo

import math
from itertools import count

def _pre():
    maxn = 10**5
    global _factor
    global _totient
    _factor = [0]*maxn
    _totient = [1]*maxn
    lim = int(maxn**0.5) + 5
    for i in range(2, lim):
        if _factor[i] == 0:
            for j in range(i*i, maxn, i):
                if _factor[j] == 0:
                    _factor[j] = i
    for i in range(2, maxn):
        if _factor[i] == 0:
            _factor[i] = i
            _totient[i] = i-1
            continue
        x = _factor[i]
        y = i//x
        if y % x == 0:
            _totient[i] = _totient[y]*x
        else:
            _totient[i] = _totient[y]*(x - 1)

def _a(n, k, prec):
    """ Compute the inner sum in HRR formula [1]_

    References
    ==========

    .. [1] https://msp.org/pjm/1956/6-1/pjm-v6-n1-p18-p.pdf

    """
    if k == 1:
        return fone

    k1 = k
    e = 0
    p = _factor[k]
    while k1 % p == 0:
        k1 //= p
        e += 1
    k2 = k//k1 # k2 = p^e
    v = 1 - 24*n
    pi = mpf_pi(prec)

    if k1 == 1:
        # k  = p^e
        if p == 2:
            mod = 8*k
            v = mod + v % mod
            v = (v*pow(9, k - 1, mod)) % mod
            m = _sqrt_mod_prime_power(v, 2, e + 3)[0]
            arg = mpf_div(mpf_mul(
                from_int(4*m), pi, prec), from_int(mod), prec)
            return mpf_mul(mpf_mul(
                from_int((-1)**e*jacobi(m - 1, m)),
                mpf_sqrt(from_int(k), prec), prec),
                mpf_sin(arg, prec), prec)
        if p == 3:
            mod = 3*k
            v = mod + v % mod
            if e > 1:
                v = (v*pow(64, k//3 - 1, mod)) % mod
            m = _sqrt_mod_prime_power(v, 3, e + 1)[0]
            arg = mpf_div(mpf_mul(from_int(4*m), pi, prec),
                from_int(mod), prec)
            return mpf_mul(mpf_mul(
                from_int(2*(-1)**(e + 1)*legendre(m, 3)),
                mpf_sqrt(from_int(k//3), prec), prec),
                mpf_sin(arg, prec), prec)
        v = k + v % k
        if v % p == 0:
            if e == 1:
                return mpf_mul(
                    from_int(jacobi(3, k)),
                    mpf_sqrt(from_int(k), prec), prec)
            return fzero
        if not is_quad_residue(v, p):
            return fzero
        _phi = p**(e - 1)*(p - 1)
        v = (v*pow(576, _phi - 1, k))
        m = _sqrt_mod_prime_power(v, p, e)[0]
        arg = mpf_div(
            mpf_mul(from_int(4*m), pi, prec),
            from_int(k), prec)
        return mpf_mul(mpf_mul(
            from_int(2*jacobi(3, k)),
            mpf_sqrt(from_int(k), prec), prec),
            mpf_cos(arg, prec), prec)

    if p != 2 or e >= 3:
        d1, d2 = gcd(k1, 24), gcd(k2, 24)
        e = 24//(d1*d2)
        n1 = ((d2*e*n + (k2**2 - 1)//d1)*
            pow(e*k2*k2*d2, _totient[k1] - 1, k1)) % k1
        n2 = ((d1*e*n + (k1**2 - 1)//d2)*
            pow(e*k1*k1*d1, _totient[k2] - 1, k2)) % k2
        return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
    if e == 2:
        n1 = ((8*n + 5)*pow(128, _totient[k1] - 1, k1)) % k1
        n2 = (4 + ((n - 2 - (k1**2 - 1)//8)*(k1**2)) % 4) % 4
        return mpf_mul(mpf_mul(
            from_int(-1),
            _a(n1, k1, prec), prec),
            _a(n2, k2, prec))
    n1 = ((8*n + 1)*pow(32, _totient[k1] - 1, k1)) % k1
    n2 = (2 + (n - (k1**2 - 1)//8) % 2) % 2
    return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)

def _d(n, j, prec, sq23pi, sqrt8):
    """
    Compute the sinh term in the outer sum of the HRR formula.
    The constants sqrt(2/3*pi) and sqrt(8) must be precomputed.
    """
    j = from_int(j)
    pi = mpf_pi(prec)
    a = mpf_div(sq23pi, j, prec)
    b = mpf_sub(from_int(n), from_rational(1, 24, prec), prec)
    c = mpf_sqrt(b, prec)
    ch, sh = mpf_cosh_sinh(mpf_mul(a, c), prec)
    D = mpf_div(
        mpf_sqrt(j, prec),
        mpf_mul(mpf_mul(sqrt8, b), pi), prec)
    E = mpf_sub(mpf_mul(a, ch), mpf_div(sh, c, prec), prec)
    return mpf_mul(D, E)


@recurrence_memo([1, 1])
def _partition_rec(n: int, prev) -> int:
    """ Calculate the partition function P(n)

    Parameters
    ==========

    n : int
        nonnegative integer

    """
    v = 0
    penta = 0 # pentagonal number: 1, 5, 12, ...
    for i in count():
        penta += 3*i + 1
        np = n - penta
        if np < 0:
            break
        s = prev[np]
        np -= i + 1
        # np = n - gp where gp = generalized pentagonal: 2, 7, 15, ...
        if 0 <= np:
            s += prev[np]
        v += -s if i % 2 else s
    return v


def _partition(n: int) -> int:
    """ Calculate the partition function P(n)

    Parameters
    ==========

    n : int

    """
    if n < 0:
        return 0
    if (n <= 200_000 and n - _partition_rec.cache_length() < 70 or
            _partition_rec.cache_length() == 2 and n < 14_400):
        # There will be 2*10**5 elements created here
        # and n elements created by partition, so in case we
        # are going to be working with small n, we just
        # use partition to calculate (and cache) the values
        # since lookup is used there while summation, using
        # _factor and _totient, will be used below. But we
        # only do so if n is relatively close to the length
        # of the cache since doing 1 calculation here is about
        # the same as adding 70 elements to the cache. In addition,
        # the startup here costs about the same as calculating the first
        # 14,400 values via partition, so we delay startup here unless n
        # is smaller than that.
        return _partition_rec(n)
    if '_factor' not in globals():
        _pre()
    # Estimate number of bits in p(n). This formula could be tidied
    pbits = int((
        math.pi*(2*n/3.)**0.5 -
        math.log(4*n))/math.log(10) + 1) * \
        math.log2(10)
    prec = p = int(pbits*1.1 + 100)

    # find the number of terms needed so rounded sum will be accurate
    # using Rademacher's bound M(n, N) for the remainder after a partial
    # sum of N terms (https://arxiv.org/pdf/1205.5991.pdf, (1.8))
    c1 = 44*math.pi**2/(225*math.sqrt(3))
    c2 = math.pi*math.sqrt(2)/75
    c3 = math.pi*math.sqrt(2/3)
    def _M(n, N):
        sqrt = math.sqrt
        return c1/sqrt(N) + c2*sqrt(N/(n - 1))*math.sinh(c3*sqrt(n)/N)
    big = max(9, math.ceil(n**0.5))  # should be too large (for n > 65, ceil should work)
    assert _M(n, big) < 0.5  # else double big until too large
    while big > 40 and _M(n, big) < 0.5:
        big //= 2
    small = big
    big = small*2
    while big - small > 1:
        N = (big + small)//2
        if (er := _M(n, N)) < 0.5:
            big = N
        elif er >= 0.5:
            small = N
    M = big  # done with function M; now have value

    # sanity check for expected size of answer
    if M > 10**5:  # i.e. M > maxn
        raise ValueError("Input too big")  # i.e. n > 149832547102

    # calculate it
    s = fzero
    sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
    sqrt8 = mpf_sqrt(from_int(8), p)
    for q in range(1, M):
        a = _a(n, q, p)
        d = _d(n, q, p, sq23pi, sqrt8)
        s = mpf_add(s, mpf_mul(a, d), prec)
        # On average, the terms decrease rapidly in magnitude.
        # Dynamically reducing the precision greatly improves
        # performance.
        p = bitcount(abs(to_int(d))) + 50
    return int(to_int(mpf_add(s, fhalf, prec)))


@deprecated("""\
The `sympy.ntheory.partitions_.npartitions` has been moved to `sympy.functions.combinatorial.numbers.partition`.""",
deprecated_since_version="1.13",
active_deprecations_target='deprecated-ntheory-symbolic-functions')
def npartitions(n, verbose=False):
    """
    Calculate the partition function P(n), i.e. the number of ways that
    n can be written as a sum of positive integers.

    .. deprecated:: 1.13

        The ``npartitions`` function is deprecated. Use :class:`sympy.functions.combinatorial.numbers.partition`
        instead. See its documentation for more information. See
        :ref:`deprecated-ntheory-symbolic-functions` for details.

    P(n) is computed using the Hardy-Ramanujan-Rademacher formula [1]_.


    The correctness of this implementation has been tested through $10^{10}$.

    Examples
    ========

    >>> from sympy.functions.combinatorial.numbers import partition
    >>> partition(25)
    1958

    References
    ==========

    .. [1] https://mathworld.wolfram.com/PartitionFunctionP.html

    """
    from sympy.functions.combinatorial.numbers import partition as func_partition
    return func_partition(n)