File size: 5,073 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from sympy.utilities.misc import as_int


def binomial_coefficients(n):
    """Return a dictionary containing pairs :math:`{(k1,k2) : C_kn}` where
    :math:`C_kn` are binomial coefficients and :math:`n=k1+k2`.

    Examples
    ========

    >>> from sympy.ntheory import binomial_coefficients
    >>> binomial_coefficients(9)
    {(0, 9): 1, (1, 8): 9, (2, 7): 36, (3, 6): 84,
     (4, 5): 126, (5, 4): 126, (6, 3): 84, (7, 2): 36, (8, 1): 9, (9, 0): 1}

    See Also
    ========

    binomial_coefficients_list, multinomial_coefficients
    """
    n = as_int(n)
    d = {(0, n): 1, (n, 0): 1}
    a = 1
    for k in range(1, n//2 + 1):
        a = (a * (n - k + 1))//k
        d[k, n - k] = d[n - k, k] = a
    return d


def binomial_coefficients_list(n):
    """ Return a list of binomial coefficients as rows of the Pascal's
    triangle.

    Examples
    ========

    >>> from sympy.ntheory import binomial_coefficients_list
    >>> binomial_coefficients_list(9)
    [1, 9, 36, 84, 126, 126, 84, 36, 9, 1]

    See Also
    ========

    binomial_coefficients, multinomial_coefficients
    """
    n = as_int(n)
    d = [1] * (n + 1)
    a = 1
    for k in range(1, n//2 + 1):
        a = (a * (n - k + 1))//k
        d[k] = d[n - k] = a
    return d


def multinomial_coefficients(m, n):
    r"""Return a dictionary containing pairs ``{(k1,k2,..,km) : C_kn}``
    where ``C_kn`` are multinomial coefficients such that
    ``n=k1+k2+..+km``.

    Examples
    ========

    >>> from sympy.ntheory import multinomial_coefficients
    >>> multinomial_coefficients(2, 5) # indirect doctest
    {(0, 5): 1, (1, 4): 5, (2, 3): 10, (3, 2): 10, (4, 1): 5, (5, 0): 1}

    Notes
    =====

    The algorithm is based on the following result:

    .. math::
        \binom{n}{k_1, \ldots, k_m} =
        \frac{k_1 + 1}{n - k_1} \sum_{i=2}^m \binom{n}{k_1 + 1, \ldots, k_i - 1, \ldots}

    Code contributed to Sage by Yann Laigle-Chapuy, copied with permission
    of the author.

    See Also
    ========

    binomial_coefficients_list, binomial_coefficients
    """
    m = as_int(m)
    n = as_int(n)
    if not m:
        if n:
            return {}
        return {(): 1}
    if m == 2:
        return binomial_coefficients(n)
    if m >= 2*n and n > 1:
        return dict(multinomial_coefficients_iterator(m, n))
    t = [n] + [0] * (m - 1)
    r = {tuple(t): 1}
    if n:
        j = 0  # j will be the leftmost nonzero position
    else:
        j = m
    # enumerate tuples in co-lex order
    while j < m - 1:
        # compute next tuple
        tj = t[j]
        if j:
            t[j] = 0
            t[0] = tj
        if tj > 1:
            t[j + 1] += 1
            j = 0
            start = 1
            v = 0
        else:
            j += 1
            start = j + 1
            v = r[tuple(t)]
            t[j] += 1
        # compute the value
        # NB: the initialization of v was done above
        for k in range(start, m):
            if t[k]:
                t[k] -= 1
                v += r[tuple(t)]
                t[k] += 1
        t[0] -= 1
        r[tuple(t)] = (v * tj) // (n - t[0])
    return r


def multinomial_coefficients_iterator(m, n, _tuple=tuple):
    """multinomial coefficient iterator

    This routine has been optimized for `m` large with respect to `n` by taking
    advantage of the fact that when the monomial tuples `t` are stripped of
    zeros, their coefficient is the same as that of the monomial tuples from
    ``multinomial_coefficients(n, n)``. Therefore, the latter coefficients are
    precomputed to save memory and time.

    >>> from sympy.ntheory.multinomial import multinomial_coefficients
    >>> m53, m33 = multinomial_coefficients(5,3), multinomial_coefficients(3,3)
    >>> m53[(0,0,0,1,2)] == m53[(0,0,1,0,2)] == m53[(1,0,2,0,0)] == m33[(0,1,2)]
    True

    Examples
    ========

    >>> from sympy.ntheory.multinomial import multinomial_coefficients_iterator
    >>> it = multinomial_coefficients_iterator(20,3)
    >>> next(it)
    ((3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1)
    """
    m = as_int(m)
    n = as_int(n)
    if m < 2*n or n == 1:
        mc = multinomial_coefficients(m, n)
        yield from mc.items()
    else:
        mc = multinomial_coefficients(n, n)
        mc1 = {}
        for k, v in mc.items():
            mc1[_tuple(filter(None, k))] = v
        mc = mc1

        t = [n] + [0] * (m - 1)
        t1 = _tuple(t)
        b = _tuple(filter(None, t1))
        yield (t1, mc[b])
        if n:
            j = 0  # j will be the leftmost nonzero position
        else:
            j = m
        # enumerate tuples in co-lex order
        while j < m - 1:
            # compute next tuple
            tj = t[j]
            if j:
                t[j] = 0
                t[0] = tj
            if tj > 1:
                t[j + 1] += 1
                j = 0
            else:
                j += 1
                t[j] += 1

            t[0] -= 1
            t1 = _tuple(t)
            b = _tuple(filter(None, t1))
            yield (t1, mc[b])