File size: 33,470 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
"""
Generating and counting primes.

"""

from bisect import bisect, bisect_left
from itertools import count
# Using arrays for sieving instead of lists greatly reduces
# memory consumption
from array import array as _array

from sympy.core.random import randint
from sympy.external.gmpy import sqrt
from .primetest import isprime
from sympy.utilities.decorator import deprecated
from sympy.utilities.misc import as_int


def _as_int_ceiling(a):
    """ Wrapping ceiling in as_int will raise an error if there was a problem
        determining whether the expression was exactly an integer or not."""
    from sympy.functions.elementary.integers import ceiling
    return as_int(ceiling(a))


class Sieve:
    """A list of prime numbers, implemented as a dynamically
    growing sieve of Eratosthenes. When a lookup is requested involving
    an odd number that has not been sieved, the sieve is automatically
    extended up to that number. Implementation details limit the number of
    primes to ``2^32-1``.

    Examples
    ========

    >>> from sympy import sieve
    >>> sieve._reset() # this line for doctest only
    >>> 25 in sieve
    False
    >>> sieve._list
    array('L', [2, 3, 5, 7, 11, 13, 17, 19, 23])
    """

    # data shared (and updated) by all Sieve instances
    def __init__(self, sieve_interval=1_000_000):
        """ Initial parameters for the Sieve class.

        Parameters
        ==========

        sieve_interval (int): Amount of memory to be used

        Raises
        ======

        ValueError
            If ``sieve_interval`` is not positive.

        """
        self._n = 6
        self._list = _array('L', [2, 3, 5, 7, 11, 13]) # primes
        self._tlist = _array('L', [0, 1, 1, 2, 2, 4]) # totient
        self._mlist = _array('i', [0, 1, -1, -1, 0, -1]) # mobius
        if sieve_interval <= 0:
            raise ValueError("sieve_interval should be a positive integer")
        self.sieve_interval = sieve_interval
        assert all(len(i) == self._n for i in (self._list, self._tlist, self._mlist))

    def __repr__(self):
        return ("<%s sieve (%i): %i, %i, %i, ... %i, %i\n"
             "%s sieve (%i): %i, %i, %i, ... %i, %i\n"
             "%s sieve (%i): %i, %i, %i, ... %i, %i>") % (
             'prime', len(self._list),
                 self._list[0], self._list[1], self._list[2],
                 self._list[-2], self._list[-1],
             'totient', len(self._tlist),
                 self._tlist[0], self._tlist[1],
                 self._tlist[2], self._tlist[-2], self._tlist[-1],
             'mobius', len(self._mlist),
                 self._mlist[0], self._mlist[1],
                 self._mlist[2], self._mlist[-2], self._mlist[-1])

    def _reset(self, prime=None, totient=None, mobius=None):
        """Reset all caches (default). To reset one or more set the
            desired keyword to True."""
        if all(i is None for i in (prime, totient, mobius)):
            prime = totient = mobius = True
        if prime:
            self._list = self._list[:self._n]
        if totient:
            self._tlist = self._tlist[:self._n]
        if mobius:
            self._mlist = self._mlist[:self._n]

    def extend(self, n):
        """Grow the sieve to cover all primes <= n.

        Examples
        ========

        >>> from sympy import sieve
        >>> sieve._reset() # this line for doctest only
        >>> sieve.extend(30)
        >>> sieve[10] == 29
        True
        """
        n = int(n)
        # `num` is even at any point in the function.
        # This satisfies the condition required by `self._primerange`.
        num = self._list[-1] + 1
        if n < num:
            return
        num2 = num**2
        while num2 <= n:
            self._list += _array('L', self._primerange(num, num2))
            num, num2 = num2, num2**2
        # Merge the sieves
        self._list += _array('L', self._primerange(num, n + 1))

    def _primerange(self, a, b):
        """ Generate all prime numbers in the range (a, b).

        Parameters
        ==========

        a, b : positive integers assuming the following conditions
                * a is an even number
                * 2 < self._list[-1] < a < b < nextprime(self._list[-1])**2

        Yields
        ======

        p (int): prime numbers such that ``a < p < b``

        Examples
        ========

        >>> from sympy.ntheory.generate import Sieve
        >>> s = Sieve()
        >>> s._list[-1]
        13
        >>> list(s._primerange(18, 31))
        [19, 23, 29]

        """
        if b % 2:
            b -= 1
        while a < b:
            block_size = min(self.sieve_interval, (b - a) // 2)
            # Create the list such that block[x] iff (a + 2x + 1) is prime.
            # Note that even numbers are not considered here.
            block = [True] * block_size
            for p in self._list[1:bisect(self._list, sqrt(a + 2 * block_size + 1))]:
                for t in range((-(a + 1 + p) // 2) % p, block_size, p):
                    block[t] = False
            for idx, p in enumerate(block):
                if p:
                    yield a + 2 * idx + 1
            a += 2 * block_size

    def extend_to_no(self, i):
        """Extend to include the ith prime number.

        Parameters
        ==========

        i : integer

        Examples
        ========

        >>> from sympy import sieve
        >>> sieve._reset() # this line for doctest only
        >>> sieve.extend_to_no(9)
        >>> sieve._list
        array('L', [2, 3, 5, 7, 11, 13, 17, 19, 23])

        Notes
        =====

        The list is extended by 50% if it is too short, so it is
        likely that it will be longer than requested.
        """
        i = as_int(i)
        while len(self._list) < i:
            self.extend(int(self._list[-1] * 1.5))

    def primerange(self, a, b=None):
        """Generate all prime numbers in the range [2, a) or [a, b).

        Examples
        ========

        >>> from sympy import sieve, prime

        All primes less than 19:

        >>> print([i for i in sieve.primerange(19)])
        [2, 3, 5, 7, 11, 13, 17]

        All primes greater than or equal to 7 and less than 19:

        >>> print([i for i in sieve.primerange(7, 19)])
        [7, 11, 13, 17]

        All primes through the 10th prime

        >>> list(sieve.primerange(prime(10) + 1))
        [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

        """
        if b is None:
            b = _as_int_ceiling(a)
            a = 2
        else:
            a = max(2, _as_int_ceiling(a))
            b = _as_int_ceiling(b)
        if a >= b:
            return
        self.extend(b)
        yield from self._list[bisect_left(self._list, a):
                              bisect_left(self._list, b)]

    def totientrange(self, a, b):
        """Generate all totient numbers for the range [a, b).

        Examples
        ========

        >>> from sympy import sieve
        >>> print([i for i in sieve.totientrange(7, 18)])
        [6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16]
        """
        a = max(1, _as_int_ceiling(a))
        b = _as_int_ceiling(b)
        n = len(self._tlist)
        if a >= b:
            return
        elif b <= n:
            for i in range(a, b):
                yield self._tlist[i]
        else:
            self._tlist += _array('L', range(n, b))
            for i in range(1, n):
                ti = self._tlist[i]
                if ti == i - 1:
                    startindex = (n + i - 1) // i * i
                    for j in range(startindex, b, i):
                        self._tlist[j] -= self._tlist[j] // i
                if i >= a:
                    yield ti

            for i in range(n, b):
                ti = self._tlist[i]
                if ti == i:
                    for j in range(i, b, i):
                        self._tlist[j] -= self._tlist[j] // i
                if i >= a:
                    yield self._tlist[i]

    def mobiusrange(self, a, b):
        """Generate all mobius numbers for the range [a, b).

        Parameters
        ==========

        a : integer
            First number in range

        b : integer
            First number outside of range

        Examples
        ========

        >>> from sympy import sieve
        >>> print([i for i in sieve.mobiusrange(7, 18)])
        [-1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1]
        """
        a = max(1, _as_int_ceiling(a))
        b = _as_int_ceiling(b)
        n = len(self._mlist)
        if a >= b:
            return
        elif b <= n:
            for i in range(a, b):
                yield self._mlist[i]
        else:
            self._mlist += _array('i', [0]*(b - n))
            for i in range(1, n):
                mi = self._mlist[i]
                startindex = (n + i - 1) // i * i
                for j in range(startindex, b, i):
                    self._mlist[j] -= mi
                if i >= a:
                    yield mi

            for i in range(n, b):
                mi = self._mlist[i]
                for j in range(2 * i, b, i):
                    self._mlist[j] -= mi
                if i >= a:
                    yield mi

    def search(self, n):
        """Return the indices i, j of the primes that bound n.

        If n is prime then i == j.

        Although n can be an expression, if ceiling cannot convert
        it to an integer then an n error will be raised.

        Examples
        ========

        >>> from sympy import sieve
        >>> sieve.search(25)
        (9, 10)
        >>> sieve.search(23)
        (9, 9)
        """
        test = _as_int_ceiling(n)
        n = as_int(n)
        if n < 2:
            raise ValueError("n should be >= 2 but got: %s" % n)
        if n > self._list[-1]:
            self.extend(n)
        b = bisect(self._list, n)
        if self._list[b - 1] == test:
            return b, b
        else:
            return b, b + 1

    def __contains__(self, n):
        try:
            n = as_int(n)
            assert n >= 2
        except (ValueError, AssertionError):
            return False
        if n % 2 == 0:
            return n == 2
        a, b = self.search(n)
        return a == b

    def __iter__(self):
        for n in count(1):
            yield self[n]

    def __getitem__(self, n):
        """Return the nth prime number"""
        if isinstance(n, slice):
            self.extend_to_no(n.stop)
            # Python 2.7 slices have 0 instead of None for start, so
            # we can't default to 1.
            start = n.start if n.start is not None else 0
            if start < 1:
                # sieve[:5] would be empty (starting at -1), let's
                # just be explicit and raise.
                raise IndexError("Sieve indices start at 1.")
            return self._list[start - 1:n.stop - 1:n.step]
        else:
            if n < 1:
                # offset is one, so forbid explicit access to sieve[0]
                # (would surprisingly return the last one).
                raise IndexError("Sieve indices start at 1.")
            n = as_int(n)
            self.extend_to_no(n)
            return self._list[n - 1]

# Generate a global object for repeated use in trial division etc
sieve = Sieve()


def prime(nth):
    r""" Return the nth prime, with the primes indexed as prime(1) = 2,
        prime(2) = 3, etc.... The nth prime is approximately $n\log(n)$.

        Logarithmic integral of $x$ is a pretty nice approximation for number of
        primes $\le x$, i.e.
        li(x) ~ pi(x)
        In fact, for the numbers we are concerned about( x<1e11 ),
        li(x) - pi(x) < 50000

        Also,
        li(x) > pi(x) can be safely assumed for the numbers which
        can be evaluated by this function.

        Here, we find the least integer m such that li(m) > n using binary search.
        Now pi(m-1) < li(m-1) <= n,

        We find pi(m - 1) using primepi function.

        Starting from m, we have to find n - pi(m-1) more primes.

        For the inputs this implementation can handle, we will have to test
        primality for at max about 10**5 numbers, to get our answer.

        Examples
        ========

        >>> from sympy import prime
        >>> prime(10)
        29
        >>> prime(1)
        2
        >>> prime(100000)
        1299709

        See Also
        ========

        sympy.ntheory.primetest.isprime : Test if n is prime
        primerange : Generate all primes in a given range
        primepi : Return the number of primes less than or equal to n

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Prime_number_theorem#Table_of_.CF.80.28x.29.2C_x_.2F_log_x.2C_and_li.28x.29
        .. [2] https://en.wikipedia.org/wiki/Prime_number_theorem#Approximations_for_the_nth_prime_number
        .. [3] https://en.wikipedia.org/wiki/Skewes%27_number
    """
    n = as_int(nth)
    if n < 1:
        raise ValueError("nth must be a positive integer; prime(1) == 2")
    if n <= len(sieve._list):
        return sieve[n]

    from sympy.functions.elementary.exponential import log
    from sympy.functions.special.error_functions import li
    a = 2 # Lower bound for binary search
    # leave n inside int since int(i*r) != i*int(r) is not a valid property
    # e.g. int(2*.5) != 2*int(.5)
    b = int(n*(log(n) + log(log(n)))) # Upper bound for the search.

    while a < b:
        mid = (a + b) >> 1
        if li(mid) > n:
            b = mid
        else:
            a = mid + 1
    n_primes = _primepi(a - 1)
    while n_primes < n:
        if isprime(a):
            n_primes += 1
        a += 1
    return a - 1

@deprecated("""\
The `sympy.ntheory.generate.primepi` has been moved to `sympy.functions.combinatorial.numbers.primepi`.""",
deprecated_since_version="1.13",
active_deprecations_target='deprecated-ntheory-symbolic-functions')
def primepi(n):
    r""" Represents the prime counting function pi(n) = the number
        of prime numbers less than or equal to n.

        .. deprecated:: 1.13

            The ``primepi`` function is deprecated. Use :class:`sympy.functions.combinatorial.numbers.primepi`
            instead. See its documentation for more information. See
            :ref:`deprecated-ntheory-symbolic-functions` for details.

        Algorithm Description:

        In sieve method, we remove all multiples of prime p
        except p itself.

        Let phi(i,j) be the number of integers 2 <= k <= i
        which remain after sieving from primes less than
        or equal to j.
        Clearly, pi(n) = phi(n, sqrt(n))

        If j is not a prime,
        phi(i,j) = phi(i, j - 1)

        if j is a prime,
        We remove all numbers(except j) whose
        smallest prime factor is j.

        Let $x= j \times a$ be such a number, where $2 \le a \le i / j$
        Now, after sieving from primes $\le j - 1$,
        a must remain
        (because x, and hence a has no prime factor $\le j - 1$)
        Clearly, there are phi(i / j, j - 1) such a
        which remain on sieving from primes $\le j - 1$

        Now, if a is a prime less than equal to j - 1,
        $x= j \times a$ has smallest prime factor = a, and
        has already been removed(by sieving from a).
        So, we do not need to remove it again.
        (Note: there will be pi(j - 1) such x)

        Thus, number of x, that will be removed are:
        phi(i / j, j - 1) - phi(j - 1, j - 1)
        (Note that pi(j - 1) = phi(j - 1, j - 1))

        $\Rightarrow$ phi(i,j) = phi(i, j - 1) - phi(i / j, j - 1) + phi(j - 1, j - 1)

        So,following recursion is used and implemented as dp:

        phi(a, b) = phi(a, b - 1), if b is not a prime
        phi(a, b) = phi(a, b-1)-phi(a / b, b-1) + phi(b-1, b-1), if b is prime

        Clearly a is always of the form floor(n / k),
        which can take at most $2\sqrt{n}$ values.
        Two arrays arr1,arr2 are maintained
        arr1[i] = phi(i, j),
        arr2[i] = phi(n // i, j)

        Finally the answer is arr2[1]

        Examples
        ========

        >>> from sympy import primepi, prime, prevprime, isprime
        >>> primepi(25)
        9

        So there are 9 primes less than or equal to 25. Is 25 prime?

        >>> isprime(25)
        False

        It is not. So the first prime less than 25 must be the
        9th prime:

        >>> prevprime(25) == prime(9)
        True

        See Also
        ========

        sympy.ntheory.primetest.isprime : Test if n is prime
        primerange : Generate all primes in a given range
        prime : Return the nth prime
    """
    from sympy.functions.combinatorial.numbers import primepi as func_primepi
    return func_primepi(n)


def _primepi(n:int) -> int:
    r""" Represents the prime counting function pi(n) = the number
    of prime numbers less than or equal to n.

    Explanation
    ===========

    In sieve method, we remove all multiples of prime p
    except p itself.

    Let phi(i,j) be the number of integers 2 <= k <= i
    which remain after sieving from primes less than
    or equal to j.
    Clearly, pi(n) = phi(n, sqrt(n))

    If j is not a prime,
    phi(i,j) = phi(i, j - 1)

    if j is a prime,
    We remove all numbers(except j) whose
    smallest prime factor is j.

    Let $x= j \times a$ be such a number, where $2 \le a \le i / j$
    Now, after sieving from primes $\le j - 1$,
    a must remain
    (because x, and hence a has no prime factor $\le j - 1$)
    Clearly, there are phi(i / j, j - 1) such a
    which remain on sieving from primes $\le j - 1$

    Now, if a is a prime less than equal to j - 1,
    $x= j \times a$ has smallest prime factor = a, and
    has already been removed(by sieving from a).
    So, we do not need to remove it again.
    (Note: there will be pi(j - 1) such x)

    Thus, number of x, that will be removed are:
    phi(i / j, j - 1) - phi(j - 1, j - 1)
    (Note that pi(j - 1) = phi(j - 1, j - 1))

    $\Rightarrow$ phi(i,j) = phi(i, j - 1) - phi(i / j, j - 1) + phi(j - 1, j - 1)

    So,following recursion is used and implemented as dp:

    phi(a, b) = phi(a, b - 1), if b is not a prime
    phi(a, b) = phi(a, b-1)-phi(a / b, b-1) + phi(b-1, b-1), if b is prime

    Clearly a is always of the form floor(n / k),
    which can take at most $2\sqrt{n}$ values.
    Two arrays arr1,arr2 are maintained
    arr1[i] = phi(i, j),
    arr2[i] = phi(n // i, j)

    Finally the answer is arr2[1]

    Parameters
    ==========

    n : int

    """
    if n < 2:
        return 0
    if n <= sieve._list[-1]:
        return sieve.search(n)[0]
    lim = sqrt(n)
    arr1 = [0] * (lim + 1)
    arr2 = [0] * (lim + 1)
    for i in range(1, lim + 1):
        arr1[i] = i - 1
        arr2[i] = n // i - 1
    for i in range(2, lim + 1):
        # Presently, arr1[k]=phi(k,i - 1),
        # arr2[k] = phi(n // k,i - 1)
        if arr1[i] == arr1[i - 1]:
            continue
        p = arr1[i - 1]
        for j in range(1, min(n // (i * i), lim) + 1):
            st = i * j
            if st <= lim:
                arr2[j] -= arr2[st] - p
            else:
                arr2[j] -= arr1[n // st] - p
        lim2 = min(lim, i * i - 1)
        for j in range(lim, lim2, -1):
            arr1[j] -= arr1[j // i] - p
    return arr2[1]


def nextprime(n, ith=1):
    """ Return the ith prime greater than n.

        Parameters
        ==========

        n : integer
        ith : positive integer

        Returns
        =======

        int : Return the ith prime greater than n

        Raises
        ======

        ValueError
            If ``ith <= 0``.
            If ``n`` or ``ith`` is not an integer.

        Notes
        =====

        Potential primes are located at 6*j +/- 1. This
        property is used during searching.

        >>> from sympy import nextprime
        >>> [(i, nextprime(i)) for i in range(10, 15)]
        [(10, 11), (11, 13), (12, 13), (13, 17), (14, 17)]
        >>> nextprime(2, ith=2) # the 2nd prime after 2
        5

        See Also
        ========

        prevprime : Return the largest prime smaller than n
        primerange : Generate all primes in a given range

    """
    n = int(n)
    i = as_int(ith)
    if i <= 0:
        raise ValueError("ith should be positive")
    if n < 2:
        n = 2
        i -= 1
    if n <= sieve._list[-2]:
        l, _ = sieve.search(n)
        if l + i - 1 < len(sieve._list):
            return sieve._list[l + i - 1]
        return nextprime(sieve._list[-1], l + i - len(sieve._list))
    if 1 < i:
        for _ in range(i):
            n = nextprime(n)
        return n
    nn = 6*(n//6)
    if nn == n:
        n += 1
        if isprime(n):
            return n
        n += 4
    elif n - nn == 5:
        n += 2
        if isprime(n):
            return n
        n += 4
    else:
        n = nn + 5
    while 1:
        if isprime(n):
            return n
        n += 2
        if isprime(n):
            return n
        n += 4


def prevprime(n):
    """ Return the largest prime smaller than n.

        Notes
        =====

        Potential primes are located at 6*j +/- 1. This
        property is used during searching.

        >>> from sympy import prevprime
        >>> [(i, prevprime(i)) for i in range(10, 15)]
        [(10, 7), (11, 7), (12, 11), (13, 11), (14, 13)]

        See Also
        ========

        nextprime : Return the ith prime greater than n
        primerange : Generates all primes in a given range
    """
    n = _as_int_ceiling(n)
    if n < 3:
        raise ValueError("no preceding primes")
    if n < 8:
        return {3: 2, 4: 3, 5: 3, 6: 5, 7: 5}[n]
    if n <= sieve._list[-1]:
        l, u = sieve.search(n)
        if l == u:
            return sieve[l-1]
        else:
            return sieve[l]
    nn = 6*(n//6)
    if n - nn <= 1:
        n = nn - 1
        if isprime(n):
            return n
        n -= 4
    else:
        n = nn + 1
    while 1:
        if isprime(n):
            return n
        n -= 2
        if isprime(n):
            return n
        n -= 4


def primerange(a, b=None):
    """ Generate a list of all prime numbers in the range [2, a),
        or [a, b).

        If the range exists in the default sieve, the values will
        be returned from there; otherwise values will be returned
        but will not modify the sieve.

        Examples
        ========

        >>> from sympy import primerange, prime

        All primes less than 19:

        >>> list(primerange(19))
        [2, 3, 5, 7, 11, 13, 17]

        All primes greater than or equal to 7 and less than 19:

        >>> list(primerange(7, 19))
        [7, 11, 13, 17]

        All primes through the 10th prime

        >>> list(primerange(prime(10) + 1))
        [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

        The Sieve method, primerange, is generally faster but it will
        occupy more memory as the sieve stores values. The default
        instance of Sieve, named sieve, can be used:

        >>> from sympy import sieve
        >>> list(sieve.primerange(1, 30))
        [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

        Notes
        =====

        Some famous conjectures about the occurrence of primes in a given
        range are [1]:

        - Twin primes: though often not, the following will give 2 primes
                    an infinite number of times:
                        primerange(6*n - 1, 6*n + 2)
        - Legendre's: the following always yields at least one prime
                        primerange(n**2, (n+1)**2+1)
        - Bertrand's (proven): there is always a prime in the range
                        primerange(n, 2*n)
        - Brocard's: there are at least four primes in the range
                        primerange(prime(n)**2, prime(n+1)**2)

        The average gap between primes is log(n) [2]; the gap between
        primes can be arbitrarily large since sequences of composite
        numbers are arbitrarily large, e.g. the numbers in the sequence
        n! + 2, n! + 3 ... n! + n are all composite.

        See Also
        ========

        prime : Return the nth prime
        nextprime : Return the ith prime greater than n
        prevprime : Return the largest prime smaller than n
        randprime : Returns a random prime in a given range
        primorial : Returns the product of primes based on condition
        Sieve.primerange : return range from already computed primes
                           or extend the sieve to contain the requested
                           range.

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Prime_number
        .. [2] https://primes.utm.edu/notes/gaps.html
    """
    if b is None:
        a, b = 2, a
    if a >= b:
        return
    # If we already have the range, return it.
    largest_known_prime = sieve._list[-1]
    if b <= largest_known_prime:
        yield from sieve.primerange(a, b)
        return
    # If we know some of it, return it.
    if a <= largest_known_prime:
        yield from sieve._list[bisect_left(sieve._list, a):]
        a = largest_known_prime + 1
    elif a % 2:
        a -= 1
    tail = min(b, (largest_known_prime)**2)
    if a < tail:
        yield from sieve._primerange(a, tail)
        a = tail
    if b <= a:
        return
    # otherwise compute, without storing, the desired range.
    while 1:
        a = nextprime(a)
        if a < b:
            yield a
        else:
            return


def randprime(a, b):
    """ Return a random prime number in the range [a, b).

        Bertrand's postulate assures that
        randprime(a, 2*a) will always succeed for a > 1.

        Note that due to implementation difficulties,
        the prime numbers chosen are not uniformly random.
        For example, there are two primes in the range [112, 128),
        ``113`` and ``127``, but ``randprime(112, 128)`` returns ``127``
        with a probability of 15/17.

        Examples
        ========

        >>> from sympy import randprime, isprime
        >>> randprime(1, 30) #doctest: +SKIP
        13
        >>> isprime(randprime(1, 30))
        True

        See Also
        ========

        primerange : Generate all primes in a given range

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Bertrand's_postulate

    """
    if a >= b:
        return
    a, b = map(int, (a, b))
    n = randint(a - 1, b)
    p = nextprime(n)
    if p >= b:
        p = prevprime(b)
    if p < a:
        raise ValueError("no primes exist in the specified range")
    return p


def primorial(n, nth=True):
    """
    Returns the product of the first n primes (default) or
    the primes less than or equal to n (when ``nth=False``).

    Examples
    ========

    >>> from sympy.ntheory.generate import primorial, primerange
    >>> from sympy import factorint, Mul, primefactors, sqrt
    >>> primorial(4) # the first 4 primes are 2, 3, 5, 7
    210
    >>> primorial(4, nth=False) # primes <= 4 are 2 and 3
    6
    >>> primorial(1)
    2
    >>> primorial(1, nth=False)
    1
    >>> primorial(sqrt(101), nth=False)
    210

    One can argue that the primes are infinite since if you take
    a set of primes and multiply them together (e.g. the primorial) and
    then add or subtract 1, the result cannot be divided by any of the
    original factors, hence either 1 or more new primes must divide this
    product of primes.

    In this case, the number itself is a new prime:

    >>> factorint(primorial(4) + 1)
    {211: 1}

    In this case two new primes are the factors:

    >>> factorint(primorial(4) - 1)
    {11: 1, 19: 1}

    Here, some primes smaller and larger than the primes multiplied together
    are obtained:

    >>> p = list(primerange(10, 20))
    >>> sorted(set(primefactors(Mul(*p) + 1)).difference(set(p)))
    [2, 5, 31, 149]

    See Also
    ========

    primerange : Generate all primes in a given range

    """
    if nth:
        n = as_int(n)
    else:
        n = int(n)
    if n < 1:
        raise ValueError("primorial argument must be >= 1")
    p = 1
    if nth:
        for i in range(1, n + 1):
            p *= prime(i)
    else:
        for i in primerange(2, n + 1):
            p *= i
    return p


def cycle_length(f, x0, nmax=None, values=False):
    """For a given iterated sequence, return a generator that gives
    the length of the iterated cycle (lambda) and the length of terms
    before the cycle begins (mu); if ``values`` is True then the
    terms of the sequence will be returned instead. The sequence is
    started with value ``x0``.

    Note: more than the first lambda + mu terms may be returned and this
    is the cost of cycle detection with Brent's method; there are, however,
    generally less terms calculated than would have been calculated if the
    proper ending point were determined, e.g. by using Floyd's method.

    >>> from sympy.ntheory.generate import cycle_length

    This will yield successive values of i <-- func(i):

        >>> def gen(func, i):
        ...     while 1:
        ...         yield i
        ...         i = func(i)
        ...

    A function is defined:

        >>> func = lambda i: (i**2 + 1) % 51

    and given a seed of 4 and the mu and lambda terms calculated:

        >>> next(cycle_length(func, 4))
        (6, 3)

    We can see what is meant by looking at the output:

        >>> iter = cycle_length(func, 4, values=True)
        >>> list(iter)
        [4, 17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]

    There are 6 repeating values after the first 3.

    If a sequence is suspected of being longer than you might wish, ``nmax``
    can be used to exit early (and mu will be returned as None):

        >>> next(cycle_length(func, 4, nmax = 4))
        (4, None)
        >>> list(cycle_length(func, 4, nmax = 4, values=True))
        [4, 17, 35, 2]

    Code modified from:
        https://en.wikipedia.org/wiki/Cycle_detection.
    """

    nmax = int(nmax or 0)

    # main phase: search successive powers of two
    power = lam = 1
    tortoise, hare = x0, f(x0)  # f(x0) is the element/node next to x0.
    i = 1
    if values:
        yield tortoise
    while tortoise != hare and (not nmax or i < nmax):
        i += 1
        if power == lam:   # time to start a new power of two?
            tortoise = hare
            power *= 2
            lam = 0
        if values:
            yield hare
        hare = f(hare)
        lam += 1
    if nmax and i == nmax:
        if values:
            return
        else:
            yield nmax, None
            return
    if not values:
        # Find the position of the first repetition of length lambda
        mu = 0
        tortoise = hare = x0
        for i in range(lam):
            hare = f(hare)
        while tortoise != hare:
            tortoise = f(tortoise)
            hare = f(hare)
            mu += 1
        yield lam, mu


def composite(nth):
    """ Return the nth composite number, with the composite numbers indexed as
        composite(1) = 4, composite(2) = 6, etc....

        Examples
        ========

        >>> from sympy import composite
        >>> composite(36)
        52
        >>> composite(1)
        4
        >>> composite(17737)
        20000

        See Also
        ========

        sympy.ntheory.primetest.isprime : Test if n is prime
        primerange : Generate all primes in a given range
        primepi : Return the number of primes less than or equal to n
        prime : Return the nth prime
        compositepi : Return the number of positive composite numbers less than or equal to n
    """
    n = as_int(nth)
    if n < 1:
        raise ValueError("nth must be a positive integer; composite(1) == 4")
    composite_arr = [4, 6, 8, 9, 10, 12, 14, 15, 16, 18]
    if n <= 10:
        return composite_arr[n - 1]

    a, b = 4, sieve._list[-1]
    if n <= b - _primepi(b) - 1:
        while a < b - 1:
            mid = (a + b) >> 1
            if mid - _primepi(mid) - 1 > n:
                b = mid
            else:
                a = mid
        if isprime(a):
            a -= 1
        return a

    from sympy.functions.elementary.exponential import log
    from sympy.functions.special.error_functions import li
    a = 4 # Lower bound for binary search
    b = int(n*(log(n) + log(log(n)))) # Upper bound for the search.

    while a < b:
        mid = (a + b) >> 1
        if mid - li(mid) - 1 > n:
            b = mid
        else:
            a = mid + 1

    n_composites = a - _primepi(a) - 1
    while n_composites > n:
        if not isprime(a):
            n_composites -= 1
        a -= 1
    if isprime(a):
        a -= 1
    return a


def compositepi(n):
    """ Return the number of positive composite numbers less than or equal to n.
        The first positive composite is 4, i.e. compositepi(4) = 1.

        Examples
        ========

        >>> from sympy import compositepi
        >>> compositepi(25)
        15
        >>> compositepi(1000)
        831

        See Also
        ========

        sympy.ntheory.primetest.isprime : Test if n is prime
        primerange : Generate all primes in a given range
        prime : Return the nth prime
        primepi : Return the number of primes less than or equal to n
        composite : Return the nth composite number
    """
    n = int(n)
    if n < 4:
        return 0
    return n - _primepi(n) - 1