File size: 21,261 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
"""Implementation of DPLL algorithm

Features:
  - Clause learning
  - Watch literal scheme
  - VSIDS heuristic

References:
  - https://en.wikipedia.org/wiki/DPLL_algorithm
"""

from collections import defaultdict
from heapq import heappush, heappop

from sympy.core.sorting import ordered
from sympy.assumptions.cnf import EncodedCNF

from sympy.logic.algorithms.lra_theory import LRASolver


def dpll_satisfiable(expr, all_models=False, use_lra_theory=False):
    """
    Check satisfiability of a propositional sentence.
    It returns a model rather than True when it succeeds.
    Returns a generator of all models if all_models is True.

    Examples
    ========

    >>> from sympy.abc import A, B
    >>> from sympy.logic.algorithms.dpll2 import dpll_satisfiable
    >>> dpll_satisfiable(A & ~B)
    {A: True, B: False}
    >>> dpll_satisfiable(A & ~A)
    False

    """
    if not isinstance(expr, EncodedCNF):
        exprs = EncodedCNF()
        exprs.add_prop(expr)
        expr = exprs

    # Return UNSAT when False (encoded as 0) is present in the CNF
    if {0} in expr.data:
        if all_models:
            return (f for f in [False])
        return False

    if use_lra_theory:
        lra, immediate_conflicts = LRASolver.from_encoded_cnf(expr)
    else:
        lra = None
        immediate_conflicts = []
    solver = SATSolver(expr.data + immediate_conflicts, expr.variables, set(), expr.symbols, lra_theory=lra)
    models = solver._find_model()

    if all_models:
        return _all_models(models)

    try:
        return next(models)
    except StopIteration:
        return False

    # Uncomment to confirm the solution is valid (hitting set for the clauses)
    #else:
        #for cls in clauses_int_repr:
            #assert solver.var_settings.intersection(cls)


def _all_models(models):
    satisfiable = False
    try:
        while True:
            yield next(models)
            satisfiable = True
    except StopIteration:
        if not satisfiable:
            yield False


class SATSolver:
    """
    Class for representing a SAT solver capable of
     finding a model to a boolean theory in conjunctive
     normal form.
    """

    def __init__(self, clauses, variables, var_settings, symbols=None,
                heuristic='vsids', clause_learning='none', INTERVAL=500,
                 lra_theory = None):

        self.var_settings = var_settings
        self.heuristic = heuristic
        self.is_unsatisfied = False
        self._unit_prop_queue = []
        self.update_functions = []
        self.INTERVAL = INTERVAL

        if symbols is None:
            self.symbols = list(ordered(variables))
        else:
            self.symbols = symbols

        self._initialize_variables(variables)
        self._initialize_clauses(clauses)

        if 'vsids' == heuristic:
            self._vsids_init()
            self.heur_calculate = self._vsids_calculate
            self.heur_lit_assigned = self._vsids_lit_assigned
            self.heur_lit_unset = self._vsids_lit_unset
            self.heur_clause_added = self._vsids_clause_added

            # Note: Uncomment this if/when clause learning is enabled
            #self.update_functions.append(self._vsids_decay)

        else:
            raise NotImplementedError

        if 'simple' == clause_learning:
            self.add_learned_clause = self._simple_add_learned_clause
            self.compute_conflict = self._simple_compute_conflict
            self.update_functions.append(self._simple_clean_clauses)
        elif 'none' == clause_learning:
            self.add_learned_clause = lambda x: None
            self.compute_conflict = lambda: None
        else:
            raise NotImplementedError

        # Create the base level
        self.levels = [Level(0)]
        self._current_level.varsettings = var_settings

        # Keep stats
        self.num_decisions = 0
        self.num_learned_clauses = 0
        self.original_num_clauses = len(self.clauses)

        self.lra = lra_theory

    def _initialize_variables(self, variables):
        """Set up the variable data structures needed."""
        self.sentinels = defaultdict(set)
        self.occurrence_count = defaultdict(int)
        self.variable_set = [False] * (len(variables) + 1)

    def _initialize_clauses(self, clauses):
        """Set up the clause data structures needed.

        For each clause, the following changes are made:
        - Unit clauses are queued for propagation right away.
        - Non-unit clauses have their first and last literals set as sentinels.
        - The number of clauses a literal appears in is computed.
        """
        self.clauses = [list(clause) for clause in clauses]

        for i, clause in enumerate(self.clauses):

            # Handle the unit clauses
            if 1 == len(clause):
                self._unit_prop_queue.append(clause[0])
                continue

            self.sentinels[clause[0]].add(i)
            self.sentinels[clause[-1]].add(i)

            for lit in clause:
                self.occurrence_count[lit] += 1

    def _find_model(self):
        """
        Main DPLL loop. Returns a generator of models.

        Variables are chosen successively, and assigned to be either
        True or False. If a solution is not found with this setting,
        the opposite is chosen and the search continues. The solver
        halts when every variable has a setting.

        Examples
        ========

        >>> from sympy.logic.algorithms.dpll2 import SATSolver
        >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
        ... {3, -2}], {1, 2, 3}, set())
        >>> list(l._find_model())
        [{1: True, 2: False, 3: False}, {1: True, 2: True, 3: True}]

        >>> from sympy.abc import A, B, C
        >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
        ... {3, -2}], {1, 2, 3}, set(), [A, B, C])
        >>> list(l._find_model())
        [{A: True, B: False, C: False}, {A: True, B: True, C: True}]

        """

        # We use this variable to keep track of if we should flip a
        #  variable setting in successive rounds
        flip_var = False

        # Check if unit prop says the theory is unsat right off the bat
        self._simplify()
        if self.is_unsatisfied:
            return

        # While the theory still has clauses remaining
        while True:
            # Perform cleanup / fixup at regular intervals
            if self.num_decisions % self.INTERVAL == 0:
                for func in self.update_functions:
                    func()

            if flip_var:
                # We have just backtracked and we are trying to opposite literal
                flip_var = False
                lit = self._current_level.decision

            else:
                # Pick a literal to set
                lit = self.heur_calculate()
                self.num_decisions += 1

                # Stopping condition for a satisfying theory
                if 0 == lit:

                    # check if assignment satisfies lra theory
                    if self.lra:
                        for enc_var in self.var_settings:
                            res = self.lra.assert_lit(enc_var)
                            if res is not None:
                                break
                        res = self.lra.check()
                        self.lra.reset_bounds()
                    else:
                        res = None
                    if res is None or res[0]:
                        yield {self.symbols[abs(lit) - 1]:
                                    lit > 0 for lit in self.var_settings}
                    else:
                        self._simple_add_learned_clause(res[1])

                    while self._current_level.flipped:
                        self._undo()
                    if len(self.levels) == 1:
                        return
                    flip_lit = -self._current_level.decision
                    self._undo()
                    self.levels.append(Level(flip_lit, flipped=True))
                    flip_var = True
                    continue

                # Start the new decision level
                self.levels.append(Level(lit))

            # Assign the literal, updating the clauses it satisfies
            self._assign_literal(lit)

            # _simplify the theory
            self._simplify()

            # Check if we've made the theory unsat
            if self.is_unsatisfied:

                self.is_unsatisfied = False

                # We unroll all of the decisions until we can flip a literal
                while self._current_level.flipped:
                    self._undo()

                    # If we've unrolled all the way, the theory is unsat
                    if 1 == len(self.levels):
                        return

                # Detect and add a learned clause
                self.add_learned_clause(self.compute_conflict())

                # Try the opposite setting of the most recent decision
                flip_lit = -self._current_level.decision
                self._undo()
                self.levels.append(Level(flip_lit, flipped=True))
                flip_var = True

    ########################
    #    Helper Methods    #
    ########################
    @property
    def _current_level(self):
        """The current decision level data structure

        Examples
        ========

        >>> from sympy.logic.algorithms.dpll2 import SATSolver
        >>> l = SATSolver([{1}, {2}], {1, 2}, set())
        >>> next(l._find_model())
        {1: True, 2: True}
        >>> l._current_level.decision
        0
        >>> l._current_level.flipped
        False
        >>> l._current_level.var_settings
        {1, 2}

        """
        return self.levels[-1]

    def _clause_sat(self, cls):
        """Check if a clause is satisfied by the current variable setting.

        Examples
        ========

        >>> from sympy.logic.algorithms.dpll2 import SATSolver
        >>> l = SATSolver([{1}, {-1}], {1}, set())
        >>> try:
        ...     next(l._find_model())
        ... except StopIteration:
        ...     pass
        >>> l._clause_sat(0)
        False
        >>> l._clause_sat(1)
        True

        """
        for lit in self.clauses[cls]:
            if lit in self.var_settings:
                return True
        return False

    def _is_sentinel(self, lit, cls):
        """Check if a literal is a sentinel of a given clause.

        Examples
        ========

        >>> from sympy.logic.algorithms.dpll2 import SATSolver
        >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
        ... {3, -2}], {1, 2, 3}, set())
        >>> next(l._find_model())
        {1: True, 2: False, 3: False}
        >>> l._is_sentinel(2, 3)
        True
        >>> l._is_sentinel(-3, 1)
        False

        """
        return cls in self.sentinels[lit]

    def _assign_literal(self, lit):
        """Make a literal assignment.

        The literal assignment must be recorded as part of the current
        decision level. Additionally, if the literal is marked as a
        sentinel of any clause, then a new sentinel must be chosen. If
        this is not possible, then unit propagation is triggered and
        another literal is added to the queue to be set in the future.

        Examples
        ========

        >>> from sympy.logic.algorithms.dpll2 import SATSolver
        >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
        ... {3, -2}], {1, 2, 3}, set())
        >>> next(l._find_model())
        {1: True, 2: False, 3: False}
        >>> l.var_settings
        {-3, -2, 1}

        >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
        ... {3, -2}], {1, 2, 3}, set())
        >>> l._assign_literal(-1)
        >>> try:
        ...     next(l._find_model())
        ... except StopIteration:
        ...     pass
        >>> l.var_settings
        {-1}

        """
        self.var_settings.add(lit)
        self._current_level.var_settings.add(lit)
        self.variable_set[abs(lit)] = True
        self.heur_lit_assigned(lit)

        sentinel_list = list(self.sentinels[-lit])

        for cls in sentinel_list:
            if not self._clause_sat(cls):
                other_sentinel = None
                for newlit in self.clauses[cls]:
                    if newlit != -lit:
                        if self._is_sentinel(newlit, cls):
                            other_sentinel = newlit
                        elif not self.variable_set[abs(newlit)]:
                            self.sentinels[-lit].remove(cls)
                            self.sentinels[newlit].add(cls)
                            other_sentinel = None
                            break

                # Check if no sentinel update exists
                if other_sentinel:
                    self._unit_prop_queue.append(other_sentinel)

    def _undo(self):
        """
        _undo the changes of the most recent decision level.

        Examples
        ========

        >>> from sympy.logic.algorithms.dpll2 import SATSolver
        >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
        ... {3, -2}], {1, 2, 3}, set())
        >>> next(l._find_model())
        {1: True, 2: False, 3: False}
        >>> level = l._current_level
        >>> level.decision, level.var_settings, level.flipped
        (-3, {-3, -2}, False)
        >>> l._undo()
        >>> level = l._current_level
        >>> level.decision, level.var_settings, level.flipped
        (0, {1}, False)

        """
        # Undo the variable settings
        for lit in self._current_level.var_settings:
            self.var_settings.remove(lit)
            self.heur_lit_unset(lit)
            self.variable_set[abs(lit)] = False

        # Pop the level off the stack
        self.levels.pop()

    #########################
    #      Propagation      #
    #########################
    """
    Propagation methods should attempt to soundly simplify the boolean
      theory, and return True if any simplification occurred and False
      otherwise.
    """
    def _simplify(self):
        """Iterate over the various forms of propagation to simplify the theory.

        Examples
        ========

        >>> from sympy.logic.algorithms.dpll2 import SATSolver
        >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
        ... {3, -2}], {1, 2, 3}, set())
        >>> l.variable_set
        [False, False, False, False]
        >>> l.sentinels
        {-3: {0, 2}, -2: {3, 4}, 2: {0, 3}, 3: {2, 4}}

        >>> l._simplify()

        >>> l.variable_set
        [False, True, False, False]
        >>> l.sentinels
        {-3: {0, 2}, -2: {3, 4}, -1: set(), 2: {0, 3},
        ...3: {2, 4}}

        """
        changed = True
        while changed:
            changed = False
            changed |= self._unit_prop()
            changed |= self._pure_literal()

    def _unit_prop(self):
        """Perform unit propagation on the current theory."""
        result = len(self._unit_prop_queue) > 0
        while self._unit_prop_queue:
            next_lit = self._unit_prop_queue.pop()
            if -next_lit in self.var_settings:
                self.is_unsatisfied = True
                self._unit_prop_queue = []
                return False
            else:
                self._assign_literal(next_lit)

        return result

    def _pure_literal(self):
        """Look for pure literals and assign them when found."""
        return False

    #########################
    #      Heuristics       #
    #########################
    def _vsids_init(self):
        """Initialize the data structures needed for the VSIDS heuristic."""
        self.lit_heap = []
        self.lit_scores = {}

        for var in range(1, len(self.variable_set)):
            self.lit_scores[var] = float(-self.occurrence_count[var])
            self.lit_scores[-var] = float(-self.occurrence_count[-var])
            heappush(self.lit_heap, (self.lit_scores[var], var))
            heappush(self.lit_heap, (self.lit_scores[-var], -var))

    def _vsids_decay(self):
        """Decay the VSIDS scores for every literal.

        Examples
        ========

        >>> from sympy.logic.algorithms.dpll2 import SATSolver
        >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
        ... {3, -2}], {1, 2, 3}, set())

        >>> l.lit_scores
        {-3: -2.0, -2: -2.0, -1: 0.0, 1: 0.0, 2: -2.0, 3: -2.0}

        >>> l._vsids_decay()

        >>> l.lit_scores
        {-3: -1.0, -2: -1.0, -1: 0.0, 1: 0.0, 2: -1.0, 3: -1.0}

        """
        # We divide every literal score by 2 for a decay factor
        #  Note: This doesn't change the heap property
        for lit in self.lit_scores.keys():
            self.lit_scores[lit] /= 2.0

    def _vsids_calculate(self):
        """
            VSIDS Heuristic Calculation

        Examples
        ========

        >>> from sympy.logic.algorithms.dpll2 import SATSolver
        >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
        ... {3, -2}], {1, 2, 3}, set())

        >>> l.lit_heap
        [(-2.0, -3), (-2.0, 2), (-2.0, -2), (0.0, 1), (-2.0, 3), (0.0, -1)]

        >>> l._vsids_calculate()
        -3

        >>> l.lit_heap
        [(-2.0, -2), (-2.0, 2), (0.0, -1), (0.0, 1), (-2.0, 3)]

        """
        if len(self.lit_heap) == 0:
            return 0

        # Clean out the front of the heap as long the variables are set
        while self.variable_set[abs(self.lit_heap[0][1])]:
            heappop(self.lit_heap)
            if len(self.lit_heap) == 0:
                return 0

        return heappop(self.lit_heap)[1]

    def _vsids_lit_assigned(self, lit):
        """Handle the assignment of a literal for the VSIDS heuristic."""
        pass

    def _vsids_lit_unset(self, lit):
        """Handle the unsetting of a literal for the VSIDS heuristic.

        Examples
        ========

        >>> from sympy.logic.algorithms.dpll2 import SATSolver
        >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
        ... {3, -2}], {1, 2, 3}, set())
        >>> l.lit_heap
        [(-2.0, -3), (-2.0, 2), (-2.0, -2), (0.0, 1), (-2.0, 3), (0.0, -1)]

        >>> l._vsids_lit_unset(2)

        >>> l.lit_heap
        [(-2.0, -3), (-2.0, -2), (-2.0, -2), (-2.0, 2), (-2.0, 3), (0.0, -1),
        ...(-2.0, 2), (0.0, 1)]

        """
        var = abs(lit)
        heappush(self.lit_heap, (self.lit_scores[var], var))
        heappush(self.lit_heap, (self.lit_scores[-var], -var))

    def _vsids_clause_added(self, cls):
        """Handle the addition of a new clause for the VSIDS heuristic.

        Examples
        ========

        >>> from sympy.logic.algorithms.dpll2 import SATSolver
        >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
        ... {3, -2}], {1, 2, 3}, set())

        >>> l.num_learned_clauses
        0
        >>> l.lit_scores
        {-3: -2.0, -2: -2.0, -1: 0.0, 1: 0.0, 2: -2.0, 3: -2.0}

        >>> l._vsids_clause_added({2, -3})

        >>> l.num_learned_clauses
        1
        >>> l.lit_scores
        {-3: -1.0, -2: -2.0, -1: 0.0, 1: 0.0, 2: -1.0, 3: -2.0}

        """
        self.num_learned_clauses += 1
        for lit in cls:
            self.lit_scores[lit] += 1

    ########################
    #   Clause Learning    #
    ########################
    def _simple_add_learned_clause(self, cls):
        """Add a new clause to the theory.

        Examples
        ========

        >>> from sympy.logic.algorithms.dpll2 import SATSolver
        >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
        ... {3, -2}], {1, 2, 3}, set())

        >>> l.num_learned_clauses
        0
        >>> l.clauses
        [[2, -3], [1], [3, -3], [2, -2], [3, -2]]
        >>> l.sentinels
        {-3: {0, 2}, -2: {3, 4}, 2: {0, 3}, 3: {2, 4}}

        >>> l._simple_add_learned_clause([3])

        >>> l.clauses
        [[2, -3], [1], [3, -3], [2, -2], [3, -2], [3]]
        >>> l.sentinels
        {-3: {0, 2}, -2: {3, 4}, 2: {0, 3}, 3: {2, 4, 5}}

        """
        cls_num = len(self.clauses)
        self.clauses.append(cls)

        for lit in cls:
            self.occurrence_count[lit] += 1

        self.sentinels[cls[0]].add(cls_num)
        self.sentinels[cls[-1]].add(cls_num)

        self.heur_clause_added(cls)

    def _simple_compute_conflict(self):
        """ Build a clause representing the fact that at least one decision made
        so far is wrong.

        Examples
        ========

        >>> from sympy.logic.algorithms.dpll2 import SATSolver
        >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2},
        ... {3, -2}], {1, 2, 3}, set())
        >>> next(l._find_model())
        {1: True, 2: False, 3: False}
        >>> l._simple_compute_conflict()
        [3]

        """
        return [-(level.decision) for level in self.levels[1:]]

    def _simple_clean_clauses(self):
        """Clean up learned clauses."""
        pass


class Level:
    """
    Represents a single level in the DPLL algorithm, and contains
    enough information for a sound backtracking procedure.
    """

    def __init__(self, decision, flipped=False):
        self.decision = decision
        self.var_settings = set()
        self.flipped = flipped