File size: 20,687 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
"""Utility functions for geometrical entities.

Contains
========
intersection
convex_hull
closest_points
farthest_points
are_coplanar
are_similar

"""

from collections import deque
from math import sqrt as _sqrt

from sympy import nsimplify
from .entity import GeometryEntity
from .exceptions import GeometryError
from .point import Point, Point2D, Point3D
from sympy.core.containers import OrderedSet
from sympy.core.exprtools import factor_terms
from sympy.core.function import Function, expand_mul
from sympy.core.numbers import Float
from sympy.core.sorting import ordered
from sympy.core.symbol import Symbol
from sympy.core.singleton import S
from sympy.polys.polytools import cancel
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.utilities.iterables import is_sequence

from mpmath.libmp.libmpf import prec_to_dps


def find(x, equation):
    """
    Checks whether a Symbol matching ``x`` is present in ``equation``
    or not. If present, the matching symbol is returned, else a
    ValueError is raised. If ``x`` is a string the matching symbol
    will have the same name; if ``x`` is a Symbol then it will be
    returned if found.

    Examples
    ========

    >>> from sympy.geometry.util import find
    >>> from sympy import Dummy
    >>> from sympy.abc import x
    >>> find('x', x)
    x
    >>> find('x', Dummy('x'))
    _x

    The dummy symbol is returned since it has a matching name:

    >>> _.name == 'x'
    True
    >>> find(x, Dummy('x'))
    Traceback (most recent call last):
    ...
    ValueError: could not find x
    """

    free = equation.free_symbols
    xs = [i for i in free if (i.name if isinstance(x, str) else i) == x]
    if not xs:
        raise ValueError('could not find %s' % x)
    if len(xs) != 1:
        raise ValueError('ambiguous %s' % x)
    return xs[0]


def _ordered_points(p):
    """Return the tuple of points sorted numerically according to args"""
    return tuple(sorted(p, key=lambda x: x.args))


def are_coplanar(*e):
    """ Returns True if the given entities are coplanar otherwise False

    Parameters
    ==========

    e: entities to be checked for being coplanar

    Returns
    =======

    Boolean

    Examples
    ========

    >>> from sympy import Point3D, Line3D
    >>> from sympy.geometry.util import are_coplanar
    >>> a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
    >>> b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
    >>> c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
    >>> are_coplanar(a, b, c)
    False

    """
    from .line import LinearEntity3D
    from .plane import Plane
    # XXX update tests for coverage

    e = set(e)
    # first work with a Plane if present
    for i in list(e):
        if isinstance(i, Plane):
            e.remove(i)
            return all(p.is_coplanar(i) for p in e)

    if all(isinstance(i, Point3D) for i in e):
        if len(e) < 3:
            return False

        # remove pts that are collinear with 2 pts
        a, b = e.pop(), e.pop()
        for i in list(e):
            if Point3D.are_collinear(a, b, i):
                e.remove(i)

        if not e:
            return False
        else:
            # define a plane
            p = Plane(a, b, e.pop())
            for i in e:
                if i not in p:
                    return False
            return True
    else:
        pt3d = []
        for i in e:
            if isinstance(i, Point3D):
                pt3d.append(i)
            elif isinstance(i, LinearEntity3D):
                pt3d.extend(i.args)
            elif isinstance(i, GeometryEntity):  # XXX we should have a GeometryEntity3D class so we can tell the difference between 2D and 3D -- here we just want to deal with 2D objects; if new 3D objects are encountered that we didn't handle above, an error should be raised
                # all 2D objects have some Point that defines them; so convert those points to 3D pts by making z=0
                for p in i.args:
                    if isinstance(p, Point):
                        pt3d.append(Point3D(*(p.args + (0,))))
        return are_coplanar(*pt3d)


def are_similar(e1, e2):
    """Are two geometrical entities similar.

    Can one geometrical entity be uniformly scaled to the other?

    Parameters
    ==========

    e1 : GeometryEntity
    e2 : GeometryEntity

    Returns
    =======

    are_similar : boolean

    Raises
    ======

    GeometryError
        When `e1` and `e2` cannot be compared.

    Notes
    =====

    If the two objects are equal then they are similar.

    See Also
    ========

    sympy.geometry.entity.GeometryEntity.is_similar

    Examples
    ========

    >>> from sympy import Point, Circle, Triangle, are_similar
    >>> c1, c2 = Circle(Point(0, 0), 4), Circle(Point(1, 4), 3)
    >>> t1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
    >>> t2 = Triangle(Point(0, 0), Point(2, 0), Point(0, 2))
    >>> t3 = Triangle(Point(0, 0), Point(3, 0), Point(0, 1))
    >>> are_similar(t1, t2)
    True
    >>> are_similar(t1, t3)
    False

    """
    if e1 == e2:
        return True
    is_similar1 = getattr(e1, 'is_similar', None)
    if is_similar1:
        return is_similar1(e2)
    is_similar2 = getattr(e2, 'is_similar', None)
    if is_similar2:
        return is_similar2(e1)
    n1 = e1.__class__.__name__
    n2 = e2.__class__.__name__
    raise GeometryError(
        "Cannot test similarity between %s and %s" % (n1, n2))


def centroid(*args):
    """Find the centroid (center of mass) of the collection containing only Points,
    Segments or Polygons. The centroid is the weighted average of the individual centroid
    where the weights are the lengths (of segments) or areas (of polygons).
    Overlapping regions will add to the weight of that region.

    If there are no objects (or a mixture of objects) then None is returned.

    See Also
    ========

    sympy.geometry.point.Point, sympy.geometry.line.Segment,
    sympy.geometry.polygon.Polygon

    Examples
    ========

    >>> from sympy import Point, Segment, Polygon
    >>> from sympy.geometry.util import centroid
    >>> p = Polygon((0, 0), (10, 0), (10, 10))
    >>> q = p.translate(0, 20)
    >>> p.centroid, q.centroid
    (Point2D(20/3, 10/3), Point2D(20/3, 70/3))
    >>> centroid(p, q)
    Point2D(20/3, 40/3)
    >>> p, q = Segment((0, 0), (2, 0)), Segment((0, 0), (2, 2))
    >>> centroid(p, q)
    Point2D(1, 2 - sqrt(2))
    >>> centroid(Point(0, 0), Point(2, 0))
    Point2D(1, 0)

    Stacking 3 polygons on top of each other effectively triples the
    weight of that polygon:

    >>> p = Polygon((0, 0), (1, 0), (1, 1), (0, 1))
    >>> q = Polygon((1, 0), (3, 0), (3, 1), (1, 1))
    >>> centroid(p, q)
    Point2D(3/2, 1/2)
    >>> centroid(p, p, p, q) # centroid x-coord shifts left
    Point2D(11/10, 1/2)

    Stacking the squares vertically above and below p has the same
    effect:

    >>> centroid(p, p.translate(0, 1), p.translate(0, -1), q)
    Point2D(11/10, 1/2)

    """
    from .line import Segment
    from .polygon import Polygon
    if args:
        if all(isinstance(g, Point) for g in args):
            c = Point(0, 0)
            for g in args:
                c += g
            den = len(args)
        elif all(isinstance(g, Segment) for g in args):
            c = Point(0, 0)
            L = 0
            for g in args:
                l = g.length
                c += g.midpoint*l
                L += l
            den = L
        elif all(isinstance(g, Polygon) for g in args):
            c = Point(0, 0)
            A = 0
            for g in args:
                a = g.area
                c += g.centroid*a
                A += a
            den = A
        c /= den
        return c.func(*[i.simplify() for i in c.args])


def closest_points(*args):
    """Return the subset of points from a set of points that were
    the closest to each other in the 2D plane.

    Parameters
    ==========

    args
        A collection of Points on 2D plane.

    Notes
    =====

    This can only be performed on a set of points whose coordinates can
    be ordered on the number line. If there are no ties then a single
    pair of Points will be in the set.

    Examples
    ========

    >>> from sympy import closest_points, Triangle
    >>> Triangle(sss=(3, 4, 5)).args
    (Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
    >>> closest_points(*_)
    {(Point2D(0, 0), Point2D(3, 0))}

    References
    ==========

    .. [1] https://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairPS.html

    .. [2] Sweep line algorithm
        https://en.wikipedia.org/wiki/Sweep_line_algorithm

    """
    p = [Point2D(i) for i in set(args)]
    if len(p) < 2:
        raise ValueError('At least 2 distinct points must be given.')

    try:
        p.sort(key=lambda x: x.args)
    except TypeError:
        raise ValueError("The points could not be sorted.")

    if not all(i.is_Rational for j in p for i in j.args):
        def hypot(x, y):
            arg = x*x + y*y
            if arg.is_Rational:
                return _sqrt(arg)
            return sqrt(arg)
    else:
        from math import hypot

    rv = [(0, 1)]
    best_dist = hypot(p[1].x - p[0].x, p[1].y - p[0].y)
    i = 2
    left = 0
    box = deque([0, 1])
    while i < len(p):
        while left < i and p[i][0] - p[left][0] > best_dist:
            box.popleft()
            left += 1

        for j in box:
            d = hypot(p[i].x - p[j].x, p[i].y - p[j].y)
            if d < best_dist:
                rv = [(j, i)]
            elif d == best_dist:
                rv.append((j, i))
            else:
                continue
            best_dist = d
        box.append(i)
        i += 1

    return {tuple([p[i] for i in pair]) for pair in rv}


def convex_hull(*args, polygon=True):
    """The convex hull surrounding the Points contained in the list of entities.

    Parameters
    ==========

    args : a collection of Points, Segments and/or Polygons

    Optional parameters
    ===================

    polygon : Boolean. If True, returns a Polygon, if false a tuple, see below.
              Default is True.

    Returns
    =======

    convex_hull : Polygon if ``polygon`` is True else as a tuple `(U, L)` where
                  ``L`` and ``U`` are the lower and upper hulls, respectively.

    Notes
    =====

    This can only be performed on a set of points whose coordinates can
    be ordered on the number line.

    See Also
    ========

    sympy.geometry.point.Point, sympy.geometry.polygon.Polygon

    Examples
    ========

    >>> from sympy import convex_hull
    >>> points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)]
    >>> convex_hull(*points)
    Polygon(Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4))
    >>> convex_hull(*points, **dict(polygon=False))
    ([Point2D(-5, 2), Point2D(15, 4)],
     [Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4)])

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Graham_scan

    .. [2] Andrew's Monotone Chain Algorithm
      (A.M. Andrew,
      "Another Efficient Algorithm for Convex Hulls in Two Dimensions", 1979)
      https://web.archive.org/web/20210511015444/http://geomalgorithms.com/a10-_hull-1.html

    """
    from .line import Segment
    from .polygon import Polygon
    p = OrderedSet()
    for e in args:
        if not isinstance(e, GeometryEntity):
            try:
                e = Point(e)
            except NotImplementedError:
                raise ValueError('%s is not a GeometryEntity and cannot be made into Point' % str(e))
        if isinstance(e, Point):
            p.add(e)
        elif isinstance(e, Segment):
            p.update(e.points)
        elif isinstance(e, Polygon):
            p.update(e.vertices)
        else:
            raise NotImplementedError(
                'Convex hull for %s not implemented.' % type(e))

    # make sure all our points are of the same dimension
    if any(len(x) != 2 for x in p):
        raise ValueError('Can only compute the convex hull in two dimensions')

    p = list(p)
    if len(p) == 1:
        return p[0] if polygon else (p[0], None)
    elif len(p) == 2:
        s = Segment(p[0], p[1])
        return s if polygon else (s, None)

    def _orientation(p, q, r):
        '''Return positive if p-q-r are clockwise, neg if ccw, zero if
        collinear.'''
        return (q.y - p.y)*(r.x - p.x) - (q.x - p.x)*(r.y - p.y)

    # scan to find upper and lower convex hulls of a set of 2d points.
    U = []
    L = []
    try:
        p.sort(key=lambda x: x.args)
    except TypeError:
        raise ValueError("The points could not be sorted.")
    for p_i in p:
        while len(U) > 1 and _orientation(U[-2], U[-1], p_i) <= 0:
            U.pop()
        while len(L) > 1 and _orientation(L[-2], L[-1], p_i) >= 0:
            L.pop()
        U.append(p_i)
        L.append(p_i)
    U.reverse()
    convexHull = tuple(L + U[1:-1])

    if len(convexHull) == 2:
        s = Segment(convexHull[0], convexHull[1])
        return s if polygon else (s, None)
    if polygon:
        return Polygon(*convexHull)
    else:
        U.reverse()
        return (U, L)

def farthest_points(*args):
    """Return the subset of points from a set of points that were
    the furthest apart from each other in the 2D plane.

    Parameters
    ==========

    args
        A collection of Points on 2D plane.

    Notes
    =====

    This can only be performed on a set of points whose coordinates can
    be ordered on the number line. If there are no ties then a single
    pair of Points will be in the set.

    Examples
    ========

    >>> from sympy.geometry import farthest_points, Triangle
    >>> Triangle(sss=(3, 4, 5)).args
    (Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
    >>> farthest_points(*_)
    {(Point2D(0, 0), Point2D(3, 4))}

    References
    ==========

    .. [1] https://code.activestate.com/recipes/117225-convex-hull-and-diameter-of-2d-point-sets/

    .. [2] Rotating Callipers Technique
        https://en.wikipedia.org/wiki/Rotating_calipers

    """

    def rotatingCalipers(Points):
        U, L = convex_hull(*Points, **{"polygon": False})

        if L is None:
            if isinstance(U, Point):
                raise ValueError('At least two distinct points must be given.')
            yield U.args
        else:
            i = 0
            j = len(L) - 1
            while i < len(U) - 1 or j > 0:
                yield U[i], L[j]
                # if all the way through one side of hull, advance the other side
                if i == len(U) - 1:
                    j -= 1
                elif j == 0:
                    i += 1
                # still points left on both lists, compare slopes of next hull edges
                # being careful to avoid divide-by-zero in slope calculation
                elif (U[i+1].y - U[i].y) * (L[j].x - L[j-1].x) > \
                        (L[j].y - L[j-1].y) * (U[i+1].x - U[i].x):
                    i += 1
                else:
                    j -= 1

    p = [Point2D(i) for i in set(args)]

    if not all(i.is_Rational for j in p for i in j.args):
        def hypot(x, y):
            arg = x*x + y*y
            if arg.is_Rational:
                return _sqrt(arg)
            return sqrt(arg)
    else:
        from math import hypot

    rv = []
    diam = 0
    for pair in rotatingCalipers(args):
        h, q = _ordered_points(pair)
        d = hypot(h.x - q.x, h.y - q.y)
        if d > diam:
            rv = [(h, q)]
        elif d == diam:
            rv.append((h, q))
        else:
            continue
        diam = d

    return set(rv)


def idiff(eq, y, x, n=1):
    """Return ``dy/dx`` assuming that ``eq == 0``.

    Parameters
    ==========

    y : the dependent variable or a list of dependent variables (with y first)
    x : the variable that the derivative is being taken with respect to
    n : the order of the derivative (default is 1)

    Examples
    ========

    >>> from sympy.abc import x, y, a
    >>> from sympy.geometry.util import idiff

    >>> circ = x**2 + y**2 - 4
    >>> idiff(circ, y, x)
    -x/y
    >>> idiff(circ, y, x, 2).simplify()
    (-x**2 - y**2)/y**3

    Here, ``a`` is assumed to be independent of ``x``:

    >>> idiff(x + a + y, y, x)
    -1

    Now the x-dependence of ``a`` is made explicit by listing ``a`` after
    ``y`` in a list.

    >>> idiff(x + a + y, [y, a], x)
    -Derivative(a, x) - 1

    See Also
    ========

    sympy.core.function.Derivative: represents unevaluated derivatives
    sympy.core.function.diff: explicitly differentiates wrt symbols

    """
    if is_sequence(y):
        dep = set(y)
        y = y[0]
    elif isinstance(y, Symbol):
        dep = {y}
    elif isinstance(y, Function):
        pass
    else:
        raise ValueError("expecting x-dependent symbol(s) or function(s) but got: %s" % y)

    f = {s: Function(s.name)(x) for s in eq.free_symbols
        if s != x and s in dep}

    if isinstance(y, Symbol):
        dydx = Function(y.name)(x).diff(x)
    else:
        dydx = y.diff(x)

    eq = eq.subs(f)
    derivs = {}
    for i in range(n):
        # equation will be linear in dydx, a*dydx + b, so dydx = -b/a
        deq = eq.diff(x)
        b = deq.xreplace({dydx: S.Zero})
        a = (deq - b).xreplace({dydx: S.One})
        yp = factor_terms(expand_mul(cancel((-b/a).subs(derivs)), deep=False))
        if i == n - 1:
            return yp.subs([(v, k) for k, v in f.items()])
        derivs[dydx] = yp
        eq = dydx - yp
        dydx = dydx.diff(x)


def intersection(*entities, pairwise=False, **kwargs):
    """The intersection of a collection of GeometryEntity instances.

    Parameters
    ==========
    entities : sequence of GeometryEntity
    pairwise (keyword argument) : Can be either True or False

    Returns
    =======
    intersection : list of GeometryEntity

    Raises
    ======
    NotImplementedError
        When unable to calculate intersection.

    Notes
    =====
    The intersection of any geometrical entity with itself should return
    a list with one item: the entity in question.
    An intersection requires two or more entities. If only a single
    entity is given then the function will return an empty list.
    It is possible for `intersection` to miss intersections that one
    knows exists because the required quantities were not fully
    simplified internally.
    Reals should be converted to Rationals, e.g. Rational(str(real_num))
    or else failures due to floating point issues may result.

    Case 1: When the keyword argument 'pairwise' is False (default value):
    In this case, the function returns a list of intersections common to
    all entities.

    Case 2: When the keyword argument 'pairwise' is True:
    In this case, the functions returns a list intersections that occur
    between any pair of entities.

    See Also
    ========

    sympy.geometry.entity.GeometryEntity.intersection

    Examples
    ========

    >>> from sympy import Ray, Circle, intersection
    >>> c = Circle((0, 1), 1)
    >>> intersection(c, c.center)
    []
    >>> right = Ray((0, 0), (1, 0))
    >>> up = Ray((0, 0), (0, 1))
    >>> intersection(c, right, up)
    [Point2D(0, 0)]
    >>> intersection(c, right, up, pairwise=True)
    [Point2D(0, 0), Point2D(0, 2)]
    >>> left = Ray((1, 0), (0, 0))
    >>> intersection(right, left)
    [Segment2D(Point2D(0, 0), Point2D(1, 0))]

    """
    if len(entities) <= 1:
        return []

    entities = list(entities)
    prec = None
    for i, e in enumerate(entities):
        if not isinstance(e, GeometryEntity):
            # entities may be an immutable tuple
            e = Point(e)
        # convert to exact Rationals
        d = {}
        for f in e.atoms(Float):
            prec = f._prec if prec is None else min(f._prec, prec)
            d.setdefault(f, nsimplify(f, rational=True))
        entities[i] = e.xreplace(d)

    if not pairwise:
        # find the intersection common to all objects
        res = entities[0].intersection(entities[1])
        for entity in entities[2:]:
            newres = []
            for x in res:
                newres.extend(x.intersection(entity))
            res = newres
    else:
        # find all pairwise intersections
        ans = []
        for j in range(len(entities)):
            for k in range(j + 1, len(entities)):
                ans.extend(intersection(entities[j], entities[k]))
        res = list(ordered(set(ans)))

    # convert back to Floats
    if prec is not None:
        p = prec_to_dps(prec)
        res = [i.n(p) for i in res]
    return res