Spaces:
Sleeping
Sleeping
File size: 27,601 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
from sympy.core.numbers import (Float, Rational, oo, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acos, cos, sin)
from sympy.functions.elementary.trigonometric import tan
from sympy.geometry import (Circle, Ellipse, GeometryError, Point, Point2D,
Polygon, Ray, RegularPolygon, Segment, Triangle,
are_similar, convex_hull, intersection, Line, Ray2D)
from sympy.testing.pytest import raises, slow, warns
from sympy.core.random import verify_numerically
from sympy.geometry.polygon import rad, deg
from sympy.integrals.integrals import integrate
from sympy.utilities.iterables import rotate_left
def feq(a, b):
"""Test if two floating point values are 'equal'."""
t_float = Float("1.0E-10")
return -t_float < a - b < t_float
@slow
def test_polygon():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
q = Symbol('q', real=True)
u = Symbol('u', real=True)
v = Symbol('v', real=True)
w = Symbol('w', real=True)
x1 = Symbol('x1', real=True)
half = S.Half
a, b, c = Point(0, 0), Point(2, 0), Point(3, 3)
t = Triangle(a, b, c)
assert Polygon(Point(0, 0)) == Point(0, 0)
assert Polygon(a, Point(1, 0), b, c) == t
assert Polygon(Point(1, 0), b, c, a) == t
assert Polygon(b, c, a, Point(1, 0)) == t
# 2 "remove folded" tests
assert Polygon(a, Point(3, 0), b, c) == t
assert Polygon(a, b, Point(3, -1), b, c) == t
# remove multiple collinear points
assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15),
Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15),
Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15),
Point(15, -3), Point(15, 10), Point(15, 15)) == \
Polygon(Point(-15, -15), Point(15, -15), Point(15, 15), Point(-15, 15))
p1 = Polygon(
Point(0, 0), Point(3, -1),
Point(6, 0), Point(4, 5),
Point(2, 3), Point(0, 3))
p2 = Polygon(
Point(6, 0), Point(3, -1),
Point(0, 0), Point(0, 3),
Point(2, 3), Point(4, 5))
p3 = Polygon(
Point(0, 0), Point(3, 0),
Point(5, 2), Point(4, 4))
p4 = Polygon(
Point(0, 0), Point(4, 4),
Point(5, 2), Point(3, 0))
p5 = Polygon(
Point(0, 0), Point(4, 4),
Point(0, 4))
p6 = Polygon(
Point(-11, 1), Point(-9, 6.6),
Point(-4, -3), Point(-8.4, -8.7))
p7 = Polygon(
Point(x, y), Point(q, u),
Point(v, w))
p8 = Polygon(
Point(x, y), Point(v, w),
Point(q, u))
p9 = Polygon(
Point(0, 0), Point(4, 4),
Point(3, 0), Point(5, 2))
p10 = Polygon(
Point(0, 2), Point(2, 2),
Point(0, 0), Point(2, 0))
p11 = Polygon(Point(0, 0), 1, n=3)
p12 = Polygon(Point(0, 0), 1, 0, n=3)
p13 = Polygon(
Point(0, 0),Point(8, 8),
Point(23, 20),Point(0, 20))
p14 = Polygon(*rotate_left(p13.args, 1))
r = Ray(Point(-9, 6.6), Point(-9, 5.5))
#
# General polygon
#
assert p1 == p2
assert len(p1.args) == 6
assert len(p1.sides) == 6
assert p1.perimeter == 5 + 2*sqrt(10) + sqrt(29) + sqrt(8)
assert p1.area == 22
assert not p1.is_convex()
assert Polygon((-1, 1), (2, -1), (2, 1), (-1, -1), (3, 0)
).is_convex() is False
# ensure convex for both CW and CCW point specification
assert p3.is_convex()
assert p4.is_convex()
dict5 = p5.angles
assert dict5[Point(0, 0)] == pi / 4
assert dict5[Point(0, 4)] == pi / 2
assert p5.encloses_point(Point(x, y)) is None
assert p5.encloses_point(Point(1, 3))
assert p5.encloses_point(Point(0, 0)) is False
assert p5.encloses_point(Point(4, 0)) is False
assert p1.encloses(Circle(Point(2.5, 2.5), 5)) is False
assert p1.encloses(Ellipse(Point(2.5, 2), 5, 6)) is False
assert p5.plot_interval('x') == [x, 0, 1]
assert p5.distance(
Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2)
assert p5.distance(
Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
with warns(UserWarning, \
match="Polygons may intersect producing erroneous output"):
Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance(
Polygon(Point(0, 0), Point(0, 1), Point(1, 1)))
assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
assert hash(p1) == hash(p2)
assert hash(p7) == hash(p8)
assert hash(p3) != hash(p9)
assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
assert p5 != Point(0, 4)
assert Point(0, 1) in p5
assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \
Point(0, 0)
raises(ValueError, lambda: Polygon(
Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x'))
assert p6.intersection(r) == [Point(-9, Rational(-84, 13)), Point(-9, Rational(33, 5))]
assert p10.area == 0
assert p11 == RegularPolygon(Point(0, 0), 1, 3, 0)
assert p11 == p12
assert p11.vertices[0] == Point(1, 0)
assert p11.args[0] == Point(0, 0)
p11.spin(pi/2)
assert p11.vertices[0] == Point(0, 1)
#
# Regular polygon
#
p1 = RegularPolygon(Point(0, 0), 10, 5)
p2 = RegularPolygon(Point(0, 0), 5, 5)
raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0,
1), Point(1, 1)))
raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2))
raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5))
assert p1 != p2
assert p1.interior_angle == pi*Rational(3, 5)
assert p1.exterior_angle == pi*Rational(2, 5)
assert p2.apothem == 5*cos(pi/5)
assert p2.circumcenter == p1.circumcenter == Point(0, 0)
assert p1.circumradius == p1.radius == 10
assert p2.circumcircle == Circle(Point(0, 0), 5)
assert p2.incircle == Circle(Point(0, 0), p2.apothem)
assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
p2.spin(pi / 10)
dict1 = p2.angles
assert dict1[Point(0, 5)] == 3 * pi / 5
assert p1.is_convex()
assert p1.rotation == 0
assert p1.encloses_point(Point(0, 0))
assert p1.encloses_point(Point(11, 0)) is False
assert p2.encloses_point(Point(0, 4.9))
p1.spin(pi/3)
assert p1.rotation == pi/3
assert p1.vertices[0] == Point(5, 5*sqrt(3))
for var in p1.args:
if isinstance(var, Point):
assert var == Point(0, 0)
else:
assert var in (5, 10, pi / 3)
assert p1 != Point(0, 0)
assert p1 != p5
# while spin works in place (notice that rotation is 2pi/3 below)
# rotate returns a new object
p1_old = p1
assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, pi*Rational(2, 3))
assert p1 == p1_old
assert p1.area == (-250*sqrt(5) + 1250)/(4*tan(pi/5))
assert p1.length == 20*sqrt(-sqrt(5)/8 + Rational(5, 8))
assert p1.scale(2, 2) == \
RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation)
assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \
Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3))
assert repr(p1) == str(p1)
#
# Angles
#
angles = p4.angles
assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))
angles = p3.angles
assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))
# https://github.com/sympy/sympy/issues/24885
interior_angles_sum = sum(p13.angles.values())
assert feq(interior_angles_sum, (len(p13.angles) - 2)*pi )
interior_angles_sum = sum(p14.angles.values())
assert feq(interior_angles_sum, (len(p14.angles) - 2)*pi )
#
# Triangle
#
p1 = Point(0, 0)
p2 = Point(5, 0)
p3 = Point(0, 5)
t1 = Triangle(p1, p2, p3)
t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
s1 = t1.sides
assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
raises(GeometryError, lambda: Triangle(Point(0, 0)))
# Basic stuff
assert Triangle(p1, p1, p1) == p1
assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3)
assert t1.area == Rational(25, 2)
assert t1.is_right()
assert t2.is_right() is False
assert t3.is_right()
assert p1 in t1
assert t1.sides[0] in t1
assert Segment((0, 0), (1, 0)) in t1
assert Point(5, 5) not in t2
assert t1.is_convex()
assert feq(t1.angles[p1].evalf(), pi.evalf()/2)
assert t1.is_equilateral() is False
assert t2.is_equilateral()
assert t3.is_equilateral() is False
assert are_similar(t1, t2) is False
assert are_similar(t1, t3)
assert are_similar(t2, t3) is False
assert t1.is_similar(Point(0, 0)) is False
assert t1.is_similar(t2) is False
# Bisectors
bisectors = t1.bisectors()
assert bisectors[p1] == Segment(
p1, Point(Rational(5, 2), Rational(5, 2)))
assert t2.bisectors()[p2] == Segment(
Point(5, 0), Point(Rational(5, 4), 5*sqrt(3)/4))
p4 = Point(0, x1)
assert t3.bisectors()[p4] == Segment(p4, Point(x1*(sqrt(2) - 1), 0))
ic = (250 - 125*sqrt(2))/50
assert t1.incenter == Point(ic, ic)
# Inradius
assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2
assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6
assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1))
# Exradius
assert t1.exradii[t1.sides[2]] == 5*sqrt(2)/2
# Excenters
assert t1.excenters[t1.sides[2]] == Point2D(25*sqrt(2), -5*sqrt(2)/2)
# Circumcircle
assert t1.circumcircle.center == Point(2.5, 2.5)
# Medians + Centroid
m = t1.medians
assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2))
assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))
# Nine-point circle
assert t1.nine_point_circle == Circle(Point(2.5, 0),
Point(0, 2.5), Point(2.5, 2.5))
assert t1.nine_point_circle == Circle(Point(0, 0),
Point(0, 2.5), Point(2.5, 2.5))
# Perpendicular
altitudes = t1.altitudes
assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
assert altitudes[p2].equals(s1[0])
assert altitudes[p3] == s1[2]
assert t1.orthocenter == p1
t = S('''Triangle(
Point(100080156402737/5000000000000, 79782624633431/500000000000),
Point(39223884078253/2000000000000, 156345163124289/1000000000000),
Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''')
assert t.orthocenter == S('''Point(-780660869050599840216997'''
'''79471538701955848721853/80368430960602242240789074233100000000000000,'''
'''20151573611150265741278060334545897615974257/16073686192120448448157'''
'''8148466200000000000)''')
# Ensure
assert len(intersection(*bisectors.values())) == 1
assert len(intersection(*altitudes.values())) == 1
assert len(intersection(*m.values())) == 1
# Distance
p1 = Polygon(
Point(0, 0), Point(1, 0),
Point(1, 1), Point(0, 1))
p2 = Polygon(
Point(0, Rational(5)/4), Point(1, Rational(5)/4),
Point(1, Rational(9)/4), Point(0, Rational(9)/4))
p3 = Polygon(
Point(1, 2), Point(2, 2),
Point(2, 1))
p4 = Polygon(
Point(1, 1), Point(Rational(6)/5, 1),
Point(1, Rational(6)/5))
pt1 = Point(half, half)
pt2 = Point(1, 1)
'''Polygon to Point'''
assert p1.distance(pt1) == half
assert p1.distance(pt2) == 0
assert p2.distance(pt1) == Rational(3)/4
assert p3.distance(pt2) == sqrt(2)/2
'''Polygon to Polygon'''
# p1.distance(p2) emits a warning
with warns(UserWarning, \
match="Polygons may intersect producing erroneous output"):
assert p1.distance(p2) == half/2
assert p1.distance(p3) == sqrt(2)/2
# p3.distance(p4) emits a warning
with warns(UserWarning, \
match="Polygons may intersect producing erroneous output"):
assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2)
def test_convex_hull():
p = [Point(-5, -1), Point(-2, 1), Point(-2, -1), Point(-1, -3), \
Point(0, 0), Point(1, 1), Point(2, 2), Point(2, -1), Point(3, 1), \
Point(4, -1), Point(6, 2)]
ch = Polygon(p[0], p[3], p[9], p[10], p[6], p[1])
#test handling of duplicate points
p.append(p[3])
#more than 3 collinear points
another_p = [Point(-45, -85), Point(-45, 85), Point(-45, 26), \
Point(-45, -24)]
ch2 = Segment(another_p[0], another_p[1])
assert convex_hull(*another_p) == ch2
assert convex_hull(*p) == ch
assert convex_hull(p[0]) == p[0]
assert convex_hull(p[0], p[1]) == Segment(p[0], p[1])
# no unique points
assert convex_hull(*[p[-1]]*3) == p[-1]
# collection of items
assert convex_hull(*[Point(0, 0), \
Segment(Point(1, 0), Point(1, 1)), \
RegularPolygon(Point(2, 0), 2, 4)]) == \
Polygon(Point(0, 0), Point(2, -2), Point(4, 0), Point(2, 2))
def test_encloses():
# square with a dimpled left side
s = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1), \
Point(S.Half, S.Half))
# the following is True if the polygon isn't treated as closing on itself
assert s.encloses(Point(0, S.Half)) is False
assert s.encloses(Point(S.Half, S.Half)) is False # it's a vertex
assert s.encloses(Point(Rational(3, 4), S.Half)) is True
def test_triangle_kwargs():
assert Triangle(sss=(3, 4, 5)) == \
Triangle(Point(0, 0), Point(3, 0), Point(3, 4))
assert Triangle(asa=(30, 2, 30)) == \
Triangle(Point(0, 0), Point(2, 0), Point(1, sqrt(3)/3))
assert Triangle(sas=(1, 45, 2)) == \
Triangle(Point(0, 0), Point(2, 0), Point(sqrt(2)/2, sqrt(2)/2))
assert Triangle(sss=(1, 2, 5)) is None
assert deg(rad(180)) == 180
def test_transform():
pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)]
pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)]
assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out)
assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \
Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13))
# Checks for symmetric scaling
assert RegularPolygon((0, 0), 1, 4).scale(2, 2) == \
RegularPolygon(Point2D(0, 0), 2, 4, 0)
def test_reflect():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
b = Symbol('b')
m = Symbol('m')
l = Line((0, b), slope=m)
p = Point(x, y)
r = p.reflect(l)
dp = l.perpendicular_segment(p).length
dr = l.perpendicular_segment(r).length
assert verify_numerically(dp, dr)
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \
== Triangle(Point(5, 0), Point(4, 0), Point(4, 2))
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \
== Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2))
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \
== Triangle(Point(1, 6), Point(2, 6), Point(2, 4))
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \
== Triangle(Point(1, 0), Point(2, 0), Point(2, -2))
def test_bisectors():
p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3))
q = Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(-1, 5))
poly = Polygon(Point(3, 4), Point(0, 0), Point(8, 7), Point(-1, 1), Point(19, -19))
t = Triangle(p1, p2, p3)
assert t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
assert p.bisectors()[Point2D(0, 3)] == Ray2D(Point2D(0, 3), \
Point2D(sin(acos(2*sqrt(5)/5)/2), 3 - cos(acos(2*sqrt(5)/5)/2)))
assert q.bisectors()[Point2D(-1, 5)] == \
Ray2D(Point2D(-1, 5), Point2D(-1 + sqrt(29)*(5*sin(acos(9*sqrt(145)/145)/2) + \
2*cos(acos(9*sqrt(145)/145)/2))/29, sqrt(29)*(-5*cos(acos(9*sqrt(145)/145)/2) + \
2*sin(acos(9*sqrt(145)/145)/2))/29 + 5))
assert poly.bisectors()[Point2D(-1, 1)] == Ray2D(Point2D(-1, 1), \
Point2D(-1 + sin(acos(sqrt(26)/26)/2 + pi/4), 1 - sin(-acos(sqrt(26)/26)/2 + pi/4)))
def test_incenter():
assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).incenter \
== Point(1 - sqrt(2)/2, 1 - sqrt(2)/2)
def test_inradius():
assert Triangle(Point(0, 0), Point(4, 0), Point(0, 3)).inradius == 1
def test_incircle():
assert Triangle(Point(0, 0), Point(2, 0), Point(0, 2)).incircle \
== Circle(Point(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))
def test_exradii():
t = Triangle(Point(0, 0), Point(6, 0), Point(0, 2))
assert t.exradii[t.sides[2]] == (-2 + sqrt(10))
def test_medians():
t = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
assert t.medians[Point(0, 0)] == Segment(Point(0, 0), Point(S.Half, S.Half))
def test_medial():
assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).medial \
== Triangle(Point(S.Half, 0), Point(S.Half, S.Half), Point(0, S.Half))
def test_nine_point_circle():
assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).nine_point_circle \
== Circle(Point2D(Rational(1, 4), Rational(1, 4)), sqrt(2)/4)
def test_eulerline():
assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).eulerline \
== Line(Point2D(0, 0), Point2D(S.Half, S.Half))
assert Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3))).eulerline \
== Point2D(5, 5*sqrt(3)/3)
assert Triangle(Point(4, -6), Point(4, -1), Point(-3, 3)).eulerline \
== Line(Point2D(Rational(64, 7), 3), Point2D(Rational(-29, 14), Rational(-7, 2)))
def test_intersection():
poly1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
poly2 = Polygon(Point(0, 1), Point(-5, 0),
Point(0, -4), Point(0, Rational(1, 5)),
Point(S.Half, -0.1), Point(1, 0), Point(0, 1))
assert poly1.intersection(poly2) == [Point2D(Rational(1, 3), 0),
Segment(Point(0, Rational(1, 5)), Point(0, 0)),
Segment(Point(1, 0), Point(0, 1))]
assert poly2.intersection(poly1) == [Point(Rational(1, 3), 0),
Segment(Point(0, 0), Point(0, Rational(1, 5))),
Segment(Point(1, 0), Point(0, 1))]
assert poly1.intersection(Point(0, 0)) == [Point(0, 0)]
assert poly1.intersection(Point(-12, -43)) == []
assert poly2.intersection(Line((-12, 0), (12, 0))) == [Point(-5, 0),
Point(0, 0), Point(Rational(1, 3), 0), Point(1, 0)]
assert poly2.intersection(Line((-12, 12), (12, 12))) == []
assert poly2.intersection(Ray((-3, 4), (1, 0))) == [Segment(Point(1, 0),
Point(0, 1))]
assert poly2.intersection(Circle((0, -1), 1)) == [Point(0, -2),
Point(0, 0)]
assert poly1.intersection(poly1) == [Segment(Point(0, 0), Point(1, 0)),
Segment(Point(0, 1), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))]
assert poly2.intersection(poly2) == [Segment(Point(-5, 0), Point(0, -4)),
Segment(Point(0, -4), Point(0, Rational(1, 5))),
Segment(Point(0, Rational(1, 5)), Point(S.Half, Rational(-1, 10))),
Segment(Point(0, 1), Point(-5, 0)),
Segment(Point(S.Half, Rational(-1, 10)), Point(1, 0)),
Segment(Point(1, 0), Point(0, 1))]
assert poly2.intersection(Triangle(Point(0, 1), Point(1, 0), Point(-1, 1))) \
== [Point(Rational(-5, 7), Rational(6, 7)), Segment(Point2D(0, 1), Point(1, 0))]
assert poly1.intersection(RegularPolygon((-12, -15), 3, 3)) == []
def test_parameter_value():
t = Symbol('t')
sq = Polygon((0, 0), (0, 1), (1, 1), (1, 0))
assert sq.parameter_value((0.5, 1), t) == {t: Rational(3, 8)}
q = Polygon((0, 0), (2, 1), (2, 4), (4, 0))
assert q.parameter_value((4, 0), t) == {t: -6 + 3*sqrt(5)} # ~= 0.708
raises(ValueError, lambda: sq.parameter_value((5, 6), t))
raises(ValueError, lambda: sq.parameter_value(Circle(Point(0, 0), 1), t))
def test_issue_12966():
poly = Polygon(Point(0, 0), Point(0, 10), Point(5, 10), Point(5, 5),
Point(10, 5), Point(10, 0))
t = Symbol('t')
pt = poly.arbitrary_point(t)
DELTA = 5/poly.perimeter
assert [pt.subs(t, DELTA*i) for i in range(int(1/DELTA))] == [
Point(0, 0), Point(0, 5), Point(0, 10), Point(5, 10),
Point(5, 5), Point(10, 5), Point(10, 0), Point(5, 0)]
def test_second_moment_of_area():
x, y = symbols('x, y')
# triangle
p1, p2, p3 = [(0, 0), (4, 0), (0, 2)]
p = (0, 0)
# equation of hypotenuse
eq_y = (1-x/4)*2
I_yy = integrate((x**2) * (integrate(1, (y, 0, eq_y))), (x, 0, 4))
I_xx = integrate(1 * (integrate(y**2, (y, 0, eq_y))), (x, 0, 4))
I_xy = integrate(x * (integrate(y, (y, 0, eq_y))), (x, 0, 4))
triangle = Polygon(p1, p2, p3)
assert (I_xx - triangle.second_moment_of_area(p)[0]) == 0
assert (I_yy - triangle.second_moment_of_area(p)[1]) == 0
assert (I_xy - triangle.second_moment_of_area(p)[2]) == 0
# rectangle
p1, p2, p3, p4=[(0, 0), (4, 0), (4, 2), (0, 2)]
I_yy = integrate((x**2) * integrate(1, (y, 0, 2)), (x, 0, 4))
I_xx = integrate(1 * integrate(y**2, (y, 0, 2)), (x, 0, 4))
I_xy = integrate(x * integrate(y, (y, 0, 2)), (x, 0, 4))
rectangle = Polygon(p1, p2, p3, p4)
assert (I_xx - rectangle.second_moment_of_area(p)[0]) == 0
assert (I_yy - rectangle.second_moment_of_area(p)[1]) == 0
assert (I_xy - rectangle.second_moment_of_area(p)[2]) == 0
r = RegularPolygon(Point(0, 0), 5, 3)
assert r.second_moment_of_area() == (1875*sqrt(3)/S(32), 1875*sqrt(3)/S(32), 0)
def test_first_moment():
a, b = symbols('a, b', positive=True)
# rectangle
p1 = Polygon((0, 0), (a, 0), (a, b), (0, b))
assert p1.first_moment_of_area() == (a*b**2/8, a**2*b/8)
assert p1.first_moment_of_area((a/3, b/4)) == (-3*a*b**2/32, -a**2*b/9)
p1 = Polygon((0, 0), (40, 0), (40, 30), (0, 30))
assert p1.first_moment_of_area() == (4500, 6000)
# triangle
p2 = Polygon((0, 0), (a, 0), (a/2, b))
assert p2.first_moment_of_area() == (4*a*b**2/81, a**2*b/24)
assert p2.first_moment_of_area((a/8, b/6)) == (-25*a*b**2/648, -5*a**2*b/768)
p2 = Polygon((0, 0), (12, 0), (12, 30))
assert p2.first_moment_of_area() == (S(1600)/3, -S(640)/3)
def test_section_modulus_and_polar_second_moment_of_area():
a, b = symbols('a, b', positive=True)
x, y = symbols('x, y')
rectangle = Polygon((0, b), (0, 0), (a, 0), (a, b))
assert rectangle.section_modulus(Point(x, y)) == (a*b**3/12/(-b/2 + y), a**3*b/12/(-a/2 + x))
assert rectangle.polar_second_moment_of_area() == a**3*b/12 + a*b**3/12
convex = RegularPolygon((0, 0), 1, 6)
assert convex.section_modulus() == (Rational(5, 8), sqrt(3)*Rational(5, 16))
assert convex.polar_second_moment_of_area() == 5*sqrt(3)/S(8)
concave = Polygon((0, 0), (1, 8), (3, 4), (4, 6), (7, 1))
assert concave.section_modulus() == (Rational(-6371, 429), Rational(-9778, 519))
assert concave.polar_second_moment_of_area() == Rational(-38669, 252)
def test_cut_section():
# concave polygon
p = Polygon((-1, -1), (1, Rational(5, 2)), (2, 1), (3, Rational(5, 2)), (4, 2), (5, 3), (-1, 3))
l = Line((0, 0), (Rational(9, 2), 3))
p1 = p.cut_section(l)[0]
p2 = p.cut_section(l)[1]
assert p1 == Polygon(
Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(1, Rational(5, 2)), Point2D(Rational(24, 13), Rational(16, 13)),
Point2D(Rational(12, 5), Rational(8, 5)), Point2D(3, Rational(5, 2)), Point2D(Rational(24, 7), Rational(16, 7)),
Point2D(Rational(9, 2), 3), Point2D(-1, 3), Point2D(-1, Rational(-2, 3)))
assert p2 == Polygon(Point2D(-1, -1), Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(Rational(24, 13), Rational(16, 13)),
Point2D(2, 1), Point2D(Rational(12, 5), Rational(8, 5)), Point2D(Rational(24, 7), Rational(16, 7)), Point2D(4, 2), Point2D(5, 3),
Point2D(Rational(9, 2), 3), Point2D(-1, Rational(-2, 3)))
# convex polygon
p = RegularPolygon(Point2D(0, 0), 6, 6)
s = p.cut_section(Line((0, 0), slope=1))
assert s[0] == Polygon(Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9), Point2D(3, 3*sqrt(3)),
Point2D(-3, 3*sqrt(3)), Point2D(-6, 0), Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)))
assert s[1] == Polygon(Point2D(6, 0), Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9),
Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)), Point2D(-3, -3*sqrt(3)), Point2D(3, -3*sqrt(3)))
# case where line does not intersects but coincides with the edge of polygon
a, b = 20, 10
t1, t2, t3, t4 = [(0, b), (0, 0), (a, 0), (a, b)]
p = Polygon(t1, t2, t3, t4)
p1, p2 = p.cut_section(Line((0, b), slope=0))
assert p1 == None
assert p2 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))
p3, p4 = p.cut_section(Line((0, 0), slope=0))
assert p3 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))
assert p4 == None
# case where the line does not intersect with a polygon at all
raises(ValueError, lambda: p.cut_section(Line((0, a), slope=0)))
def test_type_of_triangle():
# Isoceles triangle
p1 = Polygon(Point(0, 0), Point(5, 0), Point(2, 4))
assert p1.is_isosceles() == True
assert p1.is_scalene() == False
assert p1.is_equilateral() == False
# Scalene triangle
p2 = Polygon (Point(0, 0), Point(0, 2), Point(4, 0))
assert p2.is_isosceles() == False
assert p2.is_scalene() == True
assert p2.is_equilateral() == False
# Equilateral triagle
p3 = Polygon(Point(0, 0), Point(6, 0), Point(3, sqrt(27)))
assert p3.is_isosceles() == True
assert p3.is_scalene() == False
assert p3.is_equilateral() == True
def test_do_poly_distance():
# Non-intersecting polygons
square1 = Polygon (Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
triangle1 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
assert square1._do_poly_distance(triangle1) == sqrt(2)/2
# Polygons which sides intersect
square2 = Polygon(Point(1, 0), Point(2, 0), Point(2, 1), Point(1, 1))
with warns(UserWarning, \
match="Polygons may intersect producing erroneous output", test_stacklevel=False):
assert square1._do_poly_distance(square2) == 0
# Polygons which bodies intersect
triangle2 = Polygon(Point(0, -1), Point(2, -1), Point(S.Half, S.Half))
with warns(UserWarning, \
match="Polygons may intersect producing erroneous output", test_stacklevel=False):
assert triangle2._do_poly_distance(square1) == 0
|