File size: 27,601 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
from sympy.core.numbers import (Float, Rational, oo, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acos, cos, sin)
from sympy.functions.elementary.trigonometric import tan
from sympy.geometry import (Circle, Ellipse, GeometryError, Point, Point2D,
                            Polygon, Ray, RegularPolygon, Segment, Triangle,
                            are_similar, convex_hull, intersection, Line, Ray2D)
from sympy.testing.pytest import raises, slow, warns
from sympy.core.random import verify_numerically
from sympy.geometry.polygon import rad, deg
from sympy.integrals.integrals import integrate
from sympy.utilities.iterables import rotate_left


def feq(a, b):
    """Test if two floating point values are 'equal'."""
    t_float = Float("1.0E-10")
    return -t_float < a - b < t_float

@slow
def test_polygon():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    q = Symbol('q', real=True)
    u = Symbol('u', real=True)
    v = Symbol('v', real=True)
    w = Symbol('w', real=True)
    x1 = Symbol('x1', real=True)
    half = S.Half
    a, b, c = Point(0, 0), Point(2, 0), Point(3, 3)
    t = Triangle(a, b, c)
    assert Polygon(Point(0, 0)) == Point(0, 0)
    assert Polygon(a, Point(1, 0), b, c) == t
    assert Polygon(Point(1, 0), b, c, a) == t
    assert Polygon(b, c, a, Point(1, 0)) == t
    # 2 "remove folded" tests
    assert Polygon(a, Point(3, 0), b, c) == t
    assert Polygon(a, b, Point(3, -1), b, c) == t
    # remove multiple collinear points
    assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15),
        Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15),
        Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15),
        Point(15, -3), Point(15, 10), Point(15, 15)) == \
        Polygon(Point(-15, -15), Point(15, -15), Point(15, 15), Point(-15, 15))

    p1 = Polygon(
        Point(0, 0), Point(3, -1),
        Point(6, 0), Point(4, 5),
        Point(2, 3), Point(0, 3))
    p2 = Polygon(
        Point(6, 0), Point(3, -1),
        Point(0, 0), Point(0, 3),
        Point(2, 3), Point(4, 5))
    p3 = Polygon(
        Point(0, 0), Point(3, 0),
        Point(5, 2), Point(4, 4))
    p4 = Polygon(
        Point(0, 0), Point(4, 4),
        Point(5, 2), Point(3, 0))
    p5 = Polygon(
        Point(0, 0), Point(4, 4),
        Point(0, 4))
    p6 = Polygon(
        Point(-11, 1), Point(-9, 6.6),
        Point(-4, -3), Point(-8.4, -8.7))
    p7 = Polygon(
        Point(x, y), Point(q, u),
        Point(v, w))
    p8 = Polygon(
        Point(x, y), Point(v, w),
        Point(q, u))
    p9 = Polygon(
        Point(0, 0), Point(4, 4),
        Point(3, 0), Point(5, 2))
    p10 = Polygon(
        Point(0, 2), Point(2, 2),
        Point(0, 0), Point(2, 0))
    p11 = Polygon(Point(0, 0), 1, n=3)
    p12 = Polygon(Point(0, 0), 1, 0, n=3)
    p13 = Polygon(
        Point(0, 0),Point(8, 8),
        Point(23, 20),Point(0, 20))
    p14 = Polygon(*rotate_left(p13.args, 1))


    r = Ray(Point(-9, 6.6), Point(-9, 5.5))
    #
    # General polygon
    #
    assert p1 == p2
    assert len(p1.args) == 6
    assert len(p1.sides) == 6
    assert p1.perimeter == 5 + 2*sqrt(10) + sqrt(29) + sqrt(8)
    assert p1.area == 22
    assert not p1.is_convex()
    assert Polygon((-1, 1), (2, -1), (2, 1), (-1, -1), (3, 0)
        ).is_convex() is False
    # ensure convex for both CW and CCW point specification
    assert p3.is_convex()
    assert p4.is_convex()
    dict5 = p5.angles
    assert dict5[Point(0, 0)] == pi / 4
    assert dict5[Point(0, 4)] == pi / 2
    assert p5.encloses_point(Point(x, y)) is None
    assert p5.encloses_point(Point(1, 3))
    assert p5.encloses_point(Point(0, 0)) is False
    assert p5.encloses_point(Point(4, 0)) is False
    assert p1.encloses(Circle(Point(2.5, 2.5), 5)) is False
    assert p1.encloses(Ellipse(Point(2.5, 2), 5, 6)) is False
    assert p5.plot_interval('x') == [x, 0, 1]
    assert p5.distance(
        Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2)
    assert p5.distance(
        Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
    with warns(UserWarning, \
               match="Polygons may intersect producing erroneous output"):
        Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance(
                Polygon(Point(0, 0), Point(0, 1), Point(1, 1)))
    assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
    assert hash(p1) == hash(p2)
    assert hash(p7) == hash(p8)
    assert hash(p3) != hash(p9)
    assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
    assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
    assert p5 != Point(0, 4)
    assert Point(0, 1) in p5
    assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \
        Point(0, 0)
    raises(ValueError, lambda: Polygon(
        Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x'))
    assert p6.intersection(r) == [Point(-9, Rational(-84, 13)), Point(-9, Rational(33, 5))]
    assert p10.area == 0
    assert p11 == RegularPolygon(Point(0, 0), 1, 3, 0)
    assert p11 == p12
    assert p11.vertices[0] == Point(1, 0)
    assert p11.args[0] == Point(0, 0)
    p11.spin(pi/2)
    assert p11.vertices[0] == Point(0, 1)
    #
    # Regular polygon
    #
    p1 = RegularPolygon(Point(0, 0), 10, 5)
    p2 = RegularPolygon(Point(0, 0), 5, 5)
    raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0,
           1), Point(1, 1)))
    raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2))
    raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5))

    assert p1 != p2
    assert p1.interior_angle == pi*Rational(3, 5)
    assert p1.exterior_angle == pi*Rational(2, 5)
    assert p2.apothem == 5*cos(pi/5)
    assert p2.circumcenter == p1.circumcenter == Point(0, 0)
    assert p1.circumradius == p1.radius == 10
    assert p2.circumcircle == Circle(Point(0, 0), 5)
    assert p2.incircle == Circle(Point(0, 0), p2.apothem)
    assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
    p2.spin(pi / 10)
    dict1 = p2.angles
    assert dict1[Point(0, 5)] == 3 * pi / 5
    assert p1.is_convex()
    assert p1.rotation == 0
    assert p1.encloses_point(Point(0, 0))
    assert p1.encloses_point(Point(11, 0)) is False
    assert p2.encloses_point(Point(0, 4.9))
    p1.spin(pi/3)
    assert p1.rotation == pi/3
    assert p1.vertices[0] == Point(5, 5*sqrt(3))
    for var in p1.args:
        if isinstance(var, Point):
            assert var == Point(0, 0)
        else:
            assert var in (5, 10, pi / 3)
    assert p1 != Point(0, 0)
    assert p1 != p5

    # while spin works in place (notice that rotation is 2pi/3 below)
    # rotate returns a new object
    p1_old = p1
    assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, pi*Rational(2, 3))
    assert p1 == p1_old

    assert p1.area == (-250*sqrt(5) + 1250)/(4*tan(pi/5))
    assert p1.length == 20*sqrt(-sqrt(5)/8 + Rational(5, 8))
    assert p1.scale(2, 2) == \
        RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation)
    assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \
        Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3))

    assert repr(p1) == str(p1)

    #
    # Angles
    #
    angles = p4.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    angles = p3.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    # https://github.com/sympy/sympy/issues/24885
    interior_angles_sum = sum(p13.angles.values())
    assert feq(interior_angles_sum, (len(p13.angles) - 2)*pi )
    interior_angles_sum = sum(p14.angles.values())
    assert feq(interior_angles_sum, (len(p14.angles) - 2)*pi )

    #
    # Triangle
    #
    p1 = Point(0, 0)
    p2 = Point(5, 0)
    p3 = Point(0, 5)
    t1 = Triangle(p1, p2, p3)
    t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
    t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
    s1 = t1.sides
    assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
    raises(GeometryError, lambda: Triangle(Point(0, 0)))

    # Basic stuff
    assert Triangle(p1, p1, p1) == p1
    assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3)
    assert t1.area == Rational(25, 2)
    assert t1.is_right()
    assert t2.is_right() is False
    assert t3.is_right()
    assert p1 in t1
    assert t1.sides[0] in t1
    assert Segment((0, 0), (1, 0)) in t1
    assert Point(5, 5) not in t2
    assert t1.is_convex()
    assert feq(t1.angles[p1].evalf(), pi.evalf()/2)

    assert t1.is_equilateral() is False
    assert t2.is_equilateral()
    assert t3.is_equilateral() is False
    assert are_similar(t1, t2) is False
    assert are_similar(t1, t3)
    assert are_similar(t2, t3) is False
    assert t1.is_similar(Point(0, 0)) is False
    assert t1.is_similar(t2) is False

    # Bisectors
    bisectors = t1.bisectors()
    assert bisectors[p1] == Segment(
        p1, Point(Rational(5, 2), Rational(5, 2)))
    assert t2.bisectors()[p2] == Segment(
        Point(5, 0), Point(Rational(5, 4), 5*sqrt(3)/4))
    p4 = Point(0, x1)
    assert t3.bisectors()[p4] == Segment(p4, Point(x1*(sqrt(2) - 1), 0))
    ic = (250 - 125*sqrt(2))/50
    assert t1.incenter == Point(ic, ic)

    # Inradius
    assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2
    assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6
    assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1))

    # Exradius
    assert t1.exradii[t1.sides[2]] == 5*sqrt(2)/2

    # Excenters
    assert t1.excenters[t1.sides[2]] == Point2D(25*sqrt(2), -5*sqrt(2)/2)

    # Circumcircle
    assert t1.circumcircle.center == Point(2.5, 2.5)

    # Medians + Centroid
    m = t1.medians
    assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
    assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2))
    assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
    assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))

    # Nine-point circle
    assert t1.nine_point_circle == Circle(Point(2.5, 0),
                                          Point(0, 2.5), Point(2.5, 2.5))
    assert t1.nine_point_circle == Circle(Point(0, 0),
                                          Point(0, 2.5), Point(2.5, 2.5))

    # Perpendicular
    altitudes = t1.altitudes
    assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert altitudes[p2].equals(s1[0])
    assert altitudes[p3] == s1[2]
    assert t1.orthocenter == p1
    t = S('''Triangle(
    Point(100080156402737/5000000000000, 79782624633431/500000000000),
    Point(39223884078253/2000000000000, 156345163124289/1000000000000),
    Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''')
    assert t.orthocenter == S('''Point(-780660869050599840216997'''
    '''79471538701955848721853/80368430960602242240789074233100000000000000,'''
    '''20151573611150265741278060334545897615974257/16073686192120448448157'''
    '''8148466200000000000)''')

    # Ensure
    assert len(intersection(*bisectors.values())) == 1
    assert len(intersection(*altitudes.values())) == 1
    assert len(intersection(*m.values())) == 1

    # Distance
    p1 = Polygon(
        Point(0, 0), Point(1, 0),
        Point(1, 1), Point(0, 1))
    p2 = Polygon(
        Point(0, Rational(5)/4), Point(1, Rational(5)/4),
        Point(1, Rational(9)/4), Point(0, Rational(9)/4))
    p3 = Polygon(
        Point(1, 2), Point(2, 2),
        Point(2, 1))
    p4 = Polygon(
        Point(1, 1), Point(Rational(6)/5, 1),
        Point(1, Rational(6)/5))
    pt1 = Point(half, half)
    pt2 = Point(1, 1)

    '''Polygon to Point'''
    assert p1.distance(pt1) == half
    assert p1.distance(pt2) == 0
    assert p2.distance(pt1) == Rational(3)/4
    assert p3.distance(pt2) == sqrt(2)/2

    '''Polygon to Polygon'''
    # p1.distance(p2) emits a warning
    with warns(UserWarning, \
               match="Polygons may intersect producing erroneous output"):
        assert p1.distance(p2) == half/2

    assert p1.distance(p3) == sqrt(2)/2

    # p3.distance(p4) emits a warning
    with warns(UserWarning, \
               match="Polygons may intersect producing erroneous output"):
        assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2)


def test_convex_hull():
    p = [Point(-5, -1), Point(-2, 1), Point(-2, -1), Point(-1, -3), \
         Point(0, 0), Point(1, 1), Point(2, 2), Point(2, -1), Point(3, 1), \
         Point(4, -1), Point(6, 2)]
    ch = Polygon(p[0], p[3], p[9], p[10], p[6], p[1])
    #test handling of duplicate points
    p.append(p[3])

    #more than 3 collinear points
    another_p = [Point(-45, -85), Point(-45, 85), Point(-45, 26), \
                 Point(-45, -24)]
    ch2 = Segment(another_p[0], another_p[1])

    assert convex_hull(*another_p) == ch2
    assert convex_hull(*p) == ch
    assert convex_hull(p[0]) == p[0]
    assert convex_hull(p[0], p[1]) == Segment(p[0], p[1])

    # no unique points
    assert convex_hull(*[p[-1]]*3) == p[-1]

    # collection of items
    assert convex_hull(*[Point(0, 0), \
                        Segment(Point(1, 0), Point(1, 1)), \
                        RegularPolygon(Point(2, 0), 2, 4)]) == \
        Polygon(Point(0, 0), Point(2, -2), Point(4, 0), Point(2, 2))


def test_encloses():
    # square with a dimpled left side
    s = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1), \
        Point(S.Half, S.Half))
    # the following is True if the polygon isn't treated as closing on itself
    assert s.encloses(Point(0, S.Half)) is False
    assert s.encloses(Point(S.Half, S.Half)) is False  # it's a vertex
    assert s.encloses(Point(Rational(3, 4), S.Half)) is True


def test_triangle_kwargs():
    assert Triangle(sss=(3, 4, 5)) == \
        Triangle(Point(0, 0), Point(3, 0), Point(3, 4))
    assert Triangle(asa=(30, 2, 30)) == \
        Triangle(Point(0, 0), Point(2, 0), Point(1, sqrt(3)/3))
    assert Triangle(sas=(1, 45, 2)) == \
        Triangle(Point(0, 0), Point(2, 0), Point(sqrt(2)/2, sqrt(2)/2))
    assert Triangle(sss=(1, 2, 5)) is None
    assert deg(rad(180)) == 180


def test_transform():
    pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)]
    pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)]
    assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out)
    assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \
        Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13))
    # Checks for symmetric scaling
    assert RegularPolygon((0, 0), 1, 4).scale(2, 2) == \
        RegularPolygon(Point2D(0, 0), 2, 4, 0)

def test_reflect():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    b = Symbol('b')
    m = Symbol('m')
    l = Line((0, b), slope=m)
    p = Point(x, y)
    r = p.reflect(l)
    dp = l.perpendicular_segment(p).length
    dr = l.perpendicular_segment(r).length

    assert verify_numerically(dp, dr)

    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \
        == Triangle(Point(5, 0), Point(4, 0), Point(4, 2))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \
        == Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \
        == Triangle(Point(1, 6), Point(2, 6), Point(2, 4))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \
        == Triangle(Point(1, 0), Point(2, 0), Point(2, -2))

def test_bisectors():
    p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
    p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3))
    q = Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(-1, 5))
    poly = Polygon(Point(3, 4), Point(0, 0), Point(8, 7), Point(-1, 1), Point(19, -19))
    t = Triangle(p1, p2, p3)
    assert t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
    assert p.bisectors()[Point2D(0, 3)] == Ray2D(Point2D(0, 3), \
        Point2D(sin(acos(2*sqrt(5)/5)/2), 3 - cos(acos(2*sqrt(5)/5)/2)))
    assert q.bisectors()[Point2D(-1, 5)] == \
        Ray2D(Point2D(-1, 5), Point2D(-1 + sqrt(29)*(5*sin(acos(9*sqrt(145)/145)/2) + \
        2*cos(acos(9*sqrt(145)/145)/2))/29, sqrt(29)*(-5*cos(acos(9*sqrt(145)/145)/2) + \
        2*sin(acos(9*sqrt(145)/145)/2))/29 + 5))
    assert poly.bisectors()[Point2D(-1, 1)] == Ray2D(Point2D(-1, 1), \
        Point2D(-1 + sin(acos(sqrt(26)/26)/2 + pi/4), 1 - sin(-acos(sqrt(26)/26)/2 + pi/4)))

def test_incenter():
    assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).incenter \
        == Point(1 - sqrt(2)/2, 1 - sqrt(2)/2)

def test_inradius():
    assert Triangle(Point(0, 0), Point(4, 0), Point(0, 3)).inradius == 1

def test_incircle():
    assert Triangle(Point(0, 0), Point(2, 0), Point(0, 2)).incircle \
        == Circle(Point(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))

def test_exradii():
    t = Triangle(Point(0, 0), Point(6, 0), Point(0, 2))
    assert t.exradii[t.sides[2]] == (-2 + sqrt(10))

def test_medians():
    t = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
    assert t.medians[Point(0, 0)] == Segment(Point(0, 0), Point(S.Half, S.Half))

def test_medial():
    assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).medial \
        == Triangle(Point(S.Half, 0), Point(S.Half, S.Half), Point(0, S.Half))

def test_nine_point_circle():
    assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).nine_point_circle \
        == Circle(Point2D(Rational(1, 4), Rational(1, 4)), sqrt(2)/4)

def test_eulerline():
    assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).eulerline \
        == Line(Point2D(0, 0), Point2D(S.Half, S.Half))
    assert Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3))).eulerline \
        == Point2D(5, 5*sqrt(3)/3)
    assert Triangle(Point(4, -6), Point(4, -1), Point(-3, 3)).eulerline \
        == Line(Point2D(Rational(64, 7), 3), Point2D(Rational(-29, 14), Rational(-7, 2)))

def test_intersection():
    poly1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
    poly2 = Polygon(Point(0, 1), Point(-5, 0),
                    Point(0, -4), Point(0, Rational(1, 5)),
                    Point(S.Half, -0.1), Point(1, 0), Point(0, 1))

    assert poly1.intersection(poly2) == [Point2D(Rational(1, 3), 0),
        Segment(Point(0, Rational(1, 5)), Point(0, 0)),
        Segment(Point(1, 0), Point(0, 1))]
    assert poly2.intersection(poly1) == [Point(Rational(1, 3), 0),
        Segment(Point(0, 0), Point(0, Rational(1, 5))),
        Segment(Point(1, 0), Point(0, 1))]
    assert poly1.intersection(Point(0, 0)) == [Point(0, 0)]
    assert poly1.intersection(Point(-12,  -43)) == []
    assert poly2.intersection(Line((-12, 0), (12, 0))) == [Point(-5, 0),
        Point(0, 0), Point(Rational(1, 3), 0), Point(1, 0)]
    assert poly2.intersection(Line((-12, 12), (12, 12))) == []
    assert poly2.intersection(Ray((-3, 4), (1, 0))) == [Segment(Point(1, 0),
        Point(0, 1))]
    assert poly2.intersection(Circle((0, -1), 1)) == [Point(0, -2),
        Point(0, 0)]
    assert poly1.intersection(poly1) == [Segment(Point(0, 0), Point(1, 0)),
        Segment(Point(0, 1), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))]
    assert poly2.intersection(poly2) == [Segment(Point(-5, 0), Point(0, -4)),
        Segment(Point(0, -4), Point(0, Rational(1, 5))),
        Segment(Point(0, Rational(1, 5)), Point(S.Half, Rational(-1, 10))),
        Segment(Point(0, 1), Point(-5, 0)),
        Segment(Point(S.Half, Rational(-1, 10)), Point(1, 0)),
        Segment(Point(1, 0), Point(0, 1))]
    assert poly2.intersection(Triangle(Point(0, 1), Point(1, 0), Point(-1, 1))) \
        == [Point(Rational(-5, 7), Rational(6, 7)), Segment(Point2D(0, 1), Point(1, 0))]
    assert poly1.intersection(RegularPolygon((-12, -15), 3, 3)) == []


def test_parameter_value():
    t = Symbol('t')
    sq = Polygon((0, 0), (0, 1), (1, 1), (1, 0))
    assert sq.parameter_value((0.5, 1), t) == {t: Rational(3, 8)}
    q = Polygon((0, 0), (2, 1), (2, 4), (4, 0))
    assert q.parameter_value((4, 0), t) == {t: -6 + 3*sqrt(5)} # ~= 0.708

    raises(ValueError, lambda: sq.parameter_value((5, 6), t))
    raises(ValueError, lambda: sq.parameter_value(Circle(Point(0, 0), 1), t))


def test_issue_12966():
    poly = Polygon(Point(0, 0), Point(0, 10), Point(5, 10), Point(5, 5),
        Point(10, 5), Point(10, 0))
    t = Symbol('t')
    pt = poly.arbitrary_point(t)
    DELTA = 5/poly.perimeter
    assert [pt.subs(t, DELTA*i) for i in range(int(1/DELTA))] == [
        Point(0, 0), Point(0, 5), Point(0, 10), Point(5, 10),
        Point(5, 5), Point(10, 5), Point(10, 0), Point(5, 0)]


def test_second_moment_of_area():
    x, y = symbols('x, y')
    # triangle
    p1, p2, p3 = [(0, 0), (4, 0), (0, 2)]
    p = (0, 0)
    # equation of hypotenuse
    eq_y = (1-x/4)*2
    I_yy = integrate((x**2) * (integrate(1, (y, 0, eq_y))), (x, 0, 4))
    I_xx = integrate(1 * (integrate(y**2, (y, 0, eq_y))), (x, 0, 4))
    I_xy = integrate(x * (integrate(y, (y, 0, eq_y))), (x, 0, 4))

    triangle = Polygon(p1, p2, p3)

    assert (I_xx - triangle.second_moment_of_area(p)[0]) == 0
    assert (I_yy - triangle.second_moment_of_area(p)[1]) == 0
    assert (I_xy - triangle.second_moment_of_area(p)[2]) == 0

    # rectangle
    p1, p2, p3, p4=[(0, 0), (4, 0), (4, 2), (0, 2)]
    I_yy = integrate((x**2) * integrate(1, (y, 0, 2)), (x, 0, 4))
    I_xx = integrate(1 * integrate(y**2, (y, 0, 2)), (x, 0, 4))
    I_xy = integrate(x * integrate(y, (y, 0, 2)), (x, 0, 4))

    rectangle = Polygon(p1, p2, p3, p4)

    assert (I_xx - rectangle.second_moment_of_area(p)[0]) == 0
    assert (I_yy - rectangle.second_moment_of_area(p)[1]) == 0
    assert (I_xy - rectangle.second_moment_of_area(p)[2]) == 0


    r = RegularPolygon(Point(0, 0), 5, 3)
    assert r.second_moment_of_area() == (1875*sqrt(3)/S(32), 1875*sqrt(3)/S(32), 0)


def test_first_moment():
    a, b  = symbols('a, b', positive=True)
    # rectangle
    p1 = Polygon((0, 0), (a, 0), (a, b), (0, b))
    assert p1.first_moment_of_area() == (a*b**2/8, a**2*b/8)
    assert p1.first_moment_of_area((a/3, b/4)) == (-3*a*b**2/32, -a**2*b/9)

    p1 = Polygon((0, 0), (40, 0), (40, 30), (0, 30))
    assert p1.first_moment_of_area() == (4500, 6000)

    # triangle
    p2 = Polygon((0, 0), (a, 0), (a/2, b))
    assert p2.first_moment_of_area() == (4*a*b**2/81, a**2*b/24)
    assert p2.first_moment_of_area((a/8, b/6)) == (-25*a*b**2/648, -5*a**2*b/768)

    p2 = Polygon((0, 0), (12, 0), (12, 30))
    assert p2.first_moment_of_area() == (S(1600)/3, -S(640)/3)


def test_section_modulus_and_polar_second_moment_of_area():
    a, b = symbols('a, b', positive=True)
    x, y = symbols('x, y')
    rectangle = Polygon((0, b), (0, 0), (a, 0), (a, b))
    assert rectangle.section_modulus(Point(x, y)) == (a*b**3/12/(-b/2 + y), a**3*b/12/(-a/2 + x))
    assert rectangle.polar_second_moment_of_area() == a**3*b/12 + a*b**3/12

    convex = RegularPolygon((0, 0), 1, 6)
    assert convex.section_modulus() == (Rational(5, 8), sqrt(3)*Rational(5, 16))
    assert convex.polar_second_moment_of_area() == 5*sqrt(3)/S(8)

    concave = Polygon((0, 0), (1, 8), (3, 4), (4, 6), (7, 1))
    assert concave.section_modulus() == (Rational(-6371, 429), Rational(-9778, 519))
    assert concave.polar_second_moment_of_area() == Rational(-38669, 252)


def test_cut_section():
    # concave polygon
    p = Polygon((-1, -1), (1, Rational(5, 2)), (2, 1), (3, Rational(5, 2)), (4, 2), (5, 3), (-1, 3))
    l = Line((0, 0), (Rational(9, 2), 3))
    p1 = p.cut_section(l)[0]
    p2 = p.cut_section(l)[1]
    assert p1 == Polygon(
        Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(1, Rational(5, 2)), Point2D(Rational(24, 13), Rational(16, 13)),
        Point2D(Rational(12, 5), Rational(8, 5)), Point2D(3, Rational(5, 2)), Point2D(Rational(24, 7), Rational(16, 7)),
        Point2D(Rational(9, 2), 3), Point2D(-1, 3), Point2D(-1, Rational(-2, 3)))
    assert p2 == Polygon(Point2D(-1, -1), Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(Rational(24, 13), Rational(16, 13)),
        Point2D(2, 1), Point2D(Rational(12, 5), Rational(8, 5)), Point2D(Rational(24, 7), Rational(16, 7)), Point2D(4, 2), Point2D(5, 3),
        Point2D(Rational(9, 2), 3), Point2D(-1, Rational(-2, 3)))

    # convex polygon
    p = RegularPolygon(Point2D(0, 0), 6, 6)
    s = p.cut_section(Line((0, 0), slope=1))
    assert s[0] == Polygon(Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9), Point2D(3, 3*sqrt(3)),
        Point2D(-3, 3*sqrt(3)), Point2D(-6, 0), Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)))
    assert s[1] == Polygon(Point2D(6, 0), Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9),
        Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)), Point2D(-3, -3*sqrt(3)), Point2D(3, -3*sqrt(3)))

    # case where line does not intersects but coincides with the edge of polygon
    a, b = 20, 10
    t1, t2, t3, t4 = [(0, b), (0, 0), (a, 0), (a, b)]
    p = Polygon(t1, t2, t3, t4)
    p1, p2 = p.cut_section(Line((0, b), slope=0))
    assert p1 == None
    assert p2 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))

    p3, p4 = p.cut_section(Line((0, 0), slope=0))
    assert p3 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))
    assert p4 == None

    # case where the line does not intersect with a polygon at all
    raises(ValueError, lambda: p.cut_section(Line((0, a), slope=0)))

def test_type_of_triangle():
    # Isoceles triangle
    p1 = Polygon(Point(0, 0), Point(5, 0), Point(2, 4))
    assert p1.is_isosceles() == True
    assert p1.is_scalene() == False
    assert p1.is_equilateral() == False

    # Scalene triangle
    p2 = Polygon (Point(0, 0), Point(0, 2), Point(4, 0))
    assert p2.is_isosceles() == False
    assert p2.is_scalene() == True
    assert p2.is_equilateral() == False

    # Equilateral triagle
    p3 = Polygon(Point(0, 0), Point(6, 0), Point(3, sqrt(27)))
    assert p3.is_isosceles() == True
    assert p3.is_scalene() == False
    assert p3.is_equilateral() == True

def test_do_poly_distance():
    # Non-intersecting polygons
    square1 = Polygon (Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
    triangle1 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
    assert square1._do_poly_distance(triangle1) == sqrt(2)/2

    # Polygons which sides intersect
    square2 = Polygon(Point(1, 0), Point(2, 0), Point(2, 1), Point(1, 1))
    with warns(UserWarning, \
               match="Polygons may intersect producing erroneous output", test_stacklevel=False):
        assert square1._do_poly_distance(square2) == 0

    # Polygons which bodies intersect
    triangle2 = Polygon(Point(0, -1), Point(2, -1), Point(S.Half, S.Half))
    with warns(UserWarning, \
               match="Polygons may intersect producing erroneous output", test_stacklevel=False):
        assert triangle2._do_poly_distance(square1) == 0