File size: 16,412 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
from sympy.core.basic import Basic
from sympy.core.numbers import (I, Rational, pi)
from sympy.core.parameters import evaluate
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.geometry import Line, Point, Point2D, Point3D, Line3D, Plane
from sympy.geometry.entity import rotate, scale, translate, GeometryEntity
from sympy.matrices import Matrix
from sympy.utilities.iterables import subsets, permutations, cartes
from sympy.utilities.misc import Undecidable
from sympy.testing.pytest import raises, warns


def test_point():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    x2 = Symbol('x2', real=True)
    y1 = Symbol('y1', real=True)
    y2 = Symbol('y2', real=True)
    half = S.Half
    p1 = Point(x1, x2)
    p2 = Point(y1, y2)
    p3 = Point(0, 0)
    p4 = Point(1, 1)
    p5 = Point(0, 1)
    line = Line(Point(1, 0), slope=1)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point(y1 - x1, y2 - x2)
    assert -p2 == Point(-y1, -y2)
    raises(TypeError, lambda: Point(1))
    raises(ValueError, lambda: Point([1]))
    raises(ValueError, lambda: Point(3, I))
    raises(ValueError, lambda: Point(2*I, I))
    raises(ValueError, lambda: Point(3 + I, I))

    assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
    assert Point.midpoint(p3, p4) == Point(half, half)
    assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2)
    assert Point.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2
    assert p1.origin == Point(0, 0)

    assert Point.distance(p3, p4) == sqrt(2)
    assert Point.distance(p1, p1) == 0
    assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)
    raises(TypeError, lambda: Point.distance(p1, 0))
    raises(TypeError, lambda: Point.distance(p1, GeometryEntity()))

    # distance should be symmetric
    assert p1.distance(line) == line.distance(p1)
    assert p4.distance(line) == line.distance(p4)

    assert Point.taxicab_distance(p4, p3) == 2

    assert Point.canberra_distance(p4, p5) == 1
    raises(ValueError, lambda: Point.canberra_distance(p3, p3))

    p1_1 = Point(x1, x1)
    p1_2 = Point(y2, y2)
    p1_3 = Point(x1 + 1, x1)
    assert Point.is_collinear(p3)

    with warns(UserWarning, test_stacklevel=False):
        assert Point.is_collinear(p3, Point(p3, dim=4))
    assert p3.is_collinear()
    assert Point.is_collinear(p3, p4)
    assert Point.is_collinear(p3, p4, p1_1, p1_2)
    assert Point.is_collinear(p3, p4, p1_1, p1_3) is False
    assert Point.is_collinear(p3, p3, p4, p5) is False

    raises(TypeError, lambda: Point.is_collinear(line))
    raises(TypeError, lambda: p1_1.is_collinear(line))

    assert p3.intersection(Point(0, 0)) == [p3]
    assert p3.intersection(p4) == []
    assert p3.intersection(line) == []
    with warns(UserWarning, test_stacklevel=False):
        assert Point.intersection(Point(0, 0, 0), Point(0, 0)) == [Point(0, 0, 0)]

    x_pos = Symbol('x', positive=True)
    p2_1 = Point(x_pos, 0)
    p2_2 = Point(0, x_pos)
    p2_3 = Point(-x_pos, 0)
    p2_4 = Point(0, -x_pos)
    p2_5 = Point(x_pos, 5)
    assert Point.is_concyclic(p2_1)
    assert Point.is_concyclic(p2_1, p2_2)
    assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
    for pts in permutations((p2_1, p2_2, p2_3, p2_5)):
        assert Point.is_concyclic(*pts) is False
    assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False
    assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False
    assert Point.is_concyclic(Point(0, 0, 0, 0), Point(1, 0, 0, 0), Point(1, 1, 0, 0), Point(1, 1, 1, 0)) is False

    assert p1.is_scalar_multiple(p1)
    assert p1.is_scalar_multiple(2*p1)
    assert not p1.is_scalar_multiple(p2)
    assert Point.is_scalar_multiple(Point(1, 1), (-1, -1))
    assert Point.is_scalar_multiple(Point(0, 0), (0, -1))
    # test when is_scalar_multiple can't be determined
    raises(Undecidable, lambda: Point.is_scalar_multiple(Point(sympify("x1%y1"), sympify("x2%y2")), Point(0, 1)))

    assert Point(0, 1).orthogonal_direction == Point(1, 0)
    assert Point(1, 0).orthogonal_direction == Point(0, 1)

    assert p1.is_zero is None
    assert p3.is_zero
    assert p4.is_zero is False
    assert p1.is_nonzero is None
    assert p3.is_nonzero is False
    assert p4.is_nonzero

    assert p4.scale(2, 3) == Point(2, 3)
    assert p3.scale(2, 3) == p3

    assert p4.rotate(pi, Point(0.5, 0.5)) == p3
    assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
    assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)

    assert p4 * 5 == Point(5, 5)
    assert p4 / 5 == Point(0.2, 0.2)
    assert 5 * p4 == Point(5, 5)

    raises(ValueError, lambda: Point(0, 0) + 10)

    # Point differences should be simplified
    assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1)

    a, b = S.Half, Rational(1, 3)
    assert Point(a, b).evalf(2) == \
        Point(a.n(2), b.n(2), evaluate=False)
    raises(ValueError, lambda: Point(1, 2) + 1)

    # test project
    assert Point.project((0, 1), (1, 0)) == Point(0, 0)
    assert Point.project((1, 1), (1, 0)) == Point(1, 0)
    raises(ValueError, lambda: Point.project(p1, Point(0, 0)))

    # test transformations
    p = Point(1, 0)
    assert p.rotate(pi/2) == Point(0, 1)
    assert p.rotate(pi/2, p) == p
    p = Point(1, 1)
    assert p.scale(2, 3) == Point(2, 3)
    assert p.translate(1, 2) == Point(2, 3)
    assert p.translate(1) == Point(2, 1)
    assert p.translate(y=1) == Point(1, 2)
    assert p.translate(*p.args) == Point(2, 2)

    # Check invalid input for transform
    raises(ValueError, lambda: p3.transform(p3))
    raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))

    # test __contains__
    assert 0 in Point(0, 0, 0, 0)
    assert 1 not in Point(0, 0, 0, 0)

    # test affine_rank
    assert Point.affine_rank() == -1


def test_point3D():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    x2 = Symbol('x2', real=True)
    x3 = Symbol('x3', real=True)
    y1 = Symbol('y1', real=True)
    y2 = Symbol('y2', real=True)
    y3 = Symbol('y3', real=True)
    half = S.Half
    p1 = Point3D(x1, x2, x3)
    p2 = Point3D(y1, y2, y3)
    p3 = Point3D(0, 0, 0)
    p4 = Point3D(1, 1, 1)
    p5 = Point3D(0, 1, 2)

    assert p1 in p1
    assert p1 not in p2
    assert p2.y == y2
    assert (p3 + p4) == p4
    assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3)
    assert -p2 == Point3D(-y1, -y2, -y3)

    assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
    assert Point3D.midpoint(p3, p4) == Point3D(half, half, half)
    assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2,
                                         half + half*x3)
    assert Point3D.midpoint(p2, p2) == p2
    assert p2.midpoint(p2) == p2

    assert Point3D.distance(p3, p4) == sqrt(3)
    assert Point3D.distance(p1, p1) == 0
    assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2)

    p1_1 = Point3D(x1, x1, x1)
    p1_2 = Point3D(y2, y2, y2)
    p1_3 = Point3D(x1 + 1, x1, x1)
    Point3D.are_collinear(p3)
    assert Point3D.are_collinear(p3, p4)
    assert Point3D.are_collinear(p3, p4, p1_1, p1_2)
    assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False
    assert Point3D.are_collinear(p3, p3, p4, p5) is False

    assert p3.intersection(Point3D(0, 0, 0)) == [p3]
    assert p3.intersection(p4) == []


    assert p4 * 5 == Point3D(5, 5, 5)
    assert p4 / 5 == Point3D(0.2, 0.2, 0.2)
    assert 5 * p4 == Point3D(5, 5, 5)

    raises(ValueError, lambda: Point3D(0, 0, 0) + 10)

    # Test coordinate properties
    assert p1.coordinates == (x1, x2, x3)
    assert p2.coordinates == (y1, y2, y3)
    assert p3.coordinates == (0, 0, 0)
    assert p4.coordinates == (1, 1, 1)
    assert p5.coordinates == (0, 1, 2)
    assert p5.x == 0
    assert p5.y == 1
    assert p5.z == 2

    # Point differences should be simplified
    assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \
        Point3D(0, -1, 1)

    a, b, c = S.Half, Rational(1, 3), Rational(1, 4)
    assert Point3D(a, b, c).evalf(2) == \
        Point(a.n(2), b.n(2), c.n(2), evaluate=False)
    raises(ValueError, lambda: Point3D(1, 2, 3) + 1)

    # test transformations
    p = Point3D(1, 1, 1)
    assert p.scale(2, 3) == Point3D(2, 3, 1)
    assert p.translate(1, 2) == Point3D(2, 3, 1)
    assert p.translate(1) == Point3D(2, 1, 1)
    assert p.translate(z=1) == Point3D(1, 1, 2)
    assert p.translate(*p.args) == Point3D(2, 2, 2)

    # Test __new__
    assert Point3D(0.1, 0.2, evaluate=False, on_morph='ignore').args[0].is_Float

    # Test length property returns correctly
    assert p.length == 0
    assert p1_1.length == 0
    assert p1_2.length == 0

    # Test are_colinear type error
    raises(TypeError, lambda: Point3D.are_collinear(p, x))

    # Test are_coplanar
    assert Point.are_coplanar()
    assert Point.are_coplanar((1, 2, 0), (1, 2, 0), (1, 3, 0))
    assert Point.are_coplanar((1, 2, 0), (1, 2, 3))
    with warns(UserWarning, test_stacklevel=False):
        raises(ValueError, lambda: Point2D.are_coplanar((1, 2), (1, 2, 3)))
    assert Point3D.are_coplanar((1, 2, 0), (1, 2, 3))
    assert Point.are_coplanar((0, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1)) is False
    planar2 = Point3D(1, -1, 1)
    planar3 = Point3D(-1, 1, 1)
    assert Point3D.are_coplanar(p, planar2, planar3) == True
    assert Point3D.are_coplanar(p, planar2, planar3, p3) == False
    assert Point.are_coplanar(p, planar2)
    planar2 = Point3D(1, 1, 2)
    planar3 = Point3D(1, 1, 3)
    assert Point3D.are_coplanar(p, planar2, planar3)  # line, not plane
    plane = Plane((1, 2, 1), (2, 1, 0), (3, 1, 2))
    assert Point.are_coplanar(*[plane.projection(((-1)**i, i)) for i in range(4)])

    # all 2D points are coplanar
    assert Point.are_coplanar(Point(x, y), Point(x, x + y), Point(y, x + 2)) is True

    # Test Intersection
    assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)]

    # Test Scale
    assert planar2.scale(1, 1, 1) == planar2
    assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1)
    assert planar2.scale(1, 1, 1, p3) == planar2

    # Test Transform
    identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
    assert p.transform(identity) == p
    trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]])
    assert p.transform(trans) == Point3D(2, 2, 2)
    raises(ValueError, lambda: p.transform(p))
    raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))

    # Test Equals
    assert p.equals(x1) == False

    # Test __sub__
    p_4d = Point(0, 0, 0, 1)
    with warns(UserWarning, test_stacklevel=False):
        assert p - p_4d == Point(1, 1, 1, -1)
    p_4d3d = Point(0, 0, 1, 0)
    with warns(UserWarning, test_stacklevel=False):
        assert p - p_4d3d == Point(1, 1, 0, 0)


def test_Point2D():

    # Test Distance
    p1 = Point2D(1, 5)
    p2 = Point2D(4, 2.5)
    p3 = (6, 3)
    assert p1.distance(p2) == sqrt(61)/2
    assert p2.distance(p3) == sqrt(17)/2

    # Test coordinates
    assert p1.x == 1
    assert p1.y == 5
    assert p2.x == 4
    assert p2.y == S(5)/2
    assert p1.coordinates == (1, 5)
    assert p2.coordinates == (4, S(5)/2)

    # test bounds
    assert p1.bounds == (1, 5, 1, 5)

def test_issue_9214():
    p1 = Point3D(4, -2, 6)
    p2 = Point3D(1, 2, 3)
    p3 = Point3D(7, 2, 3)

    assert Point3D.are_collinear(p1, p2, p3) is False


def test_issue_11617():
    p1 = Point3D(1,0,2)
    p2 = Point2D(2,0)

    with warns(UserWarning, test_stacklevel=False):
        assert p1.distance(p2) == sqrt(5)


def test_transform():
    p = Point(1, 1)
    assert p.transform(rotate(pi/2)) == Point(-1, 1)
    assert p.transform(scale(3, 2)) == Point(3, 2)
    assert p.transform(translate(1, 2)) == Point(2, 3)
    assert Point(1, 1).scale(2, 3, (4, 5)) == \
        Point(-2, -7)
    assert Point(1, 1).translate(4, 5) == \
        Point(5, 6)


def test_concyclic_doctest_bug():
    p1, p2 = Point(-1, 0), Point(1, 0)
    p3, p4 = Point(0, 1), Point(-1, 2)
    assert Point.is_concyclic(p1, p2, p3)
    assert not Point.is_concyclic(p1, p2, p3, p4)


def test_arguments():
    """Functions accepting `Point` objects in `geometry`
    should also accept tuples and lists and
    automatically convert them to points."""

    singles2d = ((1,2), [1,2], Point(1,2))
    singles2d2 = ((1,3), [1,3], Point(1,3))
    doubles2d = cartes(singles2d, singles2d2)
    p2d = Point2D(1,2)
    singles3d = ((1,2,3), [1,2,3], Point(1,2,3))
    doubles3d = subsets(singles3d, 2)
    p3d = Point3D(1,2,3)
    singles4d = ((1,2,3,4), [1,2,3,4], Point(1,2,3,4))
    doubles4d = subsets(singles4d, 2)
    p4d = Point(1,2,3,4)

    # test 2D
    test_single = ['distance', 'is_scalar_multiple', 'taxicab_distance', 'midpoint', 'intersection', 'dot', 'equals', '__add__', '__sub__']
    test_double = ['is_concyclic', 'is_collinear']
    for p in singles2d:
        Point2D(p)
    for func in test_single:
        for p in singles2d:
            getattr(p2d, func)(p)
    for func in test_double:
        for p in doubles2d:
            getattr(p2d, func)(*p)

    # test 3D
    test_double = ['is_collinear']
    for p in singles3d:
        Point3D(p)
    for func in test_single:
        for p in singles3d:
            getattr(p3d, func)(p)
    for func in test_double:
        for p in doubles3d:
            getattr(p3d, func)(*p)

    # test 4D
    test_double = ['is_collinear']
    for p in singles4d:
        Point(p)
    for func in test_single:
        for p in singles4d:
            getattr(p4d, func)(p)
    for func in test_double:
        for p in doubles4d:
            getattr(p4d, func)(*p)

    # test evaluate=False for ops
    x = Symbol('x')
    a = Point(0, 1)
    assert a + (0.1, x) == Point(0.1, 1 + x, evaluate=False)
    a = Point(0, 1)
    assert a/10.0 == Point(0, 0.1, evaluate=False)
    a = Point(0, 1)
    assert a*10.0 == Point(0.0, 10.0, evaluate=False)

    # test evaluate=False when changing dimensions
    u = Point(.1, .2, evaluate=False)
    u4 = Point(u, dim=4, on_morph='ignore')
    assert u4.args == (.1, .2, 0, 0)
    assert all(i.is_Float for i in u4.args[:2])
    # and even when *not* changing dimensions
    assert all(i.is_Float for i in Point(u).args)

    # never raise error if creating an origin
    assert Point(dim=3, on_morph='error')

    # raise error with unmatched dimension
    raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='error'))
    # test unknown on_morph
    raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='unknown'))
    # test invalid expressions
    raises(TypeError, lambda: Point(Basic(), Basic()))

def test_unit():
    assert Point(1, 1).unit == Point(sqrt(2)/2, sqrt(2)/2)


def test_dot():
    raises(TypeError, lambda: Point(1, 2).dot(Line((0, 0), (1, 1))))


def test__normalize_dimension():
    assert Point._normalize_dimension(Point(1, 2), Point(3, 4)) == [
        Point(1, 2), Point(3, 4)]
    assert Point._normalize_dimension(
        Point(1, 2), Point(3, 4, 0), on_morph='ignore') == [
        Point(1, 2, 0), Point(3, 4, 0)]


def test_issue_22684():
    # Used to give an error
    with evaluate(False):
        Point(1, 2)


def test_direction_cosine():
    p1 = Point3D(0, 0, 0)
    p2 = Point3D(1, 1, 1)

    assert p1.direction_cosine(Point3D(1, 0, 0)) == [1, 0, 0]
    assert p1.direction_cosine(Point3D(0, 1, 0)) == [0, 1, 0]
    assert p1.direction_cosine(Point3D(0, 0, pi)) == [0, 0, 1]

    assert p1.direction_cosine(Point3D(5, 0, 0)) == [1, 0, 0]
    assert p1.direction_cosine(Point3D(0, sqrt(3), 0)) == [0, 1, 0]
    assert p1.direction_cosine(Point3D(0, 0, 5)) == [0, 0, 1]

    assert p1.direction_cosine(Point3D(2.4, 2.4, 0)) == [sqrt(2)/2, sqrt(2)/2, 0]
    assert p1.direction_cosine(Point3D(1, 1, 1)) == [sqrt(3) / 3, sqrt(3) / 3, sqrt(3) / 3]
    assert p1.direction_cosine(Point3D(-12, 0 -15)) == [-4*sqrt(41)/41, -5*sqrt(41)/41, 0]

    assert p2.direction_cosine(Point3D(0, 0, 0)) == [-sqrt(3) / 3, -sqrt(3) / 3, -sqrt(3) / 3]
    assert p2.direction_cosine(Point3D(1, 1, 12)) == [0, 0, 1]
    assert p2.direction_cosine(Point3D(12, 1, 12)) == [sqrt(2) / 2, 0, sqrt(2) / 2]