Spaces:
Sleeping
Sleeping
File size: 16,412 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
from sympy.core.basic import Basic
from sympy.core.numbers import (I, Rational, pi)
from sympy.core.parameters import evaluate
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.geometry import Line, Point, Point2D, Point3D, Line3D, Plane
from sympy.geometry.entity import rotate, scale, translate, GeometryEntity
from sympy.matrices import Matrix
from sympy.utilities.iterables import subsets, permutations, cartes
from sympy.utilities.misc import Undecidable
from sympy.testing.pytest import raises, warns
def test_point():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
x1 = Symbol('x1', real=True)
x2 = Symbol('x2', real=True)
y1 = Symbol('y1', real=True)
y2 = Symbol('y2', real=True)
half = S.Half
p1 = Point(x1, x2)
p2 = Point(y1, y2)
p3 = Point(0, 0)
p4 = Point(1, 1)
p5 = Point(0, 1)
line = Line(Point(1, 0), slope=1)
assert p1 in p1
assert p1 not in p2
assert p2.y == y2
assert (p3 + p4) == p4
assert (p2 - p1) == Point(y1 - x1, y2 - x2)
assert -p2 == Point(-y1, -y2)
raises(TypeError, lambda: Point(1))
raises(ValueError, lambda: Point([1]))
raises(ValueError, lambda: Point(3, I))
raises(ValueError, lambda: Point(2*I, I))
raises(ValueError, lambda: Point(3 + I, I))
assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
assert Point.midpoint(p3, p4) == Point(half, half)
assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2)
assert Point.midpoint(p2, p2) == p2
assert p2.midpoint(p2) == p2
assert p1.origin == Point(0, 0)
assert Point.distance(p3, p4) == sqrt(2)
assert Point.distance(p1, p1) == 0
assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)
raises(TypeError, lambda: Point.distance(p1, 0))
raises(TypeError, lambda: Point.distance(p1, GeometryEntity()))
# distance should be symmetric
assert p1.distance(line) == line.distance(p1)
assert p4.distance(line) == line.distance(p4)
assert Point.taxicab_distance(p4, p3) == 2
assert Point.canberra_distance(p4, p5) == 1
raises(ValueError, lambda: Point.canberra_distance(p3, p3))
p1_1 = Point(x1, x1)
p1_2 = Point(y2, y2)
p1_3 = Point(x1 + 1, x1)
assert Point.is_collinear(p3)
with warns(UserWarning, test_stacklevel=False):
assert Point.is_collinear(p3, Point(p3, dim=4))
assert p3.is_collinear()
assert Point.is_collinear(p3, p4)
assert Point.is_collinear(p3, p4, p1_1, p1_2)
assert Point.is_collinear(p3, p4, p1_1, p1_3) is False
assert Point.is_collinear(p3, p3, p4, p5) is False
raises(TypeError, lambda: Point.is_collinear(line))
raises(TypeError, lambda: p1_1.is_collinear(line))
assert p3.intersection(Point(0, 0)) == [p3]
assert p3.intersection(p4) == []
assert p3.intersection(line) == []
with warns(UserWarning, test_stacklevel=False):
assert Point.intersection(Point(0, 0, 0), Point(0, 0)) == [Point(0, 0, 0)]
x_pos = Symbol('x', positive=True)
p2_1 = Point(x_pos, 0)
p2_2 = Point(0, x_pos)
p2_3 = Point(-x_pos, 0)
p2_4 = Point(0, -x_pos)
p2_5 = Point(x_pos, 5)
assert Point.is_concyclic(p2_1)
assert Point.is_concyclic(p2_1, p2_2)
assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
for pts in permutations((p2_1, p2_2, p2_3, p2_5)):
assert Point.is_concyclic(*pts) is False
assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False
assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False
assert Point.is_concyclic(Point(0, 0, 0, 0), Point(1, 0, 0, 0), Point(1, 1, 0, 0), Point(1, 1, 1, 0)) is False
assert p1.is_scalar_multiple(p1)
assert p1.is_scalar_multiple(2*p1)
assert not p1.is_scalar_multiple(p2)
assert Point.is_scalar_multiple(Point(1, 1), (-1, -1))
assert Point.is_scalar_multiple(Point(0, 0), (0, -1))
# test when is_scalar_multiple can't be determined
raises(Undecidable, lambda: Point.is_scalar_multiple(Point(sympify("x1%y1"), sympify("x2%y2")), Point(0, 1)))
assert Point(0, 1).orthogonal_direction == Point(1, 0)
assert Point(1, 0).orthogonal_direction == Point(0, 1)
assert p1.is_zero is None
assert p3.is_zero
assert p4.is_zero is False
assert p1.is_nonzero is None
assert p3.is_nonzero is False
assert p4.is_nonzero
assert p4.scale(2, 3) == Point(2, 3)
assert p3.scale(2, 3) == p3
assert p4.rotate(pi, Point(0.5, 0.5)) == p3
assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)
assert p4 * 5 == Point(5, 5)
assert p4 / 5 == Point(0.2, 0.2)
assert 5 * p4 == Point(5, 5)
raises(ValueError, lambda: Point(0, 0) + 10)
# Point differences should be simplified
assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1)
a, b = S.Half, Rational(1, 3)
assert Point(a, b).evalf(2) == \
Point(a.n(2), b.n(2), evaluate=False)
raises(ValueError, lambda: Point(1, 2) + 1)
# test project
assert Point.project((0, 1), (1, 0)) == Point(0, 0)
assert Point.project((1, 1), (1, 0)) == Point(1, 0)
raises(ValueError, lambda: Point.project(p1, Point(0, 0)))
# test transformations
p = Point(1, 0)
assert p.rotate(pi/2) == Point(0, 1)
assert p.rotate(pi/2, p) == p
p = Point(1, 1)
assert p.scale(2, 3) == Point(2, 3)
assert p.translate(1, 2) == Point(2, 3)
assert p.translate(1) == Point(2, 1)
assert p.translate(y=1) == Point(1, 2)
assert p.translate(*p.args) == Point(2, 2)
# Check invalid input for transform
raises(ValueError, lambda: p3.transform(p3))
raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
# test __contains__
assert 0 in Point(0, 0, 0, 0)
assert 1 not in Point(0, 0, 0, 0)
# test affine_rank
assert Point.affine_rank() == -1
def test_point3D():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
x1 = Symbol('x1', real=True)
x2 = Symbol('x2', real=True)
x3 = Symbol('x3', real=True)
y1 = Symbol('y1', real=True)
y2 = Symbol('y2', real=True)
y3 = Symbol('y3', real=True)
half = S.Half
p1 = Point3D(x1, x2, x3)
p2 = Point3D(y1, y2, y3)
p3 = Point3D(0, 0, 0)
p4 = Point3D(1, 1, 1)
p5 = Point3D(0, 1, 2)
assert p1 in p1
assert p1 not in p2
assert p2.y == y2
assert (p3 + p4) == p4
assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3)
assert -p2 == Point3D(-y1, -y2, -y3)
assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
assert Point3D.midpoint(p3, p4) == Point3D(half, half, half)
assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2,
half + half*x3)
assert Point3D.midpoint(p2, p2) == p2
assert p2.midpoint(p2) == p2
assert Point3D.distance(p3, p4) == sqrt(3)
assert Point3D.distance(p1, p1) == 0
assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2)
p1_1 = Point3D(x1, x1, x1)
p1_2 = Point3D(y2, y2, y2)
p1_3 = Point3D(x1 + 1, x1, x1)
Point3D.are_collinear(p3)
assert Point3D.are_collinear(p3, p4)
assert Point3D.are_collinear(p3, p4, p1_1, p1_2)
assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False
assert Point3D.are_collinear(p3, p3, p4, p5) is False
assert p3.intersection(Point3D(0, 0, 0)) == [p3]
assert p3.intersection(p4) == []
assert p4 * 5 == Point3D(5, 5, 5)
assert p4 / 5 == Point3D(0.2, 0.2, 0.2)
assert 5 * p4 == Point3D(5, 5, 5)
raises(ValueError, lambda: Point3D(0, 0, 0) + 10)
# Test coordinate properties
assert p1.coordinates == (x1, x2, x3)
assert p2.coordinates == (y1, y2, y3)
assert p3.coordinates == (0, 0, 0)
assert p4.coordinates == (1, 1, 1)
assert p5.coordinates == (0, 1, 2)
assert p5.x == 0
assert p5.y == 1
assert p5.z == 2
# Point differences should be simplified
assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \
Point3D(0, -1, 1)
a, b, c = S.Half, Rational(1, 3), Rational(1, 4)
assert Point3D(a, b, c).evalf(2) == \
Point(a.n(2), b.n(2), c.n(2), evaluate=False)
raises(ValueError, lambda: Point3D(1, 2, 3) + 1)
# test transformations
p = Point3D(1, 1, 1)
assert p.scale(2, 3) == Point3D(2, 3, 1)
assert p.translate(1, 2) == Point3D(2, 3, 1)
assert p.translate(1) == Point3D(2, 1, 1)
assert p.translate(z=1) == Point3D(1, 1, 2)
assert p.translate(*p.args) == Point3D(2, 2, 2)
# Test __new__
assert Point3D(0.1, 0.2, evaluate=False, on_morph='ignore').args[0].is_Float
# Test length property returns correctly
assert p.length == 0
assert p1_1.length == 0
assert p1_2.length == 0
# Test are_colinear type error
raises(TypeError, lambda: Point3D.are_collinear(p, x))
# Test are_coplanar
assert Point.are_coplanar()
assert Point.are_coplanar((1, 2, 0), (1, 2, 0), (1, 3, 0))
assert Point.are_coplanar((1, 2, 0), (1, 2, 3))
with warns(UserWarning, test_stacklevel=False):
raises(ValueError, lambda: Point2D.are_coplanar((1, 2), (1, 2, 3)))
assert Point3D.are_coplanar((1, 2, 0), (1, 2, 3))
assert Point.are_coplanar((0, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1)) is False
planar2 = Point3D(1, -1, 1)
planar3 = Point3D(-1, 1, 1)
assert Point3D.are_coplanar(p, planar2, planar3) == True
assert Point3D.are_coplanar(p, planar2, planar3, p3) == False
assert Point.are_coplanar(p, planar2)
planar2 = Point3D(1, 1, 2)
planar3 = Point3D(1, 1, 3)
assert Point3D.are_coplanar(p, planar2, planar3) # line, not plane
plane = Plane((1, 2, 1), (2, 1, 0), (3, 1, 2))
assert Point.are_coplanar(*[plane.projection(((-1)**i, i)) for i in range(4)])
# all 2D points are coplanar
assert Point.are_coplanar(Point(x, y), Point(x, x + y), Point(y, x + 2)) is True
# Test Intersection
assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)]
# Test Scale
assert planar2.scale(1, 1, 1) == planar2
assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1)
assert planar2.scale(1, 1, 1, p3) == planar2
# Test Transform
identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
assert p.transform(identity) == p
trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]])
assert p.transform(trans) == Point3D(2, 2, 2)
raises(ValueError, lambda: p.transform(p))
raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
# Test Equals
assert p.equals(x1) == False
# Test __sub__
p_4d = Point(0, 0, 0, 1)
with warns(UserWarning, test_stacklevel=False):
assert p - p_4d == Point(1, 1, 1, -1)
p_4d3d = Point(0, 0, 1, 0)
with warns(UserWarning, test_stacklevel=False):
assert p - p_4d3d == Point(1, 1, 0, 0)
def test_Point2D():
# Test Distance
p1 = Point2D(1, 5)
p2 = Point2D(4, 2.5)
p3 = (6, 3)
assert p1.distance(p2) == sqrt(61)/2
assert p2.distance(p3) == sqrt(17)/2
# Test coordinates
assert p1.x == 1
assert p1.y == 5
assert p2.x == 4
assert p2.y == S(5)/2
assert p1.coordinates == (1, 5)
assert p2.coordinates == (4, S(5)/2)
# test bounds
assert p1.bounds == (1, 5, 1, 5)
def test_issue_9214():
p1 = Point3D(4, -2, 6)
p2 = Point3D(1, 2, 3)
p3 = Point3D(7, 2, 3)
assert Point3D.are_collinear(p1, p2, p3) is False
def test_issue_11617():
p1 = Point3D(1,0,2)
p2 = Point2D(2,0)
with warns(UserWarning, test_stacklevel=False):
assert p1.distance(p2) == sqrt(5)
def test_transform():
p = Point(1, 1)
assert p.transform(rotate(pi/2)) == Point(-1, 1)
assert p.transform(scale(3, 2)) == Point(3, 2)
assert p.transform(translate(1, 2)) == Point(2, 3)
assert Point(1, 1).scale(2, 3, (4, 5)) == \
Point(-2, -7)
assert Point(1, 1).translate(4, 5) == \
Point(5, 6)
def test_concyclic_doctest_bug():
p1, p2 = Point(-1, 0), Point(1, 0)
p3, p4 = Point(0, 1), Point(-1, 2)
assert Point.is_concyclic(p1, p2, p3)
assert not Point.is_concyclic(p1, p2, p3, p4)
def test_arguments():
"""Functions accepting `Point` objects in `geometry`
should also accept tuples and lists and
automatically convert them to points."""
singles2d = ((1,2), [1,2], Point(1,2))
singles2d2 = ((1,3), [1,3], Point(1,3))
doubles2d = cartes(singles2d, singles2d2)
p2d = Point2D(1,2)
singles3d = ((1,2,3), [1,2,3], Point(1,2,3))
doubles3d = subsets(singles3d, 2)
p3d = Point3D(1,2,3)
singles4d = ((1,2,3,4), [1,2,3,4], Point(1,2,3,4))
doubles4d = subsets(singles4d, 2)
p4d = Point(1,2,3,4)
# test 2D
test_single = ['distance', 'is_scalar_multiple', 'taxicab_distance', 'midpoint', 'intersection', 'dot', 'equals', '__add__', '__sub__']
test_double = ['is_concyclic', 'is_collinear']
for p in singles2d:
Point2D(p)
for func in test_single:
for p in singles2d:
getattr(p2d, func)(p)
for func in test_double:
for p in doubles2d:
getattr(p2d, func)(*p)
# test 3D
test_double = ['is_collinear']
for p in singles3d:
Point3D(p)
for func in test_single:
for p in singles3d:
getattr(p3d, func)(p)
for func in test_double:
for p in doubles3d:
getattr(p3d, func)(*p)
# test 4D
test_double = ['is_collinear']
for p in singles4d:
Point(p)
for func in test_single:
for p in singles4d:
getattr(p4d, func)(p)
for func in test_double:
for p in doubles4d:
getattr(p4d, func)(*p)
# test evaluate=False for ops
x = Symbol('x')
a = Point(0, 1)
assert a + (0.1, x) == Point(0.1, 1 + x, evaluate=False)
a = Point(0, 1)
assert a/10.0 == Point(0, 0.1, evaluate=False)
a = Point(0, 1)
assert a*10.0 == Point(0.0, 10.0, evaluate=False)
# test evaluate=False when changing dimensions
u = Point(.1, .2, evaluate=False)
u4 = Point(u, dim=4, on_morph='ignore')
assert u4.args == (.1, .2, 0, 0)
assert all(i.is_Float for i in u4.args[:2])
# and even when *not* changing dimensions
assert all(i.is_Float for i in Point(u).args)
# never raise error if creating an origin
assert Point(dim=3, on_morph='error')
# raise error with unmatched dimension
raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='error'))
# test unknown on_morph
raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='unknown'))
# test invalid expressions
raises(TypeError, lambda: Point(Basic(), Basic()))
def test_unit():
assert Point(1, 1).unit == Point(sqrt(2)/2, sqrt(2)/2)
def test_dot():
raises(TypeError, lambda: Point(1, 2).dot(Line((0, 0), (1, 1))))
def test__normalize_dimension():
assert Point._normalize_dimension(Point(1, 2), Point(3, 4)) == [
Point(1, 2), Point(3, 4)]
assert Point._normalize_dimension(
Point(1, 2), Point(3, 4, 0), on_morph='ignore') == [
Point(1, 2, 0), Point(3, 4, 0)]
def test_issue_22684():
# Used to give an error
with evaluate(False):
Point(1, 2)
def test_direction_cosine():
p1 = Point3D(0, 0, 0)
p2 = Point3D(1, 1, 1)
assert p1.direction_cosine(Point3D(1, 0, 0)) == [1, 0, 0]
assert p1.direction_cosine(Point3D(0, 1, 0)) == [0, 1, 0]
assert p1.direction_cosine(Point3D(0, 0, pi)) == [0, 0, 1]
assert p1.direction_cosine(Point3D(5, 0, 0)) == [1, 0, 0]
assert p1.direction_cosine(Point3D(0, sqrt(3), 0)) == [0, 1, 0]
assert p1.direction_cosine(Point3D(0, 0, 5)) == [0, 0, 1]
assert p1.direction_cosine(Point3D(2.4, 2.4, 0)) == [sqrt(2)/2, sqrt(2)/2, 0]
assert p1.direction_cosine(Point3D(1, 1, 1)) == [sqrt(3) / 3, sqrt(3) / 3, sqrt(3) / 3]
assert p1.direction_cosine(Point3D(-12, 0 -15)) == [-4*sqrt(41)/41, -5*sqrt(41)/41, 0]
assert p2.direction_cosine(Point3D(0, 0, 0)) == [-sqrt(3) / 3, -sqrt(3) / 3, -sqrt(3) / 3]
assert p2.direction_cosine(Point3D(1, 1, 12)) == [0, 0, 1]
assert p2.direction_cosine(Point3D(12, 1, 12)) == [sqrt(2) / 2, 0, sqrt(2) / 2]
|