File size: 12,525 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from sympy.core.numbers import (Rational, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, symbols)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (asin, cos, sin)
from sympy.geometry import Line, Point, Ray, Segment, Point3D, Line3D, Ray3D, Segment3D, Plane, Circle
from sympy.geometry.util import are_coplanar
from sympy.testing.pytest import raises


def test_plane():
    x, y, z, u, v = symbols('x y z u v', real=True)
    p1 = Point3D(0, 0, 0)
    p2 = Point3D(1, 1, 1)
    p3 = Point3D(1, 2, 3)
    pl3 = Plane(p1, p2, p3)
    pl4 = Plane(p1, normal_vector=(1, 1, 1))
    pl4b = Plane(p1, p2)
    pl5 = Plane(p3, normal_vector=(1, 2, 3))
    pl6 = Plane(Point3D(2, 3, 7), normal_vector=(2, 2, 2))
    pl7 = Plane(Point3D(1, -5, -6), normal_vector=(1, -2, 1))
    pl8 = Plane(p1, normal_vector=(0, 0, 1))
    pl9 = Plane(p1, normal_vector=(0, 12, 0))
    pl10 = Plane(p1, normal_vector=(-2, 0, 0))
    pl11 = Plane(p2, normal_vector=(0, 0, 1))
    l1 = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
    l2 = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
    l3 = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))

    raises(ValueError, lambda: Plane(p1, p1, p1))

    assert Plane(p1, p2, p3) != Plane(p1, p3, p2)
    assert Plane(p1, p2, p3).is_coplanar(Plane(p1, p3, p2))
    assert Plane(p1, p2, p3).is_coplanar(p1)
    assert Plane(p1, p2, p3).is_coplanar(Circle(p1, 1)) is False
    assert Plane(p1, normal_vector=(0, 0, 1)).is_coplanar(Circle(p1, 1))

    assert pl3 == Plane(Point3D(0, 0, 0), normal_vector=(1, -2, 1))
    assert pl3 != pl4
    assert pl4 == pl4b
    assert pl5 == Plane(Point3D(1, 2, 3), normal_vector=(1, 2, 3))

    assert pl5.equation(x, y, z) == x + 2*y + 3*z - 14
    assert pl3.equation(x, y, z) == x - 2*y + z

    assert pl3.p1 == p1
    assert pl4.p1 == p1
    assert pl5.p1 == p3

    assert pl4.normal_vector == (1, 1, 1)
    assert pl5.normal_vector == (1, 2, 3)

    assert p1 in pl3
    assert p1 in pl4
    assert p3 in pl5

    assert pl3.projection(Point(0, 0)) == p1
    p = pl3.projection(Point3D(1, 1, 0))
    assert p == Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6))
    assert p in pl3

    l = pl3.projection_line(Line(Point(0, 0), Point(1, 1)))
    assert l == Line3D(Point3D(0, 0, 0), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)))
    assert l in pl3
    # get a segment that does not intersect the plane which is also
    # parallel to pl3's normal veector
    t = Dummy()
    r = pl3.random_point()
    a = pl3.perpendicular_line(r).arbitrary_point(t)
    s = Segment3D(a.subs(t, 1), a.subs(t, 2))
    assert s.p1 not in pl3 and s.p2 not in pl3
    assert pl3.projection_line(s).equals(r)
    assert pl3.projection_line(Segment(Point(1, 0), Point(1, 1))) == \
               Segment3D(Point3D(Rational(5, 6), Rational(1, 3), Rational(-1, 6)), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)))
    assert pl6.projection_line(Ray(Point(1, 0), Point(1, 1))) == \
               Ray3D(Point3D(Rational(14, 3), Rational(11, 3), Rational(11, 3)), Point3D(Rational(13, 3), Rational(13, 3), Rational(10, 3)))
    assert pl3.perpendicular_line(r.args) == pl3.perpendicular_line(r)

    assert pl3.is_parallel(pl6) is False
    assert pl4.is_parallel(pl6)
    assert pl3.is_parallel(Line(p1, p2))
    assert pl6.is_parallel(l1) is False

    assert pl3.is_perpendicular(pl6)
    assert pl4.is_perpendicular(pl7)
    assert pl6.is_perpendicular(pl7)
    assert pl6.is_perpendicular(pl4) is False
    assert pl6.is_perpendicular(l1) is False
    assert pl6.is_perpendicular(Line((0, 0, 0), (1, 1, 1)))
    assert pl6.is_perpendicular((1, 1)) is False

    assert pl6.distance(pl6.arbitrary_point(u, v)) == 0
    assert pl7.distance(pl7.arbitrary_point(u, v)) == 0
    assert pl6.distance(pl6.arbitrary_point(t)) == 0
    assert pl7.distance(pl7.arbitrary_point(t)) == 0
    assert pl6.p1.distance(pl6.arbitrary_point(t)).simplify() == 1
    assert pl7.p1.distance(pl7.arbitrary_point(t)).simplify() == 1
    assert pl3.arbitrary_point(t) == Point3D(-sqrt(30)*sin(t)/30 + \
        2*sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/15 + sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/6)
    assert pl3.arbitrary_point(u, v) == Point3D(2*u - v, u + 2*v, 5*v)

    assert pl7.distance(Point3D(1, 3, 5)) == 5*sqrt(6)/6
    assert pl6.distance(Point3D(0, 0, 0)) == 4*sqrt(3)
    assert pl6.distance(pl6.p1) == 0
    assert pl7.distance(pl6) == 0
    assert pl7.distance(l1) == 0
    assert pl6.distance(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == \
        pl6.distance(Point3D(1, 3, 4)) == 4*sqrt(3)/3
    assert pl6.distance(Segment3D(Point3D(1, 3, 4), Point3D(0, 3, 7))) == \
        pl6.distance(Point3D(0, 3, 7)) == 2*sqrt(3)/3
    assert pl6.distance(Segment3D(Point3D(0, 3, 7), Point3D(-1, 3, 10))) == 0
    assert pl6.distance(Segment3D(Point3D(-1, 3, 10), Point3D(-2, 3, 13))) == 0
    assert pl6.distance(Segment3D(Point3D(-2, 3, 13), Point3D(-3, 3, 16))) == \
        pl6.distance(Point3D(-2, 3, 13)) == 2*sqrt(3)/3
    assert pl6.distance(Plane(Point3D(5, 5, 5), normal_vector=(8, 8, 8))) == sqrt(3)
    assert pl6.distance(Ray3D(Point3D(1, 3, 4), direction_ratio=[1, 0, -3])) == 4*sqrt(3)/3
    assert pl6.distance(Ray3D(Point3D(2, 3, 1), direction_ratio=[-1, 0, 3])) == 0


    assert pl6.angle_between(pl3) == pi/2
    assert pl6.angle_between(pl6) == 0
    assert pl6.angle_between(pl4) == 0
    assert pl7.angle_between(Line3D(Point3D(2, 3, 5), Point3D(2, 4, 6))) == \
        -asin(sqrt(3)/6)
    assert pl6.angle_between(Ray3D(Point3D(2, 4, 1), Point3D(6, 5, 3))) == \
        asin(sqrt(7)/3)
    assert pl7.angle_between(Segment3D(Point3D(5, 6, 1), Point3D(1, 2, 4))) == \
        asin(7*sqrt(246)/246)

    assert are_coplanar(l1, l2, l3) is False
    assert are_coplanar(l1) is False
    assert are_coplanar(Point3D(2, 7, 2), Point3D(0, 0, 2),
        Point3D(1, 1, 2), Point3D(1, 2, 2))
    assert are_coplanar(Plane(p1, p2, p3), Plane(p1, p3, p2))
    assert Plane.are_concurrent(pl3, pl4, pl5) is False
    assert Plane.are_concurrent(pl6) is False
    raises(ValueError, lambda: Plane.are_concurrent(Point3D(0, 0, 0)))
    raises(ValueError, lambda: Plane((1, 2, 3), normal_vector=(0, 0, 0)))

    assert pl3.parallel_plane(Point3D(1, 2, 5)) == Plane(Point3D(1, 2, 5), \
                                                      normal_vector=(1, -2, 1))

    # perpendicular_plane
    p = Plane((0, 0, 0), (1, 0, 0))
    # default
    assert p.perpendicular_plane() == Plane(Point3D(0, 0, 0), (0, 1, 0))
    # 1 pt
    assert p.perpendicular_plane(Point3D(1, 0, 1)) == \
        Plane(Point3D(1, 0, 1), (0, 1, 0))
    # pts as tuples
    assert p.perpendicular_plane((1, 0, 1), (1, 1, 1)) == \
        Plane(Point3D(1, 0, 1), (0, 0, -1))
    # more than two planes
    raises(ValueError, lambda: p.perpendicular_plane((1, 0, 1), (1, 1, 1), (1, 1, 0)))

    a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
    Z = (0, 0, 1)
    p = Plane(a, normal_vector=Z)
    # case 4
    assert p.perpendicular_plane(a, b) == Plane(a, (1, 0, 0))
    n = Point3D(*Z)
    # case 1
    assert p.perpendicular_plane(a, n) == Plane(a, (-1, 0, 0))
    # case 2
    assert Plane(a, normal_vector=b.args).perpendicular_plane(a, a + b) == \
        Plane(Point3D(0, 0, 0), (1, 0, 0))
    # case 1&3
    assert Plane(b, normal_vector=Z).perpendicular_plane(b, b + n) == \
        Plane(Point3D(0, 1, 0), (-1, 0, 0))
    # case 2&3
    assert Plane(b, normal_vector=b.args).perpendicular_plane(n, n + b) == \
        Plane(Point3D(0, 0, 1), (1, 0, 0))

    p = Plane(a, normal_vector=(0, 0, 1))
    assert p.perpendicular_plane() == Plane(a, normal_vector=(1, 0, 0))

    assert pl6.intersection(pl6) == [pl6]
    assert pl4.intersection(pl4.p1) == [pl4.p1]
    assert pl3.intersection(pl6) == [
        Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))]
    assert pl3.intersection(Line3D(Point3D(1,2,4), Point3D(4,4,2))) == [
        Point3D(2, Rational(8, 3), Rational(10, 3))]
    assert pl3.intersection(Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))
        ) == [Line3D(Point3D(-24, -12, 0), Point3D(-25, -13, -1))]
    assert pl6.intersection(Ray3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [
        Point3D(-1, 3, 10)]
    assert pl6.intersection(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == []
    assert pl7.intersection(Line(Point(2, 3), Point(4, 2))) == [
        Point3D(Rational(13, 2), Rational(3, 4), 0)]
    r = Ray(Point(2, 3), Point(4, 2))
    assert Plane((1,2,0), normal_vector=(0,0,1)).intersection(r) == [
        Ray3D(Point(2, 3), Point(4, 2))]
    assert pl9.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, 0))]
    assert pl10.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(0, 2, 1))]
    assert pl4.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
    assert pl11.intersection(pl8) == []
    assert pl9.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(12, 0, 1))]
    assert pl9.intersection(pl4) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, -12))]
    assert pl3.random_point() in pl3
    assert pl3.random_point(seed=1) in pl3

    # test geometrical entity using equals
    assert pl4.intersection(pl4.p1)[0].equals(pl4.p1)
    assert pl3.intersection(pl6)[0].equals(Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6)))
    pl8 = Plane((1, 2, 0), normal_vector=(0, 0, 1))
    assert pl8.intersection(Line3D(p1, (1, 12, 0)))[0].equals(Line((0, 0, 0), (0.1, 1.2, 0)))
    assert pl8.intersection(Ray3D(p1, (1, 12, 0)))[0].equals(Ray((0, 0, 0), (1, 12, 0)))
    assert pl8.intersection(Segment3D(p1, (21, 1, 0)))[0].equals(Segment3D(p1, (21, 1, 0)))
    assert pl8.intersection(Plane(p1, normal_vector=(0, 0, 112)))[0].equals(pl8)
    assert pl8.intersection(Plane(p1, normal_vector=(0, 12, 0)))[0].equals(
        Line3D(p1, direction_ratio=(112 * pi, 0, 0)))
    assert pl8.intersection(Plane(p1, normal_vector=(11, 0, 1)))[0].equals(
        Line3D(p1, direction_ratio=(0, -11, 0)))
    assert pl8.intersection(Plane(p1, normal_vector=(1, 0, 11)))[0].equals(
        Line3D(p1, direction_ratio=(0, 11, 0)))
    assert pl8.intersection(Plane(p1, normal_vector=(-1, -1, -11)))[0].equals(
        Line3D(p1, direction_ratio=(1, -1, 0)))
    assert pl3.random_point() in pl3
    assert len(pl8.intersection(Ray3D(Point3D(0, 2, 3), Point3D(1, 0, 3)))) == 0
    # check if two plane are equals
    assert pl6.intersection(pl6)[0].equals(pl6)
    assert pl8.equals(Plane(p1, normal_vector=(0, 12, 0))) is False
    assert pl8.equals(pl8)
    assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12)))
    assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12*sqrt(3))))
    assert pl8.equals(p1) is False

    # issue 8570
    l2 = Line3D(Point3D(Rational(50000004459633, 5000000000000),
                        Rational(-891926590718643, 1000000000000000),
                        Rational(231800966893633, 100000000000000)),
                Point3D(Rational(50000004459633, 50000000000000),
                        Rational(-222981647679771, 250000000000000),
                        Rational(231800966893633, 100000000000000)))

    p2 = Plane(Point3D(Rational(402775636372767, 100000000000000),
                       Rational(-97224357654973, 100000000000000),
                       Rational(216793600814789, 100000000000000)),
               (-S('9.00000087501922'), -S('4.81170658872543e-13'),
                S('0.0')))

    assert str([i.n(2) for i in p2.intersection(l2)]) == \
           '[Point3D(4.0, -0.89, 2.3)]'


def test_dimension_normalization():
    A = Plane(Point3D(1, 1, 2), normal_vector=(1, 1, 1))
    b = Point(1, 1)
    assert A.projection(b) == Point(Rational(5, 3), Rational(5, 3), Rational(2, 3))

    a, b = Point(0, 0), Point3D(0, 1)
    Z = (0, 0, 1)
    p = Plane(a, normal_vector=Z)
    assert p.perpendicular_plane(a, b) == Plane(Point3D(0, 0, 0), (1, 0, 0))
    assert Plane((1, 2, 1), (2, 1, 0), (3, 1, 2)
        ).intersection((2, 1)) == [Point(2, 1, 0)]


def test_parameter_value():
    t, u, v = symbols("t, u v")
    p1, p2, p3 = Point(0, 0, 0), Point(0, 0, 1), Point(0, 1, 0)
    p = Plane(p1, p2, p3)
    assert p.parameter_value((0, -3, 2), t) == {t: asin(2*sqrt(13)/13)}
    assert p.parameter_value((0, -3, 2), u, v) == {u: 3, v: 2}
    assert p.parameter_value(p1, t) == p1
    raises(ValueError, lambda: p.parameter_value((1, 0, 0), t))
    raises(ValueError, lambda: p.parameter_value(Line(Point(0, 0), Point(1, 1)), t))
    raises(ValueError, lambda: p.parameter_value((0, -3, 2), t, 1))