Spaces:
Sleeping
Sleeping
File size: 12,525 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
from sympy.core.numbers import (Rational, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, symbols)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (asin, cos, sin)
from sympy.geometry import Line, Point, Ray, Segment, Point3D, Line3D, Ray3D, Segment3D, Plane, Circle
from sympy.geometry.util import are_coplanar
from sympy.testing.pytest import raises
def test_plane():
x, y, z, u, v = symbols('x y z u v', real=True)
p1 = Point3D(0, 0, 0)
p2 = Point3D(1, 1, 1)
p3 = Point3D(1, 2, 3)
pl3 = Plane(p1, p2, p3)
pl4 = Plane(p1, normal_vector=(1, 1, 1))
pl4b = Plane(p1, p2)
pl5 = Plane(p3, normal_vector=(1, 2, 3))
pl6 = Plane(Point3D(2, 3, 7), normal_vector=(2, 2, 2))
pl7 = Plane(Point3D(1, -5, -6), normal_vector=(1, -2, 1))
pl8 = Plane(p1, normal_vector=(0, 0, 1))
pl9 = Plane(p1, normal_vector=(0, 12, 0))
pl10 = Plane(p1, normal_vector=(-2, 0, 0))
pl11 = Plane(p2, normal_vector=(0, 0, 1))
l1 = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
l2 = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
l3 = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
raises(ValueError, lambda: Plane(p1, p1, p1))
assert Plane(p1, p2, p3) != Plane(p1, p3, p2)
assert Plane(p1, p2, p3).is_coplanar(Plane(p1, p3, p2))
assert Plane(p1, p2, p3).is_coplanar(p1)
assert Plane(p1, p2, p3).is_coplanar(Circle(p1, 1)) is False
assert Plane(p1, normal_vector=(0, 0, 1)).is_coplanar(Circle(p1, 1))
assert pl3 == Plane(Point3D(0, 0, 0), normal_vector=(1, -2, 1))
assert pl3 != pl4
assert pl4 == pl4b
assert pl5 == Plane(Point3D(1, 2, 3), normal_vector=(1, 2, 3))
assert pl5.equation(x, y, z) == x + 2*y + 3*z - 14
assert pl3.equation(x, y, z) == x - 2*y + z
assert pl3.p1 == p1
assert pl4.p1 == p1
assert pl5.p1 == p3
assert pl4.normal_vector == (1, 1, 1)
assert pl5.normal_vector == (1, 2, 3)
assert p1 in pl3
assert p1 in pl4
assert p3 in pl5
assert pl3.projection(Point(0, 0)) == p1
p = pl3.projection(Point3D(1, 1, 0))
assert p == Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6))
assert p in pl3
l = pl3.projection_line(Line(Point(0, 0), Point(1, 1)))
assert l == Line3D(Point3D(0, 0, 0), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)))
assert l in pl3
# get a segment that does not intersect the plane which is also
# parallel to pl3's normal veector
t = Dummy()
r = pl3.random_point()
a = pl3.perpendicular_line(r).arbitrary_point(t)
s = Segment3D(a.subs(t, 1), a.subs(t, 2))
assert s.p1 not in pl3 and s.p2 not in pl3
assert pl3.projection_line(s).equals(r)
assert pl3.projection_line(Segment(Point(1, 0), Point(1, 1))) == \
Segment3D(Point3D(Rational(5, 6), Rational(1, 3), Rational(-1, 6)), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)))
assert pl6.projection_line(Ray(Point(1, 0), Point(1, 1))) == \
Ray3D(Point3D(Rational(14, 3), Rational(11, 3), Rational(11, 3)), Point3D(Rational(13, 3), Rational(13, 3), Rational(10, 3)))
assert pl3.perpendicular_line(r.args) == pl3.perpendicular_line(r)
assert pl3.is_parallel(pl6) is False
assert pl4.is_parallel(pl6)
assert pl3.is_parallel(Line(p1, p2))
assert pl6.is_parallel(l1) is False
assert pl3.is_perpendicular(pl6)
assert pl4.is_perpendicular(pl7)
assert pl6.is_perpendicular(pl7)
assert pl6.is_perpendicular(pl4) is False
assert pl6.is_perpendicular(l1) is False
assert pl6.is_perpendicular(Line((0, 0, 0), (1, 1, 1)))
assert pl6.is_perpendicular((1, 1)) is False
assert pl6.distance(pl6.arbitrary_point(u, v)) == 0
assert pl7.distance(pl7.arbitrary_point(u, v)) == 0
assert pl6.distance(pl6.arbitrary_point(t)) == 0
assert pl7.distance(pl7.arbitrary_point(t)) == 0
assert pl6.p1.distance(pl6.arbitrary_point(t)).simplify() == 1
assert pl7.p1.distance(pl7.arbitrary_point(t)).simplify() == 1
assert pl3.arbitrary_point(t) == Point3D(-sqrt(30)*sin(t)/30 + \
2*sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/15 + sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/6)
assert pl3.arbitrary_point(u, v) == Point3D(2*u - v, u + 2*v, 5*v)
assert pl7.distance(Point3D(1, 3, 5)) == 5*sqrt(6)/6
assert pl6.distance(Point3D(0, 0, 0)) == 4*sqrt(3)
assert pl6.distance(pl6.p1) == 0
assert pl7.distance(pl6) == 0
assert pl7.distance(l1) == 0
assert pl6.distance(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == \
pl6.distance(Point3D(1, 3, 4)) == 4*sqrt(3)/3
assert pl6.distance(Segment3D(Point3D(1, 3, 4), Point3D(0, 3, 7))) == \
pl6.distance(Point3D(0, 3, 7)) == 2*sqrt(3)/3
assert pl6.distance(Segment3D(Point3D(0, 3, 7), Point3D(-1, 3, 10))) == 0
assert pl6.distance(Segment3D(Point3D(-1, 3, 10), Point3D(-2, 3, 13))) == 0
assert pl6.distance(Segment3D(Point3D(-2, 3, 13), Point3D(-3, 3, 16))) == \
pl6.distance(Point3D(-2, 3, 13)) == 2*sqrt(3)/3
assert pl6.distance(Plane(Point3D(5, 5, 5), normal_vector=(8, 8, 8))) == sqrt(3)
assert pl6.distance(Ray3D(Point3D(1, 3, 4), direction_ratio=[1, 0, -3])) == 4*sqrt(3)/3
assert pl6.distance(Ray3D(Point3D(2, 3, 1), direction_ratio=[-1, 0, 3])) == 0
assert pl6.angle_between(pl3) == pi/2
assert pl6.angle_between(pl6) == 0
assert pl6.angle_between(pl4) == 0
assert pl7.angle_between(Line3D(Point3D(2, 3, 5), Point3D(2, 4, 6))) == \
-asin(sqrt(3)/6)
assert pl6.angle_between(Ray3D(Point3D(2, 4, 1), Point3D(6, 5, 3))) == \
asin(sqrt(7)/3)
assert pl7.angle_between(Segment3D(Point3D(5, 6, 1), Point3D(1, 2, 4))) == \
asin(7*sqrt(246)/246)
assert are_coplanar(l1, l2, l3) is False
assert are_coplanar(l1) is False
assert are_coplanar(Point3D(2, 7, 2), Point3D(0, 0, 2),
Point3D(1, 1, 2), Point3D(1, 2, 2))
assert are_coplanar(Plane(p1, p2, p3), Plane(p1, p3, p2))
assert Plane.are_concurrent(pl3, pl4, pl5) is False
assert Plane.are_concurrent(pl6) is False
raises(ValueError, lambda: Plane.are_concurrent(Point3D(0, 0, 0)))
raises(ValueError, lambda: Plane((1, 2, 3), normal_vector=(0, 0, 0)))
assert pl3.parallel_plane(Point3D(1, 2, 5)) == Plane(Point3D(1, 2, 5), \
normal_vector=(1, -2, 1))
# perpendicular_plane
p = Plane((0, 0, 0), (1, 0, 0))
# default
assert p.perpendicular_plane() == Plane(Point3D(0, 0, 0), (0, 1, 0))
# 1 pt
assert p.perpendicular_plane(Point3D(1, 0, 1)) == \
Plane(Point3D(1, 0, 1), (0, 1, 0))
# pts as tuples
assert p.perpendicular_plane((1, 0, 1), (1, 1, 1)) == \
Plane(Point3D(1, 0, 1), (0, 0, -1))
# more than two planes
raises(ValueError, lambda: p.perpendicular_plane((1, 0, 1), (1, 1, 1), (1, 1, 0)))
a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
Z = (0, 0, 1)
p = Plane(a, normal_vector=Z)
# case 4
assert p.perpendicular_plane(a, b) == Plane(a, (1, 0, 0))
n = Point3D(*Z)
# case 1
assert p.perpendicular_plane(a, n) == Plane(a, (-1, 0, 0))
# case 2
assert Plane(a, normal_vector=b.args).perpendicular_plane(a, a + b) == \
Plane(Point3D(0, 0, 0), (1, 0, 0))
# case 1&3
assert Plane(b, normal_vector=Z).perpendicular_plane(b, b + n) == \
Plane(Point3D(0, 1, 0), (-1, 0, 0))
# case 2&3
assert Plane(b, normal_vector=b.args).perpendicular_plane(n, n + b) == \
Plane(Point3D(0, 0, 1), (1, 0, 0))
p = Plane(a, normal_vector=(0, 0, 1))
assert p.perpendicular_plane() == Plane(a, normal_vector=(1, 0, 0))
assert pl6.intersection(pl6) == [pl6]
assert pl4.intersection(pl4.p1) == [pl4.p1]
assert pl3.intersection(pl6) == [
Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))]
assert pl3.intersection(Line3D(Point3D(1,2,4), Point3D(4,4,2))) == [
Point3D(2, Rational(8, 3), Rational(10, 3))]
assert pl3.intersection(Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))
) == [Line3D(Point3D(-24, -12, 0), Point3D(-25, -13, -1))]
assert pl6.intersection(Ray3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [
Point3D(-1, 3, 10)]
assert pl6.intersection(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == []
assert pl7.intersection(Line(Point(2, 3), Point(4, 2))) == [
Point3D(Rational(13, 2), Rational(3, 4), 0)]
r = Ray(Point(2, 3), Point(4, 2))
assert Plane((1,2,0), normal_vector=(0,0,1)).intersection(r) == [
Ray3D(Point(2, 3), Point(4, 2))]
assert pl9.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, 0))]
assert pl10.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(0, 2, 1))]
assert pl4.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
assert pl11.intersection(pl8) == []
assert pl9.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(12, 0, 1))]
assert pl9.intersection(pl4) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, -12))]
assert pl3.random_point() in pl3
assert pl3.random_point(seed=1) in pl3
# test geometrical entity using equals
assert pl4.intersection(pl4.p1)[0].equals(pl4.p1)
assert pl3.intersection(pl6)[0].equals(Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6)))
pl8 = Plane((1, 2, 0), normal_vector=(0, 0, 1))
assert pl8.intersection(Line3D(p1, (1, 12, 0)))[0].equals(Line((0, 0, 0), (0.1, 1.2, 0)))
assert pl8.intersection(Ray3D(p1, (1, 12, 0)))[0].equals(Ray((0, 0, 0), (1, 12, 0)))
assert pl8.intersection(Segment3D(p1, (21, 1, 0)))[0].equals(Segment3D(p1, (21, 1, 0)))
assert pl8.intersection(Plane(p1, normal_vector=(0, 0, 112)))[0].equals(pl8)
assert pl8.intersection(Plane(p1, normal_vector=(0, 12, 0)))[0].equals(
Line3D(p1, direction_ratio=(112 * pi, 0, 0)))
assert pl8.intersection(Plane(p1, normal_vector=(11, 0, 1)))[0].equals(
Line3D(p1, direction_ratio=(0, -11, 0)))
assert pl8.intersection(Plane(p1, normal_vector=(1, 0, 11)))[0].equals(
Line3D(p1, direction_ratio=(0, 11, 0)))
assert pl8.intersection(Plane(p1, normal_vector=(-1, -1, -11)))[0].equals(
Line3D(p1, direction_ratio=(1, -1, 0)))
assert pl3.random_point() in pl3
assert len(pl8.intersection(Ray3D(Point3D(0, 2, 3), Point3D(1, 0, 3)))) == 0
# check if two plane are equals
assert pl6.intersection(pl6)[0].equals(pl6)
assert pl8.equals(Plane(p1, normal_vector=(0, 12, 0))) is False
assert pl8.equals(pl8)
assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12)))
assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12*sqrt(3))))
assert pl8.equals(p1) is False
# issue 8570
l2 = Line3D(Point3D(Rational(50000004459633, 5000000000000),
Rational(-891926590718643, 1000000000000000),
Rational(231800966893633, 100000000000000)),
Point3D(Rational(50000004459633, 50000000000000),
Rational(-222981647679771, 250000000000000),
Rational(231800966893633, 100000000000000)))
p2 = Plane(Point3D(Rational(402775636372767, 100000000000000),
Rational(-97224357654973, 100000000000000),
Rational(216793600814789, 100000000000000)),
(-S('9.00000087501922'), -S('4.81170658872543e-13'),
S('0.0')))
assert str([i.n(2) for i in p2.intersection(l2)]) == \
'[Point3D(4.0, -0.89, 2.3)]'
def test_dimension_normalization():
A = Plane(Point3D(1, 1, 2), normal_vector=(1, 1, 1))
b = Point(1, 1)
assert A.projection(b) == Point(Rational(5, 3), Rational(5, 3), Rational(2, 3))
a, b = Point(0, 0), Point3D(0, 1)
Z = (0, 0, 1)
p = Plane(a, normal_vector=Z)
assert p.perpendicular_plane(a, b) == Plane(Point3D(0, 0, 0), (1, 0, 0))
assert Plane((1, 2, 1), (2, 1, 0), (3, 1, 2)
).intersection((2, 1)) == [Point(2, 1, 0)]
def test_parameter_value():
t, u, v = symbols("t, u v")
p1, p2, p3 = Point(0, 0, 0), Point(0, 0, 1), Point(0, 1, 0)
p = Plane(p1, p2, p3)
assert p.parameter_value((0, -3, 2), t) == {t: asin(2*sqrt(13)/13)}
assert p.parameter_value((0, -3, 2), u, v) == {u: 3, v: 2}
assert p.parameter_value(p1, t) == p1
raises(ValueError, lambda: p.parameter_value((1, 0, 0), t))
raises(ValueError, lambda: p.parameter_value(Line(Point(0, 0), Point(1, 1)), t))
raises(ValueError, lambda: p.parameter_value((0, -3, 2), t, 1))
|