File size: 36,652 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
"""Geometrical Points.

Contains
========
Point
Point2D
Point3D

When methods of Point require 1 or more points as arguments, they
can be passed as a sequence of coordinates or Points:

>>> from sympy import Point
>>> Point(1, 1).is_collinear((2, 2), (3, 4))
False
>>> Point(1, 1).is_collinear(Point(2, 2), Point(3, 4))
False

"""

import warnings

from sympy.core import S, sympify, Expr
from sympy.core.add import Add
from sympy.core.containers import Tuple
from sympy.core.numbers import Float
from sympy.core.parameters import global_parameters
from sympy.simplify import nsimplify, simplify
from sympy.geometry.exceptions import GeometryError
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.complexes import im
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.matrices import Matrix
from sympy.matrices.expressions import Transpose
from sympy.utilities.iterables import uniq, is_sequence
from sympy.utilities.misc import filldedent, func_name, Undecidable

from .entity import GeometryEntity

from mpmath.libmp.libmpf import prec_to_dps


class Point(GeometryEntity):
    """A point in a n-dimensional Euclidean space.

    Parameters
    ==========

    coords : sequence of n-coordinate values. In the special
        case where n=2 or 3, a Point2D or Point3D will be created
        as appropriate.
    evaluate : if `True` (default), all floats are turn into
        exact types.
    dim : number of coordinates the point should have.  If coordinates
        are unspecified, they are padded with zeros.
    on_morph : indicates what should happen when the number of
        coordinates of a point need to be changed by adding or
        removing zeros.  Possible values are `'warn'`, `'error'`, or
        `ignore` (default).  No warning or error is given when `*args`
        is empty and `dim` is given. An error is always raised when
        trying to remove nonzero coordinates.


    Attributes
    ==========

    length
    origin: A `Point` representing the origin of the
        appropriately-dimensioned space.

    Raises
    ======

    TypeError : When instantiating with anything but a Point or sequence
    ValueError : when instantiating with a sequence with length < 2 or
        when trying to reduce dimensions if keyword `on_morph='error'` is
        set.

    See Also
    ========

    sympy.geometry.line.Segment : Connects two Points

    Examples
    ========

    >>> from sympy import Point
    >>> from sympy.abc import x
    >>> Point(1, 2, 3)
    Point3D(1, 2, 3)
    >>> Point([1, 2])
    Point2D(1, 2)
    >>> Point(0, x)
    Point2D(0, x)
    >>> Point(dim=4)
    Point(0, 0, 0, 0)

    Floats are automatically converted to Rational unless the
    evaluate flag is False:

    >>> Point(0.5, 0.25)
    Point2D(1/2, 1/4)
    >>> Point(0.5, 0.25, evaluate=False)
    Point2D(0.5, 0.25)

    """

    is_Point = True

    def __new__(cls, *args, **kwargs):
        evaluate = kwargs.get('evaluate', global_parameters.evaluate)
        on_morph = kwargs.get('on_morph', 'ignore')

        # unpack into coords
        coords = args[0] if len(args) == 1 else args

        # check args and handle quickly handle Point instances
        if isinstance(coords, Point):
            # even if we're mutating the dimension of a point, we
            # don't reevaluate its coordinates
            evaluate = False
            if len(coords) == kwargs.get('dim', len(coords)):
                return coords

        if not is_sequence(coords):
            raise TypeError(filldedent('''
                Expecting sequence of coordinates, not `{}`'''
                                       .format(func_name(coords))))
        # A point where only `dim` is specified is initialized
        # to zeros.
        if len(coords) == 0 and kwargs.get('dim', None):
            coords = (S.Zero,)*kwargs.get('dim')

        coords = Tuple(*coords)
        dim = kwargs.get('dim', len(coords))

        if len(coords) < 2:
            raise ValueError(filldedent('''
                Point requires 2 or more coordinates or
                keyword `dim` > 1.'''))
        if len(coords) != dim:
            message = ("Dimension of {} needs to be changed "
                       "from {} to {}.").format(coords, len(coords), dim)
            if on_morph == 'ignore':
                pass
            elif on_morph == "error":
                raise ValueError(message)
            elif on_morph == 'warn':
                warnings.warn(message, stacklevel=2)
            else:
                raise ValueError(filldedent('''
                        on_morph value should be 'error',
                        'warn' or 'ignore'.'''))
        if any(coords[dim:]):
            raise ValueError('Nonzero coordinates cannot be removed.')
        if any(a.is_number and im(a).is_zero is False for a in coords):
            raise ValueError('Imaginary coordinates are not permitted.')
        if not all(isinstance(a, Expr) for a in coords):
            raise TypeError('Coordinates must be valid SymPy expressions.')

        # pad with zeros appropriately
        coords = coords[:dim] + (S.Zero,)*(dim - len(coords))

        # Turn any Floats into rationals and simplify
        # any expressions before we instantiate
        if evaluate:
            coords = coords.xreplace({
                f: simplify(nsimplify(f, rational=True))
                 for f in coords.atoms(Float)})

        # return 2D or 3D instances
        if len(coords) == 2:
            kwargs['_nocheck'] = True
            return Point2D(*coords, **kwargs)
        elif len(coords) == 3:
            kwargs['_nocheck'] = True
            return Point3D(*coords, **kwargs)

        # the general Point
        return GeometryEntity.__new__(cls, *coords)

    def __abs__(self):
        """Returns the distance between this point and the origin."""
        origin = Point([0]*len(self))
        return Point.distance(origin, self)

    def __add__(self, other):
        """Add other to self by incrementing self's coordinates by
        those of other.

        Notes
        =====

        >>> from sympy import Point

        When sequences of coordinates are passed to Point methods, they
        are converted to a Point internally. This __add__ method does
        not do that so if floating point values are used, a floating
        point result (in terms of SymPy Floats) will be returned.

        >>> Point(1, 2) + (.1, .2)
        Point2D(1.1, 2.2)

        If this is not desired, the `translate` method can be used or
        another Point can be added:

        >>> Point(1, 2).translate(.1, .2)
        Point2D(11/10, 11/5)
        >>> Point(1, 2) + Point(.1, .2)
        Point2D(11/10, 11/5)

        See Also
        ========

        sympy.geometry.point.Point.translate

        """
        try:
            s, o = Point._normalize_dimension(self, Point(other, evaluate=False))
        except TypeError:
            raise GeometryError("Don't know how to add {} and a Point object".format(other))

        coords = [simplify(a + b) for a, b in zip(s, o)]
        return Point(coords, evaluate=False)

    def __contains__(self, item):
        return item in self.args

    def __truediv__(self, divisor):
        """Divide point's coordinates by a factor."""
        divisor = sympify(divisor)
        coords = [simplify(x/divisor) for x in self.args]
        return Point(coords, evaluate=False)

    def __eq__(self, other):
        if not isinstance(other, Point) or len(self.args) != len(other.args):
            return False
        return self.args == other.args

    def __getitem__(self, key):
        return self.args[key]

    def __hash__(self):
        return hash(self.args)

    def __iter__(self):
        return self.args.__iter__()

    def __len__(self):
        return len(self.args)

    def __mul__(self, factor):
        """Multiply point's coordinates by a factor.

        Notes
        =====

        >>> from sympy import Point

        When multiplying a Point by a floating point number,
        the coordinates of the Point will be changed to Floats:

        >>> Point(1, 2)*0.1
        Point2D(0.1, 0.2)

        If this is not desired, the `scale` method can be used or
        else only multiply or divide by integers:

        >>> Point(1, 2).scale(1.1, 1.1)
        Point2D(11/10, 11/5)
        >>> Point(1, 2)*11/10
        Point2D(11/10, 11/5)

        See Also
        ========

        sympy.geometry.point.Point.scale
        """
        factor = sympify(factor)
        coords = [simplify(x*factor) for x in self.args]
        return Point(coords, evaluate=False)

    def __rmul__(self, factor):
        """Multiply a factor by point's coordinates."""
        return self.__mul__(factor)

    def __neg__(self):
        """Negate the point."""
        coords = [-x for x in self.args]
        return Point(coords, evaluate=False)

    def __sub__(self, other):
        """Subtract two points, or subtract a factor from this point's
        coordinates."""
        return self + [-x for x in other]

    @classmethod
    def _normalize_dimension(cls, *points, **kwargs):
        """Ensure that points have the same dimension.
        By default `on_morph='warn'` is passed to the
        `Point` constructor."""
        # if we have a built-in ambient dimension, use it
        dim = getattr(cls, '_ambient_dimension', None)
        # override if we specified it
        dim = kwargs.get('dim', dim)
        # if no dim was given, use the highest dimensional point
        if dim is None:
            dim = max(i.ambient_dimension for i in points)
        if all(i.ambient_dimension == dim for i in points):
            return list(points)
        kwargs['dim'] = dim
        kwargs['on_morph'] = kwargs.get('on_morph', 'warn')
        return [Point(i, **kwargs) for i in points]

    @staticmethod
    def affine_rank(*args):
        """The affine rank of a set of points is the dimension
        of the smallest affine space containing all the points.
        For example, if the points lie on a line (and are not all
        the same) their affine rank is 1.  If the points lie on a plane
        but not a line, their affine rank is 2.  By convention, the empty
        set has affine rank -1."""

        if len(args) == 0:
            return -1
        # make sure we're genuinely points
        # and translate every point to the origin
        points = Point._normalize_dimension(*[Point(i) for i in args])
        origin = points[0]
        points = [i - origin for i in points[1:]]

        m = Matrix([i.args for i in points])
        # XXX fragile -- what is a better way?
        return m.rank(iszerofunc = lambda x:
            abs(x.n(2)) < 1e-12 if x.is_number else x.is_zero)

    @property
    def ambient_dimension(self):
        """Number of components this point has."""
        return getattr(self, '_ambient_dimension', len(self))

    @classmethod
    def are_coplanar(cls, *points):
        """Return True if there exists a plane in which all the points
        lie.  A trivial True value is returned if `len(points) < 3` or
        all Points are 2-dimensional.

        Parameters
        ==========

        A set of points

        Raises
        ======

        ValueError : if less than 3 unique points are given

        Returns
        =======

        boolean

        Examples
        ========

        >>> from sympy import Point3D
        >>> p1 = Point3D(1, 2, 2)
        >>> p2 = Point3D(2, 7, 2)
        >>> p3 = Point3D(0, 0, 2)
        >>> p4 = Point3D(1, 1, 2)
        >>> Point3D.are_coplanar(p1, p2, p3, p4)
        True
        >>> p5 = Point3D(0, 1, 3)
        >>> Point3D.are_coplanar(p1, p2, p3, p5)
        False

        """
        if len(points) <= 1:
            return True

        points = cls._normalize_dimension(*[Point(i) for i in points])
        # quick exit if we are in 2D
        if points[0].ambient_dimension == 2:
            return True
        points = list(uniq(points))
        return Point.affine_rank(*points) <= 2

    def distance(self, other):
        """The Euclidean distance between self and another GeometricEntity.

        Returns
        =======

        distance : number or symbolic expression.

        Raises
        ======

        TypeError : if other is not recognized as a GeometricEntity or is a
                    GeometricEntity for which distance is not defined.

        See Also
        ========

        sympy.geometry.line.Segment.length
        sympy.geometry.point.Point.taxicab_distance

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2 = Point(1, 1), Point(4, 5)
        >>> l = Line((3, 1), (2, 2))
        >>> p1.distance(p2)
        5
        >>> p1.distance(l)
        sqrt(2)

        The computed distance may be symbolic, too:

        >>> from sympy.abc import x, y
        >>> p3 = Point(x, y)
        >>> p3.distance((0, 0))
        sqrt(x**2 + y**2)

        """
        if not isinstance(other, GeometryEntity):
            try:
                other = Point(other, dim=self.ambient_dimension)
            except TypeError:
                raise TypeError("not recognized as a GeometricEntity: %s" % type(other))
        if isinstance(other, Point):
            s, p = Point._normalize_dimension(self, Point(other))
            return sqrt(Add(*((a - b)**2 for a, b in zip(s, p))))
        distance = getattr(other, 'distance', None)
        if distance is None:
            raise TypeError("distance between Point and %s is not defined" % type(other))
        return distance(self)

    def dot(self, p):
        """Return dot product of self with another Point."""
        if not is_sequence(p):
            p = Point(p)  # raise the error via Point
        return Add(*(a*b for a, b in zip(self, p)))

    def equals(self, other):
        """Returns whether the coordinates of self and other agree."""
        # a point is equal to another point if all its components are equal
        if not isinstance(other, Point) or len(self) != len(other):
            return False
        return all(a.equals(b) for a, b in zip(self, other))

    def _eval_evalf(self, prec=15, **options):
        """Evaluate the coordinates of the point.

        This method will, where possible, create and return a new Point
        where the coordinates are evaluated as floating point numbers to
        the precision indicated (default=15).

        Parameters
        ==========

        prec : int

        Returns
        =======

        point : Point

        Examples
        ========

        >>> from sympy import Point, Rational
        >>> p1 = Point(Rational(1, 2), Rational(3, 2))
        >>> p1
        Point2D(1/2, 3/2)
        >>> p1.evalf()
        Point2D(0.5, 1.5)

        """
        dps = prec_to_dps(prec)
        coords = [x.evalf(n=dps, **options) for x in self.args]
        return Point(*coords, evaluate=False)

    def intersection(self, other):
        """The intersection between this point and another GeometryEntity.

        Parameters
        ==========

        other : GeometryEntity or sequence of coordinates

        Returns
        =======

        intersection : list of Points

        Notes
        =====

        The return value will either be an empty list if there is no
        intersection, otherwise it will contain this point.

        Examples
        ========

        >>> from sympy import Point
        >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 0)
        >>> p1.intersection(p2)
        []
        >>> p1.intersection(p3)
        [Point2D(0, 0)]

        """
        if not isinstance(other, GeometryEntity):
            other = Point(other)
        if isinstance(other, Point):
            if self == other:
                return [self]
            p1, p2 = Point._normalize_dimension(self, other)
            if p1 == self and p1 == p2:
                return [self]
            return []
        return other.intersection(self)

    def is_collinear(self, *args):
        """Returns `True` if there exists a line
        that contains `self` and `points`.  Returns `False` otherwise.
        A trivially True value is returned if no points are given.

        Parameters
        ==========

        args : sequence of Points

        Returns
        =======

        is_collinear : boolean

        See Also
        ========

        sympy.geometry.line.Line

        Examples
        ========

        >>> from sympy import Point
        >>> from sympy.abc import x
        >>> p1, p2 = Point(0, 0), Point(1, 1)
        >>> p3, p4, p5 = Point(2, 2), Point(x, x), Point(1, 2)
        >>> Point.is_collinear(p1, p2, p3, p4)
        True
        >>> Point.is_collinear(p1, p2, p3, p5)
        False

        """
        points = (self,) + args
        points = Point._normalize_dimension(*[Point(i) for i in points])
        points = list(uniq(points))
        return Point.affine_rank(*points) <= 1

    def is_concyclic(self, *args):
        """Do `self` and the given sequence of points lie in a circle?

        Returns True if the set of points are concyclic and
        False otherwise. A trivial value of True is returned
        if there are fewer than 2 other points.

        Parameters
        ==========

        args : sequence of Points

        Returns
        =======

        is_concyclic : boolean


        Examples
        ========

        >>> from sympy import Point

        Define 4 points that are on the unit circle:

        >>> p1, p2, p3, p4 = Point(1, 0), (0, 1), (-1, 0), (0, -1)

        >>> p1.is_concyclic() == p1.is_concyclic(p2, p3, p4) == True
        True

        Define a point not on that circle:

        >>> p = Point(1, 1)

        >>> p.is_concyclic(p1, p2, p3)
        False

        """
        points = (self,) + args
        points = Point._normalize_dimension(*[Point(i) for i in points])
        points = list(uniq(points))
        if not Point.affine_rank(*points) <= 2:
            return False
        origin = points[0]
        points = [p - origin for p in points]
        # points are concyclic if they are coplanar and
        # there is a point c so that ||p_i-c|| == ||p_j-c|| for all
        # i and j.  Rearranging this equation gives us the following
        # condition: the matrix `mat` must not a pivot in the last
        # column.
        mat = Matrix([list(i) + [i.dot(i)] for i in points])
        rref, pivots = mat.rref()
        if len(origin) not in pivots:
            return True
        return False

    @property
    def is_nonzero(self):
        """True if any coordinate is nonzero, False if every coordinate is zero,
        and None if it cannot be determined."""
        is_zero = self.is_zero
        if is_zero is None:
            return None
        return not is_zero

    def is_scalar_multiple(self, p):
        """Returns whether each coordinate of `self` is a scalar
        multiple of the corresponding coordinate in point p.
        """
        s, o = Point._normalize_dimension(self, Point(p))
        # 2d points happen a lot, so optimize this function call
        if s.ambient_dimension == 2:
            (x1, y1), (x2, y2) = s.args, o.args
            rv = (x1*y2 - x2*y1).equals(0)
            if rv is None:
                raise Undecidable(filldedent(
                    '''Cannot determine if %s is a scalar multiple of
                    %s''' % (s, o)))

        # if the vectors p1 and p2 are linearly dependent, then they must
        # be scalar multiples of each other
        m = Matrix([s.args, o.args])
        return m.rank() < 2

    @property
    def is_zero(self):
        """True if every coordinate is zero, False if any coordinate is not zero,
        and None if it cannot be determined."""
        nonzero = [x.is_nonzero for x in self.args]
        if any(nonzero):
            return False
        if any(x is None for x in nonzero):
            return None
        return True

    @property
    def length(self):
        """
        Treating a Point as a Line, this returns 0 for the length of a Point.

        Examples
        ========

        >>> from sympy import Point
        >>> p = Point(0, 1)
        >>> p.length
        0
        """
        return S.Zero

    def midpoint(self, p):
        """The midpoint between self and point p.

        Parameters
        ==========

        p : Point

        Returns
        =======

        midpoint : Point

        See Also
        ========

        sympy.geometry.line.Segment.midpoint

        Examples
        ========

        >>> from sympy import Point
        >>> p1, p2 = Point(1, 1), Point(13, 5)
        >>> p1.midpoint(p2)
        Point2D(7, 3)

        """
        s, p = Point._normalize_dimension(self, Point(p))
        return Point([simplify((a + b)*S.Half) for a, b in zip(s, p)])

    @property
    def origin(self):
        """A point of all zeros of the same ambient dimension
        as the current point"""
        return Point([0]*len(self), evaluate=False)

    @property
    def orthogonal_direction(self):
        """Returns a non-zero point that is orthogonal to the
        line containing `self` and the origin.

        Examples
        ========

        >>> from sympy import Line, Point
        >>> a = Point(1, 2, 3)
        >>> a.orthogonal_direction
        Point3D(-2, 1, 0)
        >>> b = _
        >>> Line(b, b.origin).is_perpendicular(Line(a, a.origin))
        True
        """
        dim = self.ambient_dimension
        # if a coordinate is zero, we can put a 1 there and zeros elsewhere
        if self[0].is_zero:
            return Point([1] + (dim - 1)*[0])
        if self[1].is_zero:
            return Point([0,1] + (dim - 2)*[0])
        # if the first two coordinates aren't zero, we can create a non-zero
        # orthogonal vector by swapping them, negating one, and padding with zeros
        return Point([-self[1], self[0]] + (dim - 2)*[0])

    @staticmethod
    def project(a, b):
        """Project the point `a` onto the line between the origin
        and point `b` along the normal direction.

        Parameters
        ==========

        a : Point
        b : Point

        Returns
        =======

        p : Point

        See Also
        ========

        sympy.geometry.line.LinearEntity.projection

        Examples
        ========

        >>> from sympy import Line, Point
        >>> a = Point(1, 2)
        >>> b = Point(2, 5)
        >>> z = a.origin
        >>> p = Point.project(a, b)
        >>> Line(p, a).is_perpendicular(Line(p, b))
        True
        >>> Point.is_collinear(z, p, b)
        True
        """
        a, b = Point._normalize_dimension(Point(a), Point(b))
        if b.is_zero:
            raise ValueError("Cannot project to the zero vector.")
        return b*(a.dot(b) / b.dot(b))

    def taxicab_distance(self, p):
        """The Taxicab Distance from self to point p.

        Returns the sum of the horizontal and vertical distances to point p.

        Parameters
        ==========

        p : Point

        Returns
        =======

        taxicab_distance : The sum of the horizontal
        and vertical distances to point p.

        See Also
        ========

        sympy.geometry.point.Point.distance

        Examples
        ========

        >>> from sympy import Point
        >>> p1, p2 = Point(1, 1), Point(4, 5)
        >>> p1.taxicab_distance(p2)
        7

        """
        s, p = Point._normalize_dimension(self, Point(p))
        return Add(*(abs(a - b) for a, b in zip(s, p)))

    def canberra_distance(self, p):
        """The Canberra Distance from self to point p.

        Returns the weighted sum of horizontal and vertical distances to
        point p.

        Parameters
        ==========

        p : Point

        Returns
        =======

        canberra_distance : The weighted sum of horizontal and vertical
        distances to point p. The weight used is the sum of absolute values
        of the coordinates.

        Examples
        ========

        >>> from sympy import Point
        >>> p1, p2 = Point(1, 1), Point(3, 3)
        >>> p1.canberra_distance(p2)
        1
        >>> p1, p2 = Point(0, 0), Point(3, 3)
        >>> p1.canberra_distance(p2)
        2

        Raises
        ======

        ValueError when both vectors are zero.

        See Also
        ========

        sympy.geometry.point.Point.distance

        """

        s, p = Point._normalize_dimension(self, Point(p))
        if self.is_zero and p.is_zero:
            raise ValueError("Cannot project to the zero vector.")
        return Add(*((abs(a - b)/(abs(a) + abs(b))) for a, b in zip(s, p)))

    @property
    def unit(self):
        """Return the Point that is in the same direction as `self`
        and a distance of 1 from the origin"""
        return self / abs(self)


class Point2D(Point):
    """A point in a 2-dimensional Euclidean space.

    Parameters
    ==========

    coords
        A sequence of 2 coordinate values.

    Attributes
    ==========

    x
    y
    length

    Raises
    ======

    TypeError
        When trying to add or subtract points with different dimensions.
        When trying to create a point with more than two dimensions.
        When `intersection` is called with object other than a Point.

    See Also
    ========

    sympy.geometry.line.Segment : Connects two Points

    Examples
    ========

    >>> from sympy import Point2D
    >>> from sympy.abc import x
    >>> Point2D(1, 2)
    Point2D(1, 2)
    >>> Point2D([1, 2])
    Point2D(1, 2)
    >>> Point2D(0, x)
    Point2D(0, x)

    Floats are automatically converted to Rational unless the
    evaluate flag is False:

    >>> Point2D(0.5, 0.25)
    Point2D(1/2, 1/4)
    >>> Point2D(0.5, 0.25, evaluate=False)
    Point2D(0.5, 0.25)

    """

    _ambient_dimension = 2

    def __new__(cls, *args, _nocheck=False, **kwargs):
        if not _nocheck:
            kwargs['dim'] = 2
            args = Point(*args, **kwargs)
        return GeometryEntity.__new__(cls, *args)

    def __contains__(self, item):
        return item == self

    @property
    def bounds(self):
        """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
        rectangle for the geometric figure.

        """

        return (self.x, self.y, self.x, self.y)

    def rotate(self, angle, pt=None):
        """Rotate ``angle`` radians counterclockwise about Point ``pt``.

        See Also
        ========

        translate, scale

        Examples
        ========

        >>> from sympy import Point2D, pi
        >>> t = Point2D(1, 0)
        >>> t.rotate(pi/2)
        Point2D(0, 1)
        >>> t.rotate(pi/2, (2, 0))
        Point2D(2, -1)

        """
        c = cos(angle)
        s = sin(angle)

        rv = self
        if pt is not None:
            pt = Point(pt, dim=2)
            rv -= pt
        x, y = rv.args
        rv = Point(c*x - s*y, s*x + c*y)
        if pt is not None:
            rv += pt
        return rv

    def scale(self, x=1, y=1, pt=None):
        """Scale the coordinates of the Point by multiplying by
        ``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
        and then adding ``pt`` back again (i.e. ``pt`` is the point of
        reference for the scaling).

        See Also
        ========

        rotate, translate

        Examples
        ========

        >>> from sympy import Point2D
        >>> t = Point2D(1, 1)
        >>> t.scale(2)
        Point2D(2, 1)
        >>> t.scale(2, 2)
        Point2D(2, 2)

        """
        if pt:
            pt = Point(pt, dim=2)
            return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
        return Point(self.x*x, self.y*y)

    def transform(self, matrix):
        """Return the point after applying the transformation described
        by the 3x3 Matrix, ``matrix``.

        See Also
        ========
        sympy.geometry.point.Point2D.rotate
        sympy.geometry.point.Point2D.scale
        sympy.geometry.point.Point2D.translate
        """
        if not (matrix.is_Matrix and matrix.shape == (3, 3)):
            raise ValueError("matrix must be a 3x3 matrix")
        x, y = self.args
        return Point(*(Matrix(1, 3, [x, y, 1])*matrix).tolist()[0][:2])

    def translate(self, x=0, y=0):
        """Shift the Point by adding x and y to the coordinates of the Point.

        See Also
        ========

        sympy.geometry.point.Point2D.rotate, scale

        Examples
        ========

        >>> from sympy import Point2D
        >>> t = Point2D(0, 1)
        >>> t.translate(2)
        Point2D(2, 1)
        >>> t.translate(2, 2)
        Point2D(2, 3)
        >>> t + Point2D(2, 2)
        Point2D(2, 3)

        """
        return Point(self.x + x, self.y + y)

    @property
    def coordinates(self):
        """
        Returns the two coordinates of the Point.

        Examples
        ========

        >>> from sympy import Point2D
        >>> p = Point2D(0, 1)
        >>> p.coordinates
        (0, 1)
        """
        return self.args

    @property
    def x(self):
        """
        Returns the X coordinate of the Point.

        Examples
        ========

        >>> from sympy import Point2D
        >>> p = Point2D(0, 1)
        >>> p.x
        0
        """
        return self.args[0]

    @property
    def y(self):
        """
        Returns the Y coordinate of the Point.

        Examples
        ========

        >>> from sympy import Point2D
        >>> p = Point2D(0, 1)
        >>> p.y
        1
        """
        return self.args[1]

class Point3D(Point):
    """A point in a 3-dimensional Euclidean space.

    Parameters
    ==========

    coords
        A sequence of 3 coordinate values.

    Attributes
    ==========

    x
    y
    z
    length

    Raises
    ======

    TypeError
        When trying to add or subtract points with different dimensions.
        When `intersection` is called with object other than a Point.

    Examples
    ========

    >>> from sympy import Point3D
    >>> from sympy.abc import x
    >>> Point3D(1, 2, 3)
    Point3D(1, 2, 3)
    >>> Point3D([1, 2, 3])
    Point3D(1, 2, 3)
    >>> Point3D(0, x, 3)
    Point3D(0, x, 3)

    Floats are automatically converted to Rational unless the
    evaluate flag is False:

    >>> Point3D(0.5, 0.25, 2)
    Point3D(1/2, 1/4, 2)
    >>> Point3D(0.5, 0.25, 3, evaluate=False)
    Point3D(0.5, 0.25, 3)

    """

    _ambient_dimension = 3

    def __new__(cls, *args, _nocheck=False, **kwargs):
        if not _nocheck:
            kwargs['dim'] = 3
            args = Point(*args, **kwargs)
        return GeometryEntity.__new__(cls, *args)

    def __contains__(self, item):
        return item == self

    @staticmethod
    def are_collinear(*points):
        """Is a sequence of points collinear?

        Test whether or not a set of points are collinear. Returns True if
        the set of points are collinear, or False otherwise.

        Parameters
        ==========

        points : sequence of Point

        Returns
        =======

        are_collinear : boolean

        See Also
        ========

        sympy.geometry.line.Line3D

        Examples
        ========

        >>> from sympy import Point3D
        >>> from sympy.abc import x
        >>> p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
        >>> p3, p4, p5 = Point3D(2, 2, 2), Point3D(x, x, x), Point3D(1, 2, 6)
        >>> Point3D.are_collinear(p1, p2, p3, p4)
        True
        >>> Point3D.are_collinear(p1, p2, p3, p5)
        False
        """
        return Point.is_collinear(*points)

    def direction_cosine(self, point):
        """
        Gives the direction cosine between 2 points

        Parameters
        ==========

        p : Point3D

        Returns
        =======

        list

        Examples
        ========

        >>> from sympy import Point3D
        >>> p1 = Point3D(1, 2, 3)
        >>> p1.direction_cosine(Point3D(2, 3, 5))
        [sqrt(6)/6, sqrt(6)/6, sqrt(6)/3]
        """
        a = self.direction_ratio(point)
        b = sqrt(Add(*(i**2 for i in a)))
        return [(point.x - self.x) / b,(point.y - self.y) / b,
                (point.z - self.z) / b]

    def direction_ratio(self, point):
        """
        Gives the direction ratio between 2 points

        Parameters
        ==========

        p : Point3D

        Returns
        =======

        list

        Examples
        ========

        >>> from sympy import Point3D
        >>> p1 = Point3D(1, 2, 3)
        >>> p1.direction_ratio(Point3D(2, 3, 5))
        [1, 1, 2]
        """
        return [(point.x - self.x),(point.y - self.y),(point.z - self.z)]

    def intersection(self, other):
        """The intersection between this point and another GeometryEntity.

        Parameters
        ==========

        other : GeometryEntity or sequence of coordinates

        Returns
        =======

        intersection : list of Points

        Notes
        =====

        The return value will either be an empty list if there is no
        intersection, otherwise it will contain this point.

        Examples
        ========

        >>> from sympy import Point3D
        >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 0, 0)
        >>> p1.intersection(p2)
        []
        >>> p1.intersection(p3)
        [Point3D(0, 0, 0)]

        """
        if not isinstance(other, GeometryEntity):
            other = Point(other, dim=3)
        if isinstance(other, Point3D):
            if self == other:
                return [self]
            return []
        return other.intersection(self)

    def scale(self, x=1, y=1, z=1, pt=None):
        """Scale the coordinates of the Point by multiplying by
        ``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
        and then adding ``pt`` back again (i.e. ``pt`` is the point of
        reference for the scaling).

        See Also
        ========

        translate

        Examples
        ========

        >>> from sympy import Point3D
        >>> t = Point3D(1, 1, 1)
        >>> t.scale(2)
        Point3D(2, 1, 1)
        >>> t.scale(2, 2)
        Point3D(2, 2, 1)

        """
        if pt:
            pt = Point3D(pt)
            return self.translate(*(-pt).args).scale(x, y, z).translate(*pt.args)
        return Point3D(self.x*x, self.y*y, self.z*z)

    def transform(self, matrix):
        """Return the point after applying the transformation described
        by the 4x4 Matrix, ``matrix``.

        See Also
        ========
        sympy.geometry.point.Point3D.scale
        sympy.geometry.point.Point3D.translate
        """
        if not (matrix.is_Matrix and matrix.shape == (4, 4)):
            raise ValueError("matrix must be a 4x4 matrix")
        x, y, z = self.args
        m = Transpose(matrix)
        return Point3D(*(Matrix(1, 4, [x, y, z, 1])*m).tolist()[0][:3])

    def translate(self, x=0, y=0, z=0):
        """Shift the Point by adding x and y to the coordinates of the Point.

        See Also
        ========

        scale

        Examples
        ========

        >>> from sympy import Point3D
        >>> t = Point3D(0, 1, 1)
        >>> t.translate(2)
        Point3D(2, 1, 1)
        >>> t.translate(2, 2)
        Point3D(2, 3, 1)
        >>> t + Point3D(2, 2, 2)
        Point3D(2, 3, 3)

        """
        return Point3D(self.x + x, self.y + y, self.z + z)

    @property
    def coordinates(self):
        """
        Returns the three coordinates of the Point.

        Examples
        ========

        >>> from sympy import Point3D
        >>> p = Point3D(0, 1, 2)
        >>> p.coordinates
        (0, 1, 2)
        """
        return self.args

    @property
    def x(self):
        """
        Returns the X coordinate of the Point.

        Examples
        ========

        >>> from sympy import Point3D
        >>> p = Point3D(0, 1, 3)
        >>> p.x
        0
        """
        return self.args[0]

    @property
    def y(self):
        """
        Returns the Y coordinate of the Point.

        Examples
        ========

        >>> from sympy import Point3D
        >>> p = Point3D(0, 1, 2)
        >>> p.y
        1
        """
        return self.args[1]

    @property
    def z(self):
        """
        Returns the Z coordinate of the Point.

        Examples
        ========

        >>> from sympy import Point3D
        >>> p = Point3D(0, 1, 1)
        >>> p.z
        1
        """
        return self.args[2]