File size: 80,402 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
"""Line-like geometrical entities.

Contains
========
LinearEntity
Line
Ray
Segment
LinearEntity2D
Line2D
Ray2D
Segment2D
LinearEntity3D
Line3D
Ray3D
Segment3D

"""

from sympy.core.containers import Tuple
from sympy.core.evalf import N
from sympy.core.expr import Expr
from sympy.core.numbers import Rational, oo, Float
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.sorting import ordered
from sympy.core.symbol import _symbol, Dummy, uniquely_named_symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (_pi_coeff, acos, tan, atan2)
from .entity import GeometryEntity, GeometrySet
from .exceptions import GeometryError
from .point import Point, Point3D
from .util import find, intersection
from sympy.logic.boolalg import And
from sympy.matrices import Matrix
from sympy.sets.sets import Intersection
from sympy.simplify.simplify import simplify
from sympy.solvers.solvers import solve
from sympy.solvers.solveset import linear_coeffs
from sympy.utilities.misc import Undecidable, filldedent


import random


t, u = [Dummy('line_dummy') for i in range(2)]


class LinearEntity(GeometrySet):
    """A base class for all linear entities (Line, Ray and Segment)
    in n-dimensional Euclidean space.

    Attributes
    ==========

    ambient_dimension
    direction
    length
    p1
    p2
    points

    Notes
    =====

    This is an abstract class and is not meant to be instantiated.

    See Also
    ========

    sympy.geometry.entity.GeometryEntity

    """
    def __new__(cls, p1, p2=None, **kwargs):
        p1, p2 = Point._normalize_dimension(p1, p2)
        if p1 == p2:
            # sometimes we return a single point if we are not given two unique
            # points. This is done in the specific subclass
            raise ValueError(
                "%s.__new__ requires two unique Points." % cls.__name__)
        if len(p1) != len(p2):
            raise ValueError(
                "%s.__new__ requires two Points of equal dimension." % cls.__name__)

        return GeometryEntity.__new__(cls, p1, p2, **kwargs)

    def __contains__(self, other):
        """Return a definitive answer or else raise an error if it cannot
        be determined that other is on the boundaries of self."""
        result = self.contains(other)

        if result is not None:
            return result
        else:
            raise Undecidable(
                "Cannot decide whether '%s' contains '%s'" % (self, other))

    def _span_test(self, other):
        """Test whether the point `other` lies in the positive span of `self`.
        A point x is 'in front' of a point y if x.dot(y) >= 0.  Return
        -1 if `other` is behind `self.p1`, 0 if `other` is `self.p1` and
        and 1 if `other` is in front of `self.p1`."""
        if self.p1 == other:
            return 0

        rel_pos = other - self.p1
        d = self.direction
        if d.dot(rel_pos) > 0:
            return 1
        return -1

    @property
    def ambient_dimension(self):
        """A property method that returns the dimension of LinearEntity
        object.

        Parameters
        ==========

        p1 : LinearEntity

        Returns
        =======

        dimension : integer

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2 = Point(0, 0), Point(1, 1)
        >>> l1 = Line(p1, p2)
        >>> l1.ambient_dimension
        2

        >>> from sympy import Point, Line
        >>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1)
        >>> l1 = Line(p1, p2)
        >>> l1.ambient_dimension
        3

        """
        return len(self.p1)

    def angle_between(l1, l2):
        """Return the non-reflex angle formed by rays emanating from
        the origin with directions the same as the direction vectors
        of the linear entities.

        Parameters
        ==========

        l1 : LinearEntity
        l2 : LinearEntity

        Returns
        =======

        angle : angle in radians

        Notes
        =====

        From the dot product of vectors v1 and v2 it is known that:

            ``dot(v1, v2) = |v1|*|v2|*cos(A)``

        where A is the angle formed between the two vectors. We can
        get the directional vectors of the two lines and readily
        find the angle between the two using the above formula.

        See Also
        ========

        is_perpendicular, Ray2D.closing_angle

        Examples
        ========

        >>> from sympy import Line
        >>> e = Line((0, 0), (1, 0))
        >>> ne = Line((0, 0), (1, 1))
        >>> sw = Line((1, 1), (0, 0))
        >>> ne.angle_between(e)
        pi/4
        >>> sw.angle_between(e)
        3*pi/4

        To obtain the non-obtuse angle at the intersection of lines, use
        the ``smallest_angle_between`` method:

        >>> sw.smallest_angle_between(e)
        pi/4

        >>> from sympy import Point3D, Line3D
        >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0)
        >>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3)
        >>> l1.angle_between(l2)
        acos(-sqrt(2)/3)
        >>> l1.smallest_angle_between(l2)
        acos(sqrt(2)/3)
        """
        if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
            raise TypeError('Must pass only LinearEntity objects')

        v1, v2 = l1.direction, l2.direction
        return acos(v1.dot(v2)/(abs(v1)*abs(v2)))

    def smallest_angle_between(l1, l2):
        """Return the smallest angle formed at the intersection of the
        lines containing the linear entities.

        Parameters
        ==========

        l1 : LinearEntity
        l2 : LinearEntity

        Returns
        =======

        angle : angle in radians

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2, p3 = Point(0, 0), Point(0, 4), Point(2, -2)
        >>> l1, l2 = Line(p1, p2), Line(p1, p3)
        >>> l1.smallest_angle_between(l2)
        pi/4

        See Also
        ========

        angle_between, is_perpendicular, Ray2D.closing_angle
        """
        if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
            raise TypeError('Must pass only LinearEntity objects')

        v1, v2 = l1.direction, l2.direction
        return acos(abs(v1.dot(v2))/(abs(v1)*abs(v2)))

    def arbitrary_point(self, parameter='t'):
        """A parameterized point on the Line.

        Parameters
        ==========

        parameter : str, optional
            The name of the parameter which will be used for the parametric
            point. The default value is 't'. When this parameter is 0, the
            first point used to define the line will be returned, and when
            it is 1 the second point will be returned.

        Returns
        =======

        point : Point

        Raises
        ======

        ValueError
            When ``parameter`` already appears in the Line's definition.

        See Also
        ========

        sympy.geometry.point.Point

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2 = Point(1, 0), Point(5, 3)
        >>> l1 = Line(p1, p2)
        >>> l1.arbitrary_point()
        Point2D(4*t + 1, 3*t)
        >>> from sympy import Point3D, Line3D
        >>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 1)
        >>> l1 = Line3D(p1, p2)
        >>> l1.arbitrary_point()
        Point3D(4*t + 1, 3*t, t)

        """
        t = _symbol(parameter, real=True)
        if t.name in (f.name for f in self.free_symbols):
            raise ValueError(filldedent('''
                Symbol %s already appears in object
                and cannot be used as a parameter.
                ''' % t.name))
        # multiply on the right so the variable gets
        # combined with the coordinates of the point
        return self.p1 + (self.p2 - self.p1)*t

    @staticmethod
    def are_concurrent(*lines):
        """Is a sequence of linear entities concurrent?

        Two or more linear entities are concurrent if they all
        intersect at a single point.

        Parameters
        ==========

        lines
            A sequence of linear entities.

        Returns
        =======

        True : if the set of linear entities intersect in one point
        False : otherwise.

        See Also
        ========

        sympy.geometry.util.intersection

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2 = Point(0, 0), Point(3, 5)
        >>> p3, p4 = Point(-2, -2), Point(0, 2)
        >>> l1, l2, l3 = Line(p1, p2), Line(p1, p3), Line(p1, p4)
        >>> Line.are_concurrent(l1, l2, l3)
        True
        >>> l4 = Line(p2, p3)
        >>> Line.are_concurrent(l2, l3, l4)
        False
        >>> from sympy import Point3D, Line3D
        >>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 5, 2)
        >>> p3, p4 = Point3D(-2, -2, -2), Point3D(0, 2, 1)
        >>> l1, l2, l3 = Line3D(p1, p2), Line3D(p1, p3), Line3D(p1, p4)
        >>> Line3D.are_concurrent(l1, l2, l3)
        True
        >>> l4 = Line3D(p2, p3)
        >>> Line3D.are_concurrent(l2, l3, l4)
        False

        """
        common_points = Intersection(*lines)
        if common_points.is_FiniteSet and len(common_points) == 1:
            return True
        return False

    def contains(self, other):
        """Subclasses should implement this method and should return
            True if other is on the boundaries of self;
            False if not on the boundaries of self;
            None if a determination cannot be made."""
        raise NotImplementedError()

    @property
    def direction(self):
        """The direction vector of the LinearEntity.

        Returns
        =======

        p : a Point; the ray from the origin to this point is the
            direction of `self`

        Examples
        ========

        >>> from sympy import Line
        >>> a, b = (1, 1), (1, 3)
        >>> Line(a, b).direction
        Point2D(0, 2)
        >>> Line(b, a).direction
        Point2D(0, -2)

        This can be reported so the distance from the origin is 1:

        >>> Line(b, a).direction.unit
        Point2D(0, -1)

        See Also
        ========

        sympy.geometry.point.Point.unit

        """
        return self.p2 - self.p1

    def intersection(self, other):
        """The intersection with another geometrical entity.

        Parameters
        ==========

        o : Point or LinearEntity

        Returns
        =======

        intersection : list of geometrical entities

        See Also
        ========

        sympy.geometry.point.Point

        Examples
        ========

        >>> from sympy import Point, Line, Segment
        >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(7, 7)
        >>> l1 = Line(p1, p2)
        >>> l1.intersection(p3)
        [Point2D(7, 7)]
        >>> p4, p5 = Point(5, 0), Point(0, 3)
        >>> l2 = Line(p4, p5)
        >>> l1.intersection(l2)
        [Point2D(15/8, 15/8)]
        >>> p6, p7 = Point(0, 5), Point(2, 6)
        >>> s1 = Segment(p6, p7)
        >>> l1.intersection(s1)
        []
        >>> from sympy import Point3D, Line3D, Segment3D
        >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(7, 7, 7)
        >>> l1 = Line3D(p1, p2)
        >>> l1.intersection(p3)
        [Point3D(7, 7, 7)]
        >>> l1 = Line3D(Point3D(4,19,12), Point3D(5,25,17))
        >>> l2 = Line3D(Point3D(-3, -15, -19), direction_ratio=[2,8,8])
        >>> l1.intersection(l2)
        [Point3D(1, 1, -3)]
        >>> p6, p7 = Point3D(0, 5, 2), Point3D(2, 6, 3)
        >>> s1 = Segment3D(p6, p7)
        >>> l1.intersection(s1)
        []

        """
        def intersect_parallel_rays(ray1, ray2):
            if ray1.direction.dot(ray2.direction) > 0:
                # rays point in the same direction
                # so return the one that is "in front"
                return [ray2] if ray1._span_test(ray2.p1) >= 0 else [ray1]
            else:
                # rays point in opposite directions
                st = ray1._span_test(ray2.p1)
                if st < 0:
                    return []
                elif st == 0:
                    return [ray2.p1]
                return [Segment(ray1.p1, ray2.p1)]

        def intersect_parallel_ray_and_segment(ray, seg):
            st1, st2 = ray._span_test(seg.p1), ray._span_test(seg.p2)
            if st1 < 0 and st2 < 0:
                return []
            elif st1 >= 0 and st2 >= 0:
                return [seg]
            elif st1 >= 0:  # st2 < 0:
                return [Segment(ray.p1, seg.p1)]
            else:  # st1 < 0 and st2 >= 0:
                return [Segment(ray.p1, seg.p2)]

        def intersect_parallel_segments(seg1, seg2):
            if seg1.contains(seg2):
                return [seg2]
            if seg2.contains(seg1):
                return [seg1]

            # direct the segments so they're oriented the same way
            if seg1.direction.dot(seg2.direction) < 0:
                seg2 = Segment(seg2.p2, seg2.p1)
            # order the segments so seg1 is "behind" seg2
            if seg1._span_test(seg2.p1) < 0:
                seg1, seg2 = seg2, seg1
            if seg2._span_test(seg1.p2) < 0:
                return []
            return [Segment(seg2.p1, seg1.p2)]

        if not isinstance(other, GeometryEntity):
            other = Point(other, dim=self.ambient_dimension)
        if other.is_Point:
            if self.contains(other):
                return [other]
            else:
                return []
        elif isinstance(other, LinearEntity):
            # break into cases based on whether
            # the lines are parallel, non-parallel intersecting, or skew
            pts = Point._normalize_dimension(self.p1, self.p2, other.p1, other.p2)
            rank = Point.affine_rank(*pts)

            if rank == 1:
                # we're collinear
                if isinstance(self, Line):
                    return [other]
                if isinstance(other, Line):
                    return [self]

                if isinstance(self, Ray) and isinstance(other, Ray):
                    return intersect_parallel_rays(self, other)
                if isinstance(self, Ray) and isinstance(other, Segment):
                    return intersect_parallel_ray_and_segment(self, other)
                if isinstance(self, Segment) and isinstance(other, Ray):
                    return intersect_parallel_ray_and_segment(other, self)
                if isinstance(self, Segment) and isinstance(other, Segment):
                    return intersect_parallel_segments(self, other)
            elif rank == 2:
                # we're in the same plane
                l1 = Line(*pts[:2])
                l2 = Line(*pts[2:])

                # check to see if we're parallel.  If we are, we can't
                # be intersecting, since the collinear case was already
                # handled
                if l1.direction.is_scalar_multiple(l2.direction):
                    return []

                # find the intersection as if everything were lines
                # by solving the equation t*d + p1 == s*d' + p1'
                m = Matrix([l1.direction, -l2.direction]).transpose()
                v = Matrix([l2.p1 - l1.p1]).transpose()

                # we cannot use m.solve(v) because that only works for square matrices
                m_rref, pivots = m.col_insert(2, v).rref(simplify=True)
                # rank == 2 ensures we have 2 pivots, but let's check anyway
                if len(pivots) != 2:
                    raise GeometryError("Failed when solving Mx=b when M={} and b={}".format(m, v))
                coeff = m_rref[0, 2]
                line_intersection = l1.direction*coeff + self.p1

                # if both are lines, skip a containment check
                if isinstance(self, Line) and isinstance(other, Line):
                    return [line_intersection]

                if ((isinstance(self, Line) or
                     self.contains(line_intersection)) and
                        other.contains(line_intersection)):
                    return [line_intersection]
                if not self.atoms(Float) and not other.atoms(Float):
                    # if it can fail when there are no Floats then
                    # maybe the following parametric check should be
                    # done
                    return []
                # floats may fail exact containment so check that the
                # arbitrary points, when  equal, both give a
                # non-negative parameter when the arbitrary point
                # coordinates are equated
                tu = solve(self.arbitrary_point(t) - other.arbitrary_point(u),
                    t, u, dict=True)[0]
                def ok(p, l):
                    if isinstance(l, Line):
                        # p > -oo
                        return True
                    if isinstance(l, Ray):
                        # p >= 0
                        return p.is_nonnegative
                    if isinstance(l, Segment):
                        # 0 <= p <= 1
                        return p.is_nonnegative and (1 - p).is_nonnegative
                    raise ValueError("unexpected line type")
                if ok(tu[t], self) and ok(tu[u], other):
                    return [line_intersection]
                return []
            else:
                # we're skew
                return []

        return other.intersection(self)

    def is_parallel(l1, l2):
        """Are two linear entities parallel?

        Parameters
        ==========

        l1 : LinearEntity
        l2 : LinearEntity

        Returns
        =======

        True : if l1 and l2 are parallel,
        False : otherwise.

        See Also
        ========

        coefficients

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2 = Point(0, 0), Point(1, 1)
        >>> p3, p4 = Point(3, 4), Point(6, 7)
        >>> l1, l2 = Line(p1, p2), Line(p3, p4)
        >>> Line.is_parallel(l1, l2)
        True
        >>> p5 = Point(6, 6)
        >>> l3 = Line(p3, p5)
        >>> Line.is_parallel(l1, l3)
        False
        >>> from sympy import Point3D, Line3D
        >>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 4, 5)
        >>> p3, p4 = Point3D(2, 1, 1), Point3D(8, 9, 11)
        >>> l1, l2 = Line3D(p1, p2), Line3D(p3, p4)
        >>> Line3D.is_parallel(l1, l2)
        True
        >>> p5 = Point3D(6, 6, 6)
        >>> l3 = Line3D(p3, p5)
        >>> Line3D.is_parallel(l1, l3)
        False

        """
        if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
            raise TypeError('Must pass only LinearEntity objects')

        return l1.direction.is_scalar_multiple(l2.direction)

    def is_perpendicular(l1, l2):
        """Are two linear entities perpendicular?

        Parameters
        ==========

        l1 : LinearEntity
        l2 : LinearEntity

        Returns
        =======

        True : if l1 and l2 are perpendicular,
        False : otherwise.

        See Also
        ========

        coefficients

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(-1, 1)
        >>> l1, l2 = Line(p1, p2), Line(p1, p3)
        >>> l1.is_perpendicular(l2)
        True
        >>> p4 = Point(5, 3)
        >>> l3 = Line(p1, p4)
        >>> l1.is_perpendicular(l3)
        False
        >>> from sympy import Point3D, Line3D
        >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0)
        >>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3)
        >>> l1.is_perpendicular(l2)
        False
        >>> p4 = Point3D(5, 3, 7)
        >>> l3 = Line3D(p1, p4)
        >>> l1.is_perpendicular(l3)
        False

        """
        if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
            raise TypeError('Must pass only LinearEntity objects')

        return S.Zero.equals(l1.direction.dot(l2.direction))

    def is_similar(self, other):
        """
        Return True if self and other are contained in the same line.

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2, p3 = Point(0, 1), Point(3, 4), Point(2, 3)
        >>> l1 = Line(p1, p2)
        >>> l2 = Line(p1, p3)
        >>> l1.is_similar(l2)
        True
        """
        l = Line(self.p1, self.p2)
        return l.contains(other)

    @property
    def length(self):
        """
        The length of the line.

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2 = Point(0, 0), Point(3, 5)
        >>> l1 = Line(p1, p2)
        >>> l1.length
        oo
        """
        return S.Infinity

    @property
    def p1(self):
        """The first defining point of a linear entity.

        See Also
        ========

        sympy.geometry.point.Point

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2 = Point(0, 0), Point(5, 3)
        >>> l = Line(p1, p2)
        >>> l.p1
        Point2D(0, 0)

        """
        return self.args[0]

    @property
    def p2(self):
        """The second defining point of a linear entity.

        See Also
        ========

        sympy.geometry.point.Point

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2 = Point(0, 0), Point(5, 3)
        >>> l = Line(p1, p2)
        >>> l.p2
        Point2D(5, 3)

        """
        return self.args[1]

    def parallel_line(self, p):
        """Create a new Line parallel to this linear entity which passes
        through the point `p`.

        Parameters
        ==========

        p : Point

        Returns
        =======

        line : Line

        See Also
        ========

        is_parallel

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
        >>> l1 = Line(p1, p2)
        >>> l2 = l1.parallel_line(p3)
        >>> p3 in l2
        True
        >>> l1.is_parallel(l2)
        True
        >>> from sympy import Point3D, Line3D
        >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0)
        >>> l1 = Line3D(p1, p2)
        >>> l2 = l1.parallel_line(p3)
        >>> p3 in l2
        True
        >>> l1.is_parallel(l2)
        True

        """
        p = Point(p, dim=self.ambient_dimension)
        return Line(p, p + self.direction)

    def perpendicular_line(self, p):
        """Create a new Line perpendicular to this linear entity which passes
        through the point `p`.

        Parameters
        ==========

        p : Point

        Returns
        =======

        line : Line

        See Also
        ========

        sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment

        Examples
        ========

        >>> from sympy import Point3D, Line3D
        >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0)
        >>> L = Line3D(p1, p2)
        >>> P = L.perpendicular_line(p3); P
        Line3D(Point3D(-2, 2, 0), Point3D(4/29, 6/29, 8/29))
        >>> L.is_perpendicular(P)
        True

        In 3D the, the first point used to define the line is the point
        through which the perpendicular was required to pass; the
        second point is (arbitrarily) contained in the given line:

        >>> P.p2 in L
        True
        """
        p = Point(p, dim=self.ambient_dimension)
        if p in self:
            p = p + self.direction.orthogonal_direction
        return Line(p, self.projection(p))

    def perpendicular_segment(self, p):
        """Create a perpendicular line segment from `p` to this line.

        The endpoints of the segment are ``p`` and the closest point in
        the line containing self. (If self is not a line, the point might
        not be in self.)

        Parameters
        ==========

        p : Point

        Returns
        =======

        segment : Segment

        Notes
        =====

        Returns `p` itself if `p` is on this linear entity.

        See Also
        ========

        perpendicular_line

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 2)
        >>> l1 = Line(p1, p2)
        >>> s1 = l1.perpendicular_segment(p3)
        >>> l1.is_perpendicular(s1)
        True
        >>> p3 in s1
        True
        >>> l1.perpendicular_segment(Point(4, 0))
        Segment2D(Point2D(4, 0), Point2D(2, 2))
        >>> from sympy import Point3D, Line3D
        >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 2, 0)
        >>> l1 = Line3D(p1, p2)
        >>> s1 = l1.perpendicular_segment(p3)
        >>> l1.is_perpendicular(s1)
        True
        >>> p3 in s1
        True
        >>> l1.perpendicular_segment(Point3D(4, 0, 0))
        Segment3D(Point3D(4, 0, 0), Point3D(4/3, 4/3, 4/3))

        """
        p = Point(p, dim=self.ambient_dimension)
        if p in self:
            return p
        l = self.perpendicular_line(p)
        # The intersection should be unique, so unpack the singleton
        p2, = Intersection(Line(self.p1, self.p2), l)

        return Segment(p, p2)

    @property
    def points(self):
        """The two points used to define this linear entity.

        Returns
        =======

        points : tuple of Points

        See Also
        ========

        sympy.geometry.point.Point

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2 = Point(0, 0), Point(5, 11)
        >>> l1 = Line(p1, p2)
        >>> l1.points
        (Point2D(0, 0), Point2D(5, 11))

        """
        return (self.p1, self.p2)

    def projection(self, other):
        """Project a point, line, ray, or segment onto this linear entity.

        Parameters
        ==========

        other : Point or LinearEntity (Line, Ray, Segment)

        Returns
        =======

        projection : Point or LinearEntity (Line, Ray, Segment)
            The return type matches the type of the parameter ``other``.

        Raises
        ======

        GeometryError
            When method is unable to perform projection.

        Notes
        =====

        A projection involves taking the two points that define
        the linear entity and projecting those points onto a
        Line and then reforming the linear entity using these
        projections.
        A point P is projected onto a line L by finding the point
        on L that is closest to P. This point is the intersection
        of L and the line perpendicular to L that passes through P.

        See Also
        ========

        sympy.geometry.point.Point, perpendicular_line

        Examples
        ========

        >>> from sympy import Point, Line, Segment, Rational
        >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(Rational(1, 2), 0)
        >>> l1 = Line(p1, p2)
        >>> l1.projection(p3)
        Point2D(1/4, 1/4)
        >>> p4, p5 = Point(10, 0), Point(12, 1)
        >>> s1 = Segment(p4, p5)
        >>> l1.projection(s1)
        Segment2D(Point2D(5, 5), Point2D(13/2, 13/2))
        >>> p1, p2, p3 = Point(0, 0, 1), Point(1, 1, 2), Point(2, 0, 1)
        >>> l1 = Line(p1, p2)
        >>> l1.projection(p3)
        Point3D(2/3, 2/3, 5/3)
        >>> p4, p5 = Point(10, 0, 1), Point(12, 1, 3)
        >>> s1 = Segment(p4, p5)
        >>> l1.projection(s1)
        Segment3D(Point3D(10/3, 10/3, 13/3), Point3D(5, 5, 6))

        """
        if not isinstance(other, GeometryEntity):
            other = Point(other, dim=self.ambient_dimension)

        def proj_point(p):
            return Point.project(p - self.p1, self.direction) + self.p1

        if isinstance(other, Point):
            return proj_point(other)
        elif isinstance(other, LinearEntity):
            p1, p2 = proj_point(other.p1), proj_point(other.p2)
            # test to see if we're degenerate
            if p1 == p2:
                return p1
            projected = other.__class__(p1, p2)
            projected = Intersection(self, projected)
            if projected.is_empty:
                return projected
            # if we happen to have intersected in only a point, return that
            if projected.is_FiniteSet and len(projected) == 1:
                # projected is a set of size 1, so unpack it in `a`
                a, = projected
                return a
            # order args so projection is in the same direction as self
            if self.direction.dot(projected.direction) < 0:
                p1, p2 = projected.args
                projected = projected.func(p2, p1)
            return projected

        raise GeometryError(
            "Do not know how to project %s onto %s" % (other, self))

    def random_point(self, seed=None):
        """A random point on a LinearEntity.

        Returns
        =======

        point : Point

        See Also
        ========

        sympy.geometry.point.Point

        Examples
        ========

        >>> from sympy import Point, Line, Ray, Segment
        >>> p1, p2 = Point(0, 0), Point(5, 3)
        >>> line = Line(p1, p2)
        >>> r = line.random_point(seed=42)  # seed value is optional
        >>> r.n(3)
        Point2D(-0.72, -0.432)
        >>> r in line
        True
        >>> Ray(p1, p2).random_point(seed=42).n(3)
        Point2D(0.72, 0.432)
        >>> Segment(p1, p2).random_point(seed=42).n(3)
        Point2D(3.2, 1.92)

        """
        if seed is not None:
            rng = random.Random(seed)
        else:
            rng = random
        pt = self.arbitrary_point(t)
        if isinstance(self, Ray):
            v = abs(rng.gauss(0, 1))
        elif isinstance(self, Segment):
            v = rng.random()
        elif isinstance(self, Line):
            v = rng.gauss(0, 1)
        else:
            raise NotImplementedError('unhandled line type')
        return pt.subs(t, Rational(v))

    def bisectors(self, other):
        """Returns the perpendicular lines which pass through the intersections
        of self and other that are in the same plane.

        Parameters
        ==========

        line : Line3D

        Returns
        =======

        list: two Line instances

        Examples
        ========

        >>> from sympy import Point3D, Line3D
        >>> r1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
        >>> r2 = Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))
        >>> r1.bisectors(r2)
        [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 0)), Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]

        """
        if not isinstance(other, LinearEntity):
            raise GeometryError("Expecting LinearEntity, not %s" % other)

        l1, l2 = self, other

        # make sure dimensions match or else a warning will rise from
        # intersection calculation
        if l1.p1.ambient_dimension != l2.p1.ambient_dimension:
            if isinstance(l1, Line2D):
                l1, l2 = l2, l1
            _, p1 = Point._normalize_dimension(l1.p1, l2.p1, on_morph='ignore')
            _, p2 = Point._normalize_dimension(l1.p2, l2.p2, on_morph='ignore')
            l2 = Line(p1, p2)

        point = intersection(l1, l2)

        # Three cases: Lines may intersect in a point, may be equal or may not intersect.
        if not point:
            raise GeometryError("The lines do not intersect")
        else:
            pt = point[0]
            if isinstance(pt, Line):
                # Intersection is a line because both lines are coincident
                return [self]


        d1 = l1.direction.unit
        d2 = l2.direction.unit

        bis1 = Line(pt, pt + d1 + d2)
        bis2 = Line(pt, pt + d1 - d2)

        return [bis1, bis2]


class Line(LinearEntity):
    """An infinite line in space.

    A 2D line is declared with two distinct points, point and slope, or
    an equation. A 3D line may be defined with a point and a direction ratio.

    Parameters
    ==========

    p1 : Point
    p2 : Point
    slope : SymPy expression
    direction_ratio : list
    equation : equation of a line

    Notes
    =====

    `Line` will automatically subclass to `Line2D` or `Line3D` based
    on the dimension of `p1`.  The `slope` argument is only relevant
    for `Line2D` and the `direction_ratio` argument is only relevant
    for `Line3D`.

    The order of the points will define the direction of the line
    which is used when calculating the angle between lines.

    See Also
    ========

    sympy.geometry.point.Point
    sympy.geometry.line.Line2D
    sympy.geometry.line.Line3D

    Examples
    ========

    >>> from sympy import Line, Segment, Point, Eq
    >>> from sympy.abc import x, y, a, b

    >>> L = Line(Point(2,3), Point(3,5))
    >>> L
    Line2D(Point2D(2, 3), Point2D(3, 5))
    >>> L.points
    (Point2D(2, 3), Point2D(3, 5))
    >>> L.equation()
    -2*x + y + 1
    >>> L.coefficients
    (-2, 1, 1)

    Instantiate with keyword ``slope``:

    >>> Line(Point(0, 0), slope=0)
    Line2D(Point2D(0, 0), Point2D(1, 0))

    Instantiate with another linear object

    >>> s = Segment((0, 0), (0, 1))
    >>> Line(s).equation()
    x

    The line corresponding to an equation in the for `ax + by + c = 0`,
    can be entered:

    >>> Line(3*x + y + 18)
    Line2D(Point2D(0, -18), Point2D(1, -21))

    If `x` or `y` has a different name, then they can be specified, too,
    as a string (to match the name) or symbol:

    >>> Line(Eq(3*a + b, -18), x='a', y=b)
    Line2D(Point2D(0, -18), Point2D(1, -21))
    """
    def __new__(cls, *args, **kwargs):
        if len(args) == 1 and isinstance(args[0], (Expr, Eq)):
            missing = uniquely_named_symbol('?', args)
            if not kwargs:
                x = 'x'
                y = 'y'
            else:
                x = kwargs.pop('x', missing)
                y = kwargs.pop('y', missing)
            if kwargs:
                raise ValueError('expecting only x and y as keywords')

            equation = args[0]
            if isinstance(equation, Eq):
                equation = equation.lhs - equation.rhs

            def find_or_missing(x):
                try:
                    return find(x, equation)
                except ValueError:
                    return missing
            x = find_or_missing(x)
            y = find_or_missing(y)

            a, b, c = linear_coeffs(equation, x, y)

            if b:
                return Line((0, -c/b), slope=-a/b)
            if a:
                return Line((-c/a, 0), slope=oo)

            raise ValueError('not found in equation: %s' % (set('xy') - {x, y}))

        else:
            if len(args) > 0:
                p1 = args[0]
                if len(args) > 1:
                    p2 = args[1]
                else:
                    p2 = None

                if isinstance(p1, LinearEntity):
                    if p2:
                        raise ValueError('If p1 is a LinearEntity, p2 must be None.')
                    dim = len(p1.p1)
                else:
                    p1 = Point(p1)
                    dim = len(p1)
                    if p2 is not None or isinstance(p2, Point) and p2.ambient_dimension != dim:
                        p2 = Point(p2)

                if dim == 2:
                    return Line2D(p1, p2, **kwargs)
                elif dim == 3:
                    return Line3D(p1, p2, **kwargs)
                return LinearEntity.__new__(cls, p1, p2, **kwargs)

    def contains(self, other):
        """
        Return True if `other` is on this Line, or False otherwise.

        Examples
        ========

        >>> from sympy import Line,Point
        >>> p1, p2 = Point(0, 1), Point(3, 4)
        >>> l = Line(p1, p2)
        >>> l.contains(p1)
        True
        >>> l.contains((0, 1))
        True
        >>> l.contains((0, 0))
        False
        >>> a = (0, 0, 0)
        >>> b = (1, 1, 1)
        >>> c = (2, 2, 2)
        >>> l1 = Line(a, b)
        >>> l2 = Line(b, a)
        >>> l1 == l2
        False
        >>> l1 in l2
        True

        """
        if not isinstance(other, GeometryEntity):
            other = Point(other, dim=self.ambient_dimension)
        if isinstance(other, Point):
            return Point.is_collinear(other, self.p1, self.p2)
        if isinstance(other, LinearEntity):
            return Point.is_collinear(self.p1, self.p2, other.p1, other.p2)
        return False

    def distance(self, other):
        """
        Finds the shortest distance between a line and a point.

        Raises
        ======

        NotImplementedError is raised if `other` is not a Point

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2 = Point(0, 0), Point(1, 1)
        >>> s = Line(p1, p2)
        >>> s.distance(Point(-1, 1))
        sqrt(2)
        >>> s.distance((-1, 2))
        3*sqrt(2)/2
        >>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1)
        >>> s = Line(p1, p2)
        >>> s.distance(Point(-1, 1, 1))
        2*sqrt(6)/3
        >>> s.distance((-1, 1, 1))
        2*sqrt(6)/3

        """
        if not isinstance(other, GeometryEntity):
            other = Point(other, dim=self.ambient_dimension)
        if self.contains(other):
            return S.Zero
        return self.perpendicular_segment(other).length

    def equals(self, other):
        """Returns True if self and other are the same mathematical entities"""
        if not isinstance(other, Line):
            return False
        return Point.is_collinear(self.p1, other.p1, self.p2, other.p2)

    def plot_interval(self, parameter='t'):
        """The plot interval for the default geometric plot of line. Gives
        values that will produce a line that is +/- 5 units long (where a
        unit is the distance between the two points that define the line).

        Parameters
        ==========

        parameter : str, optional
            Default value is 't'.

        Returns
        =======

        plot_interval : list (plot interval)
            [parameter, lower_bound, upper_bound]

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2 = Point(0, 0), Point(5, 3)
        >>> l1 = Line(p1, p2)
        >>> l1.plot_interval()
        [t, -5, 5]

        """
        t = _symbol(parameter, real=True)
        return [t, -5, 5]


class Ray(LinearEntity):
    """A Ray is a semi-line in the space with a source point and a direction.

    Parameters
    ==========

    p1 : Point
        The source of the Ray
    p2 : Point or radian value
        This point determines the direction in which the Ray propagates.
        If given as an angle it is interpreted in radians with the positive
        direction being ccw.

    Attributes
    ==========

    source

    See Also
    ========

    sympy.geometry.line.Ray2D
    sympy.geometry.line.Ray3D
    sympy.geometry.point.Point
    sympy.geometry.line.Line

    Notes
    =====

    `Ray` will automatically subclass to `Ray2D` or `Ray3D` based on the
    dimension of `p1`.

    Examples
    ========

    >>> from sympy import Ray, Point, pi
    >>> r = Ray(Point(2, 3), Point(3, 5))
    >>> r
    Ray2D(Point2D(2, 3), Point2D(3, 5))
    >>> r.points
    (Point2D(2, 3), Point2D(3, 5))
    >>> r.source
    Point2D(2, 3)
    >>> r.xdirection
    oo
    >>> r.ydirection
    oo
    >>> r.slope
    2
    >>> Ray(Point(0, 0), angle=pi/4).slope
    1

    """
    def __new__(cls, p1, p2=None, **kwargs):
        p1 = Point(p1)
        if p2 is not None:
            p1, p2 = Point._normalize_dimension(p1, Point(p2))
        dim = len(p1)

        if dim == 2:
            return Ray2D(p1, p2, **kwargs)
        elif dim == 3:
            return Ray3D(p1, p2, **kwargs)
        return LinearEntity.__new__(cls, p1, p2, **kwargs)

    def _svg(self, scale_factor=1., fill_color="#66cc99"):
        """Returns SVG path element for the LinearEntity.

        Parameters
        ==========

        scale_factor : float
            Multiplication factor for the SVG stroke-width.  Default is 1.
        fill_color : str, optional
            Hex string for fill color. Default is "#66cc99".
        """
        verts = (N(self.p1), N(self.p2))
        coords = ["{},{}".format(p.x, p.y) for p in verts]
        path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))

        return (
            '<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
            'stroke-width="{0}" opacity="0.6" d="{1}" '
            'marker-start="url(#markerCircle)" marker-end="url(#markerArrow)"/>'
        ).format(2.*scale_factor, path, fill_color)

    def contains(self, other):
        """
        Is other GeometryEntity contained in this Ray?

        Examples
        ========

        >>> from sympy import Ray,Point,Segment
        >>> p1, p2 = Point(0, 0), Point(4, 4)
        >>> r = Ray(p1, p2)
        >>> r.contains(p1)
        True
        >>> r.contains((1, 1))
        True
        >>> r.contains((1, 3))
        False
        >>> s = Segment((1, 1), (2, 2))
        >>> r.contains(s)
        True
        >>> s = Segment((1, 2), (2, 5))
        >>> r.contains(s)
        False
        >>> r1 = Ray((2, 2), (3, 3))
        >>> r.contains(r1)
        True
        >>> r1 = Ray((2, 2), (3, 5))
        >>> r.contains(r1)
        False
        """
        if not isinstance(other, GeometryEntity):
            other = Point(other, dim=self.ambient_dimension)
        if isinstance(other, Point):
            if Point.is_collinear(self.p1, self.p2, other):
                # if we're in the direction of the ray, our
                # direction vector dot the ray's direction vector
                # should be non-negative
                return bool((self.p2 - self.p1).dot(other - self.p1) >= S.Zero)
            return False
        elif isinstance(other, Ray):
            if Point.is_collinear(self.p1, self.p2, other.p1, other.p2):
                return bool((self.p2 - self.p1).dot(other.p2 - other.p1) > S.Zero)
            return False
        elif isinstance(other, Segment):
            return other.p1 in self and other.p2 in self

        # No other known entity can be contained in a Ray
        return False

    def distance(self, other):
        """
        Finds the shortest distance between the ray and a point.

        Raises
        ======

        NotImplementedError is raised if `other` is not a Point

        Examples
        ========

        >>> from sympy import Point, Ray
        >>> p1, p2 = Point(0, 0), Point(1, 1)
        >>> s = Ray(p1, p2)
        >>> s.distance(Point(-1, -1))
        sqrt(2)
        >>> s.distance((-1, 2))
        3*sqrt(2)/2
        >>> p1, p2 = Point(0, 0, 0), Point(1, 1, 2)
        >>> s = Ray(p1, p2)
        >>> s
        Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 2))
        >>> s.distance(Point(-1, -1, 2))
        4*sqrt(3)/3
        >>> s.distance((-1, -1, 2))
        4*sqrt(3)/3

        """
        if not isinstance(other, GeometryEntity):
            other = Point(other, dim=self.ambient_dimension)
        if self.contains(other):
            return S.Zero

        proj = Line(self.p1, self.p2).projection(other)
        if self.contains(proj):
            return abs(other - proj)
        else:
            return abs(other - self.source)

    def equals(self, other):
        """Returns True if self and other are the same mathematical entities"""
        if not isinstance(other, Ray):
            return False
        return self.source == other.source and other.p2 in self

    def plot_interval(self, parameter='t'):
        """The plot interval for the default geometric plot of the Ray. Gives
        values that will produce a ray that is 10 units long (where a unit is
        the distance between the two points that define the ray).

        Parameters
        ==========

        parameter : str, optional
            Default value is 't'.

        Returns
        =======

        plot_interval : list
            [parameter, lower_bound, upper_bound]

        Examples
        ========

        >>> from sympy import Ray, pi
        >>> r = Ray((0, 0), angle=pi/4)
        >>> r.plot_interval()
        [t, 0, 10]

        """
        t = _symbol(parameter, real=True)
        return [t, 0, 10]

    @property
    def source(self):
        """The point from which the ray emanates.

        See Also
        ========

        sympy.geometry.point.Point

        Examples
        ========

        >>> from sympy import Point, Ray
        >>> p1, p2 = Point(0, 0), Point(4, 1)
        >>> r1 = Ray(p1, p2)
        >>> r1.source
        Point2D(0, 0)
        >>> p1, p2 = Point(0, 0, 0), Point(4, 1, 5)
        >>> r1 = Ray(p2, p1)
        >>> r1.source
        Point3D(4, 1, 5)

        """
        return self.p1


class Segment(LinearEntity):
    """A line segment in space.

    Parameters
    ==========

    p1 : Point
    p2 : Point

    Attributes
    ==========

    length : number or SymPy expression
    midpoint : Point

    See Also
    ========

    sympy.geometry.line.Segment2D
    sympy.geometry.line.Segment3D
    sympy.geometry.point.Point
    sympy.geometry.line.Line

    Notes
    =====

    If 2D or 3D points are used to define `Segment`, it will
    be automatically subclassed to `Segment2D` or `Segment3D`.

    Examples
    ========

    >>> from sympy import Point, Segment
    >>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts
    Segment2D(Point2D(1, 0), Point2D(1, 1))
    >>> s = Segment(Point(4, 3), Point(1, 1))
    >>> s.points
    (Point2D(4, 3), Point2D(1, 1))
    >>> s.slope
    2/3
    >>> s.length
    sqrt(13)
    >>> s.midpoint
    Point2D(5/2, 2)
    >>> Segment((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts
    Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1))
    >>> s = Segment(Point(4, 3, 9), Point(1, 1, 7)); s
    Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7))
    >>> s.points
    (Point3D(4, 3, 9), Point3D(1, 1, 7))
    >>> s.length
    sqrt(17)
    >>> s.midpoint
    Point3D(5/2, 2, 8)

    """
    def __new__(cls, p1, p2, **kwargs):
        p1, p2 = Point._normalize_dimension(Point(p1), Point(p2))
        dim = len(p1)

        if dim == 2:
            return Segment2D(p1, p2, **kwargs)
        elif dim == 3:
            return Segment3D(p1, p2, **kwargs)
        return LinearEntity.__new__(cls, p1, p2, **kwargs)

    def contains(self, other):
        """
        Is the other GeometryEntity contained within this Segment?

        Examples
        ========

        >>> from sympy import Point, Segment
        >>> p1, p2 = Point(0, 1), Point(3, 4)
        >>> s = Segment(p1, p2)
        >>> s2 = Segment(p2, p1)
        >>> s.contains(s2)
        True
        >>> from sympy import Point3D, Segment3D
        >>> p1, p2 = Point3D(0, 1, 1), Point3D(3, 4, 5)
        >>> s = Segment3D(p1, p2)
        >>> s2 = Segment3D(p2, p1)
        >>> s.contains(s2)
        True
        >>> s.contains((p1 + p2)/2)
        True
        """
        if not isinstance(other, GeometryEntity):
            other = Point(other, dim=self.ambient_dimension)
        if isinstance(other, Point):
            if Point.is_collinear(other, self.p1, self.p2):
                if isinstance(self, Segment2D):
                    # if it is collinear and is in the bounding box of the
                    # segment then it must be on the segment
                    vert = (1/self.slope).equals(0)
                    if vert is False:
                        isin = (self.p1.x - other.x)*(self.p2.x - other.x) <= 0
                        if isin in (True, False):
                            return isin
                    if vert is True:
                        isin = (self.p1.y - other.y)*(self.p2.y - other.y) <= 0
                        if isin in (True, False):
                            return isin
                # use the triangle inequality
                d1, d2 = other - self.p1, other - self.p2
                d = self.p2 - self.p1
                # without the call to simplify, SymPy cannot tell that an expression
                # like (a+b)*(a/2+b/2) is always non-negative.  If it cannot be
                # determined, raise an Undecidable error
                try:
                    # the triangle inequality says that |d1|+|d2| >= |d| and is strict
                    # only if other lies in the line segment
                    return bool(simplify(Eq(abs(d1) + abs(d2) - abs(d), 0)))
                except TypeError:
                    raise Undecidable("Cannot determine if {} is in {}".format(other, self))
        if isinstance(other, Segment):
            return other.p1 in self and other.p2 in self

        return False

    def equals(self, other):
        """Returns True if self and other are the same mathematical entities"""
        return isinstance(other, self.func) and list(
            ordered(self.args)) == list(ordered(other.args))

    def distance(self, other):
        """
        Finds the shortest distance between a line segment and a point.

        Raises
        ======

        NotImplementedError is raised if `other` is not a Point

        Examples
        ========

        >>> from sympy import Point, Segment
        >>> p1, p2 = Point(0, 1), Point(3, 4)
        >>> s = Segment(p1, p2)
        >>> s.distance(Point(10, 15))
        sqrt(170)
        >>> s.distance((0, 12))
        sqrt(73)
        >>> from sympy import Point3D, Segment3D
        >>> p1, p2 = Point3D(0, 0, 3), Point3D(1, 1, 4)
        >>> s = Segment3D(p1, p2)
        >>> s.distance(Point3D(10, 15, 12))
        sqrt(341)
        >>> s.distance((10, 15, 12))
        sqrt(341)
        """
        if not isinstance(other, GeometryEntity):
            other = Point(other, dim=self.ambient_dimension)
        if isinstance(other, Point):
            vp1 = other - self.p1
            vp2 = other - self.p2

            dot_prod_sign_1 = self.direction.dot(vp1) >= 0
            dot_prod_sign_2 = self.direction.dot(vp2) <= 0
            if dot_prod_sign_1 and dot_prod_sign_2:
                return Line(self.p1, self.p2).distance(other)
            if dot_prod_sign_1 and not dot_prod_sign_2:
                return abs(vp2)
            if not dot_prod_sign_1 and dot_prod_sign_2:
                return abs(vp1)
        raise NotImplementedError()

    @property
    def length(self):
        """The length of the line segment.

        See Also
        ========

        sympy.geometry.point.Point.distance

        Examples
        ========

        >>> from sympy import Point, Segment
        >>> p1, p2 = Point(0, 0), Point(4, 3)
        >>> s1 = Segment(p1, p2)
        >>> s1.length
        5
        >>> from sympy import Point3D, Segment3D
        >>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3)
        >>> s1 = Segment3D(p1, p2)
        >>> s1.length
        sqrt(34)

        """
        return Point.distance(self.p1, self.p2)

    @property
    def midpoint(self):
        """The midpoint of the line segment.

        See Also
        ========

        sympy.geometry.point.Point.midpoint

        Examples
        ========

        >>> from sympy import Point, Segment
        >>> p1, p2 = Point(0, 0), Point(4, 3)
        >>> s1 = Segment(p1, p2)
        >>> s1.midpoint
        Point2D(2, 3/2)
        >>> from sympy import Point3D, Segment3D
        >>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3)
        >>> s1 = Segment3D(p1, p2)
        >>> s1.midpoint
        Point3D(2, 3/2, 3/2)

        """
        return Point.midpoint(self.p1, self.p2)

    def perpendicular_bisector(self, p=None):
        """The perpendicular bisector of this segment.

        If no point is specified or the point specified is not on the
        bisector then the bisector is returned as a Line. Otherwise a
        Segment is returned that joins the point specified and the
        intersection of the bisector and the segment.

        Parameters
        ==========

        p : Point

        Returns
        =======

        bisector : Line or Segment

        See Also
        ========

        LinearEntity.perpendicular_segment

        Examples
        ========

        >>> from sympy import Point, Segment
        >>> p1, p2, p3 = Point(0, 0), Point(6, 6), Point(5, 1)
        >>> s1 = Segment(p1, p2)
        >>> s1.perpendicular_bisector()
        Line2D(Point2D(3, 3), Point2D(-3, 9))

        >>> s1.perpendicular_bisector(p3)
        Segment2D(Point2D(5, 1), Point2D(3, 3))

        """
        l = self.perpendicular_line(self.midpoint)
        if p is not None:
            p2 = Point(p, dim=self.ambient_dimension)
            if p2 in l:
                return Segment(p2, self.midpoint)
        return l

    def plot_interval(self, parameter='t'):
        """The plot interval for the default geometric plot of the Segment gives
        values that will produce the full segment in a plot.

        Parameters
        ==========

        parameter : str, optional
            Default value is 't'.

        Returns
        =======

        plot_interval : list
            [parameter, lower_bound, upper_bound]

        Examples
        ========

        >>> from sympy import Point, Segment
        >>> p1, p2 = Point(0, 0), Point(5, 3)
        >>> s1 = Segment(p1, p2)
        >>> s1.plot_interval()
        [t, 0, 1]

        """
        t = _symbol(parameter, real=True)
        return [t, 0, 1]


class LinearEntity2D(LinearEntity):
    """A base class for all linear entities (line, ray and segment)
    in a 2-dimensional Euclidean space.

    Attributes
    ==========

    p1
    p2
    coefficients
    slope
    points

    Notes
    =====

    This is an abstract class and is not meant to be instantiated.

    See Also
    ========

    sympy.geometry.entity.GeometryEntity

    """
    @property
    def bounds(self):
        """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
        rectangle for the geometric figure.

        """
        verts = self.points
        xs = [p.x for p in verts]
        ys = [p.y for p in verts]
        return (min(xs), min(ys), max(xs), max(ys))

    def perpendicular_line(self, p):
        """Create a new Line perpendicular to this linear entity which passes
        through the point `p`.

        Parameters
        ==========

        p : Point

        Returns
        =======

        line : Line

        See Also
        ========

        sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
        >>> L = Line(p1, p2)
        >>> P = L.perpendicular_line(p3); P
        Line2D(Point2D(-2, 2), Point2D(-5, 4))
        >>> L.is_perpendicular(P)
        True

        In 2D, the first point of the perpendicular line is the
        point through which was required to pass; the second
        point is arbitrarily chosen. To get a line that explicitly
        uses a point in the line, create a line from the perpendicular
        segment from the line to the point:

        >>> Line(L.perpendicular_segment(p3))
        Line2D(Point2D(-2, 2), Point2D(4/13, 6/13))
        """
        p = Point(p, dim=self.ambient_dimension)
        # any two lines in R^2 intersect, so blindly making
        # a line through p in an orthogonal direction will work
        # and is faster than finding the projection point as in 3D
        return Line(p, p + self.direction.orthogonal_direction)

    @property
    def slope(self):
        """The slope of this linear entity, or infinity if vertical.

        Returns
        =======

        slope : number or SymPy expression

        See Also
        ========

        coefficients

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2 = Point(0, 0), Point(3, 5)
        >>> l1 = Line(p1, p2)
        >>> l1.slope
        5/3

        >>> p3 = Point(0, 4)
        >>> l2 = Line(p1, p3)
        >>> l2.slope
        oo

        """
        d1, d2 = (self.p1 - self.p2).args
        if d1 == 0:
            return S.Infinity
        return simplify(d2/d1)


class Line2D(LinearEntity2D, Line):
    """An infinite line in space 2D.

    A line is declared with two distinct points or a point and slope
    as defined using keyword `slope`.

    Parameters
    ==========

    p1 : Point
    pt : Point
    slope : SymPy expression

    See Also
    ========

    sympy.geometry.point.Point

    Examples
    ========

    >>> from sympy import Line, Segment, Point
    >>> L = Line(Point(2,3), Point(3,5))
    >>> L
    Line2D(Point2D(2, 3), Point2D(3, 5))
    >>> L.points
    (Point2D(2, 3), Point2D(3, 5))
    >>> L.equation()
    -2*x + y + 1
    >>> L.coefficients
    (-2, 1, 1)

    Instantiate with keyword ``slope``:

    >>> Line(Point(0, 0), slope=0)
    Line2D(Point2D(0, 0), Point2D(1, 0))

    Instantiate with another linear object

    >>> s = Segment((0, 0), (0, 1))
    >>> Line(s).equation()
    x
    """
    def __new__(cls, p1, pt=None, slope=None, **kwargs):
        if isinstance(p1, LinearEntity):
            if pt is not None:
                raise ValueError('When p1 is a LinearEntity, pt should be None')
            p1, pt = Point._normalize_dimension(*p1.args, dim=2)
        else:
            p1 = Point(p1, dim=2)
        if pt is not None and slope is None:
            try:
                p2 = Point(pt, dim=2)
            except (NotImplementedError, TypeError, ValueError):
                raise ValueError(filldedent('''
                    The 2nd argument was not a valid Point.
                    If it was a slope, enter it with keyword "slope".
                    '''))
        elif slope is not None and pt is None:
            slope = sympify(slope)
            if slope.is_finite is False:
                # when infinite slope, don't change x
                dx = 0
                dy = 1
            else:
                # go over 1 up slope
                dx = 1
                dy = slope
            # XXX avoiding simplification by adding to coords directly
            p2 = Point(p1.x + dx, p1.y + dy, evaluate=False)
        else:
            raise ValueError('A 2nd Point or keyword "slope" must be used.')
        return LinearEntity2D.__new__(cls, p1, p2, **kwargs)

    def _svg(self, scale_factor=1., fill_color="#66cc99"):
        """Returns SVG path element for the LinearEntity.

        Parameters
        ==========

        scale_factor : float
            Multiplication factor for the SVG stroke-width.  Default is 1.
        fill_color : str, optional
            Hex string for fill color. Default is "#66cc99".
        """
        verts = (N(self.p1), N(self.p2))
        coords = ["{},{}".format(p.x, p.y) for p in verts]
        path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))

        return (
            '<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
            'stroke-width="{0}" opacity="0.6" d="{1}" '
            'marker-start="url(#markerReverseArrow)" marker-end="url(#markerArrow)"/>'
        ).format(2.*scale_factor, path, fill_color)

    @property
    def coefficients(self):
        """The coefficients (`a`, `b`, `c`) for `ax + by + c = 0`.

        See Also
        ========

        sympy.geometry.line.Line2D.equation

        Examples
        ========

        >>> from sympy import Point, Line
        >>> from sympy.abc import x, y
        >>> p1, p2 = Point(0, 0), Point(5, 3)
        >>> l = Line(p1, p2)
        >>> l.coefficients
        (-3, 5, 0)

        >>> p3 = Point(x, y)
        >>> l2 = Line(p1, p3)
        >>> l2.coefficients
        (-y, x, 0)

        """
        p1, p2 = self.points
        if p1.x == p2.x:
            return (S.One, S.Zero, -p1.x)
        elif p1.y == p2.y:
            return (S.Zero, S.One, -p1.y)
        return tuple([simplify(i) for i in
                      (self.p1.y - self.p2.y,
                       self.p2.x - self.p1.x,
                       self.p1.x*self.p2.y - self.p1.y*self.p2.x)])

    def equation(self, x='x', y='y'):
        """The equation of the line: ax + by + c.

        Parameters
        ==========

        x : str, optional
            The name to use for the x-axis, default value is 'x'.
        y : str, optional
            The name to use for the y-axis, default value is 'y'.

        Returns
        =======

        equation : SymPy expression

        See Also
        ========

        sympy.geometry.line.Line2D.coefficients

        Examples
        ========

        >>> from sympy import Point, Line
        >>> p1, p2 = Point(1, 0), Point(5, 3)
        >>> l1 = Line(p1, p2)
        >>> l1.equation()
        -3*x + 4*y + 3

        """
        x = _symbol(x, real=True)
        y = _symbol(y, real=True)
        p1, p2 = self.points
        if p1.x == p2.x:
            return x - p1.x
        elif p1.y == p2.y:
            return y - p1.y

        a, b, c = self.coefficients
        return a*x + b*y + c


class Ray2D(LinearEntity2D, Ray):
    """
    A Ray is a semi-line in the space with a source point and a direction.

    Parameters
    ==========

    p1 : Point
        The source of the Ray
    p2 : Point or radian value
        This point determines the direction in which the Ray propagates.
        If given as an angle it is interpreted in radians with the positive
        direction being ccw.

    Attributes
    ==========

    source
    xdirection
    ydirection

    See Also
    ========

    sympy.geometry.point.Point, Line

    Examples
    ========

    >>> from sympy import Point, pi, Ray
    >>> r = Ray(Point(2, 3), Point(3, 5))
    >>> r
    Ray2D(Point2D(2, 3), Point2D(3, 5))
    >>> r.points
    (Point2D(2, 3), Point2D(3, 5))
    >>> r.source
    Point2D(2, 3)
    >>> r.xdirection
    oo
    >>> r.ydirection
    oo
    >>> r.slope
    2
    >>> Ray(Point(0, 0), angle=pi/4).slope
    1

    """
    def __new__(cls, p1, pt=None, angle=None, **kwargs):
        p1 = Point(p1, dim=2)
        if pt is not None and angle is None:
            try:
                p2 = Point(pt, dim=2)
            except (NotImplementedError, TypeError, ValueError):
                raise ValueError(filldedent('''
                    The 2nd argument was not a valid Point; if
                    it was meant to be an angle it should be
                    given with keyword "angle".'''))
            if p1 == p2:
                raise ValueError('A Ray requires two distinct points.')
        elif angle is not None and pt is None:
            # we need to know if the angle is an odd multiple of pi/2
            angle = sympify(angle)
            c = _pi_coeff(angle)
            p2 = None
            if c is not None:
                if c.is_Rational:
                    if c.q == 2:
                        if c.p == 1:
                            p2 = p1 + Point(0, 1)
                        elif c.p == 3:
                            p2 = p1 + Point(0, -1)
                    elif c.q == 1:
                        if c.p == 0:
                            p2 = p1 + Point(1, 0)
                        elif c.p == 1:
                            p2 = p1 + Point(-1, 0)
                if p2 is None:
                    c *= S.Pi
            else:
                c = angle % (2*S.Pi)
            if not p2:
                m = 2*c/S.Pi
                left = And(1 < m, m < 3)  # is it in quadrant 2 or 3?
                x = Piecewise((-1, left), (Piecewise((0, Eq(m % 1, 0)), (1, True)), True))
                y = Piecewise((-tan(c), left), (Piecewise((1, Eq(m, 1)), (-1, Eq(m, 3)), (tan(c), True)), True))
                p2 = p1 + Point(x, y)
        else:
            raise ValueError('A 2nd point or keyword "angle" must be used.')

        return LinearEntity2D.__new__(cls, p1, p2, **kwargs)

    @property
    def xdirection(self):
        """The x direction of the ray.

        Positive infinity if the ray points in the positive x direction,
        negative infinity if the ray points in the negative x direction,
        or 0 if the ray is vertical.

        See Also
        ========

        ydirection

        Examples
        ========

        >>> from sympy import Point, Ray
        >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, -1)
        >>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
        >>> r1.xdirection
        oo
        >>> r2.xdirection
        0

        """
        if self.p1.x < self.p2.x:
            return S.Infinity
        elif self.p1.x == self.p2.x:
            return S.Zero
        else:
            return S.NegativeInfinity

    @property
    def ydirection(self):
        """The y direction of the ray.

        Positive infinity if the ray points in the positive y direction,
        negative infinity if the ray points in the negative y direction,
        or 0 if the ray is horizontal.

        See Also
        ========

        xdirection

        Examples
        ========

        >>> from sympy import Point, Ray
        >>> p1, p2, p3 = Point(0, 0), Point(-1, -1), Point(-1, 0)
        >>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
        >>> r1.ydirection
        -oo
        >>> r2.ydirection
        0

        """
        if self.p1.y < self.p2.y:
            return S.Infinity
        elif self.p1.y == self.p2.y:
            return S.Zero
        else:
            return S.NegativeInfinity

    def closing_angle(r1, r2):
        """Return the angle by which r2 must be rotated so it faces the same
        direction as r1.

        Parameters
        ==========

        r1 : Ray2D
        r2 : Ray2D

        Returns
        =======

        angle : angle in radians (ccw angle is positive)

        See Also
        ========

        LinearEntity.angle_between

        Examples
        ========

        >>> from sympy import Ray, pi
        >>> r1 = Ray((0, 0), (1, 0))
        >>> r2 = r1.rotate(-pi/2)
        >>> angle = r1.closing_angle(r2); angle
        pi/2
        >>> r2.rotate(angle).direction.unit == r1.direction.unit
        True
        >>> r2.closing_angle(r1)
        -pi/2
        """
        if not all(isinstance(r, Ray2D) for r in (r1, r2)):
            # although the direction property is defined for
            # all linear entities, only the Ray is truly a
            # directed object
            raise TypeError('Both arguments must be Ray2D objects.')

        a1 = atan2(*list(reversed(r1.direction.args)))
        a2 = atan2(*list(reversed(r2.direction.args)))
        if a1*a2 < 0:
            a1 = 2*S.Pi + a1 if a1 < 0 else a1
            a2 = 2*S.Pi + a2 if a2 < 0 else a2
        return a1 - a2


class Segment2D(LinearEntity2D, Segment):
    """A line segment in 2D space.

    Parameters
    ==========

    p1 : Point
    p2 : Point

    Attributes
    ==========

    length : number or SymPy expression
    midpoint : Point

    See Also
    ========

    sympy.geometry.point.Point, Line

    Examples
    ========

    >>> from sympy import Point, Segment
    >>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts
    Segment2D(Point2D(1, 0), Point2D(1, 1))
    >>> s = Segment(Point(4, 3), Point(1, 1)); s
    Segment2D(Point2D(4, 3), Point2D(1, 1))
    >>> s.points
    (Point2D(4, 3), Point2D(1, 1))
    >>> s.slope
    2/3
    >>> s.length
    sqrt(13)
    >>> s.midpoint
    Point2D(5/2, 2)

    """
    def __new__(cls, p1, p2, **kwargs):
        p1 = Point(p1, dim=2)
        p2 = Point(p2, dim=2)

        if p1 == p2:
            return p1

        return LinearEntity2D.__new__(cls, p1, p2, **kwargs)

    def _svg(self, scale_factor=1., fill_color="#66cc99"):
        """Returns SVG path element for the LinearEntity.

        Parameters
        ==========

        scale_factor : float
            Multiplication factor for the SVG stroke-width.  Default is 1.
        fill_color : str, optional
            Hex string for fill color. Default is "#66cc99".
        """
        verts = (N(self.p1), N(self.p2))
        coords = ["{},{}".format(p.x, p.y) for p in verts]
        path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))
        return (
            '<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
            'stroke-width="{0}" opacity="0.6" d="{1}" />'
        ).format(2.*scale_factor, path, fill_color)


class LinearEntity3D(LinearEntity):
    """An base class for all linear entities (line, ray and segment)
    in a 3-dimensional Euclidean space.

    Attributes
    ==========

    p1
    p2
    direction_ratio
    direction_cosine
    points

    Notes
    =====

    This is a base class and is not meant to be instantiated.
    """
    def __new__(cls, p1, p2, **kwargs):
        p1 = Point3D(p1, dim=3)
        p2 = Point3D(p2, dim=3)
        if p1 == p2:
            # if it makes sense to return a Point, handle in subclass
            raise ValueError(
                "%s.__new__ requires two unique Points." % cls.__name__)

        return GeometryEntity.__new__(cls, p1, p2, **kwargs)

    ambient_dimension = 3

    @property
    def direction_ratio(self):
        """The direction ratio of a given line in 3D.

        See Also
        ========

        sympy.geometry.line.Line3D.equation

        Examples
        ========

        >>> from sympy import Point3D, Line3D
        >>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1)
        >>> l = Line3D(p1, p2)
        >>> l.direction_ratio
        [5, 3, 1]
        """
        p1, p2 = self.points
        return p1.direction_ratio(p2)

    @property
    def direction_cosine(self):
        """The normalized direction ratio of a given line in 3D.

        See Also
        ========

        sympy.geometry.line.Line3D.equation

        Examples
        ========

        >>> from sympy import Point3D, Line3D
        >>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1)
        >>> l = Line3D(p1, p2)
        >>> l.direction_cosine
        [sqrt(35)/7, 3*sqrt(35)/35, sqrt(35)/35]
        >>> sum(i**2 for i in _)
        1
        """
        p1, p2 = self.points
        return p1.direction_cosine(p2)


class Line3D(LinearEntity3D, Line):
    """An infinite 3D line in space.

    A line is declared with two distinct points or a point and direction_ratio
    as defined using keyword `direction_ratio`.

    Parameters
    ==========

    p1 : Point3D
    pt : Point3D
    direction_ratio : list

    See Also
    ========

    sympy.geometry.point.Point3D
    sympy.geometry.line.Line
    sympy.geometry.line.Line2D

    Examples
    ========

    >>> from sympy import Line3D, Point3D
    >>> L = Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1))
    >>> L
    Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1))
    >>> L.points
    (Point3D(2, 3, 4), Point3D(3, 5, 1))
    """
    def __new__(cls, p1, pt=None, direction_ratio=(), **kwargs):
        if isinstance(p1, LinearEntity3D):
            if pt is not None:
                raise ValueError('if p1 is a LinearEntity, pt must be None.')
            p1, pt = p1.args
        else:
            p1 = Point(p1, dim=3)
        if pt is not None and len(direction_ratio) == 0:
            pt = Point(pt, dim=3)
        elif len(direction_ratio) == 3 and pt is None:
            pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1],
                         p1.z + direction_ratio[2])
        else:
            raise ValueError('A 2nd Point or keyword "direction_ratio" must '
                             'be used.')

        return LinearEntity3D.__new__(cls, p1, pt, **kwargs)

    def equation(self, x='x', y='y', z='z'):
        """Return the equations that define the line in 3D.

        Parameters
        ==========

        x : str, optional
            The name to use for the x-axis, default value is 'x'.
        y : str, optional
            The name to use for the y-axis, default value is 'y'.
        z : str, optional
            The name to use for the z-axis, default value is 'z'.

        Returns
        =======

        equation : Tuple of simultaneous equations

        Examples
        ========

        >>> from sympy import Point3D, Line3D, solve
        >>> from sympy.abc import x, y, z
        >>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 0)
        >>> l1 = Line3D(p1, p2)
        >>> eq = l1.equation(x, y, z); eq
        (-3*x + 4*y + 3, z)
        >>> solve(eq.subs(z, 0), (x, y, z))
        {x: 4*y/3 + 1}
        """
        x, y, z, k = [_symbol(i, real=True) for i in (x, y, z, 'k')]
        p1, p2 = self.points
        d1, d2, d3 = p1.direction_ratio(p2)
        x1, y1, z1 = p1
        eqs = [-d1*k + x - x1, -d2*k + y - y1, -d3*k + z - z1]
        # eliminate k from equations by solving first eq with k for k
        for i, e in enumerate(eqs):
            if e.has(k):
                kk = solve(eqs[i], k)[0]
                eqs.pop(i)
                break
        return Tuple(*[i.subs(k, kk).as_numer_denom()[0] for i in eqs])

    def distance(self, other):
        """
        Finds the shortest distance between a line and another object.

        Parameters
        ==========

        Point3D, Line3D, Plane, tuple, list

        Returns
        =======

        distance

        Notes
        =====

        This method accepts only 3D entities as it's parameter

        Tuples and lists are converted to Point3D and therefore must be of
        length 3, 2 or 1.

        NotImplementedError is raised if `other` is not an instance of one
        of the specified classes: Point3D, Line3D, or Plane.

        Examples
        ========

        >>> from sympy.geometry import Line3D
        >>> l1 = Line3D((0, 0, 0), (0, 0, 1))
        >>> l2 = Line3D((0, 1, 0), (1, 1, 1))
        >>> l1.distance(l2)
        1

        The computed distance may be symbolic, too:

        >>> from sympy.abc import x, y
        >>> l1 = Line3D((0, 0, 0), (0, 0, 1))
        >>> l2 = Line3D((0, x, 0), (y, x, 1))
        >>> l1.distance(l2)
        Abs(x*y)/Abs(sqrt(y**2))

        """

        from .plane import Plane  # Avoid circular import

        if isinstance(other, (tuple, list)):
            try:
                other = Point3D(other)
            except ValueError:
                pass

        if isinstance(other, Point3D):
            return super().distance(other)

        if isinstance(other, Line3D):
            if self == other:
                return S.Zero
            if self.is_parallel(other):
                return super().distance(other.p1)

            # Skew lines
            self_direction = Matrix(self.direction_ratio)
            other_direction = Matrix(other.direction_ratio)
            normal = self_direction.cross(other_direction)
            plane_through_self = Plane(p1=self.p1, normal_vector=normal)
            return other.p1.distance(plane_through_self)

        if isinstance(other, Plane):
            return other.distance(self)

        msg = f"{other} has type {type(other)}, which is unsupported"
        raise NotImplementedError(msg)


class Ray3D(LinearEntity3D, Ray):
    """
    A Ray is a semi-line in the space with a source point and a direction.

    Parameters
    ==========

    p1 : Point3D
        The source of the Ray
    p2 : Point or a direction vector
    direction_ratio: Determines the direction in which the Ray propagates.


    Attributes
    ==========

    source
    xdirection
    ydirection
    zdirection

    See Also
    ========

    sympy.geometry.point.Point3D, Line3D


    Examples
    ========

    >>> from sympy import Point3D, Ray3D
    >>> r = Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0))
    >>> r
    Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0))
    >>> r.points
    (Point3D(2, 3, 4), Point3D(3, 5, 0))
    >>> r.source
    Point3D(2, 3, 4)
    >>> r.xdirection
    oo
    >>> r.ydirection
    oo
    >>> r.direction_ratio
    [1, 2, -4]

    """
    def __new__(cls, p1, pt=None, direction_ratio=(), **kwargs):
        if isinstance(p1, LinearEntity3D):
            if pt is not None:
                raise ValueError('If p1 is a LinearEntity, pt must be None')
            p1, pt = p1.args
        else:
            p1 = Point(p1, dim=3)
        if pt is not None and len(direction_ratio) == 0:
            pt = Point(pt, dim=3)
        elif len(direction_ratio) == 3 and pt is None:
            pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1],
                         p1.z + direction_ratio[2])
        else:
            raise ValueError(filldedent('''
                A 2nd Point or keyword "direction_ratio" must be used.
            '''))

        return LinearEntity3D.__new__(cls, p1, pt, **kwargs)

    @property
    def xdirection(self):
        """The x direction of the ray.

        Positive infinity if the ray points in the positive x direction,
        negative infinity if the ray points in the negative x direction,
        or 0 if the ray is vertical.

        See Also
        ========

        ydirection

        Examples
        ========

        >>> from sympy import Point3D, Ray3D
        >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, -1, 0)
        >>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
        >>> r1.xdirection
        oo
        >>> r2.xdirection
        0

        """
        if self.p1.x < self.p2.x:
            return S.Infinity
        elif self.p1.x == self.p2.x:
            return S.Zero
        else:
            return S.NegativeInfinity

    @property
    def ydirection(self):
        """The y direction of the ray.

        Positive infinity if the ray points in the positive y direction,
        negative infinity if the ray points in the negative y direction,
        or 0 if the ray is horizontal.

        See Also
        ========

        xdirection

        Examples
        ========

        >>> from sympy import Point3D, Ray3D
        >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0)
        >>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
        >>> r1.ydirection
        -oo
        >>> r2.ydirection
        0

        """
        if self.p1.y < self.p2.y:
            return S.Infinity
        elif self.p1.y == self.p2.y:
            return S.Zero
        else:
            return S.NegativeInfinity

    @property
    def zdirection(self):
        """The z direction of the ray.

        Positive infinity if the ray points in the positive z direction,
        negative infinity if the ray points in the negative z direction,
        or 0 if the ray is horizontal.

        See Also
        ========

        xdirection

        Examples
        ========

        >>> from sympy import Point3D, Ray3D
        >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0)
        >>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
        >>> r1.ydirection
        -oo
        >>> r2.ydirection
        0
        >>> r2.zdirection
        0

        """
        if self.p1.z < self.p2.z:
            return S.Infinity
        elif self.p1.z == self.p2.z:
            return S.Zero
        else:
            return S.NegativeInfinity


class Segment3D(LinearEntity3D, Segment):
    """A line segment in a 3D space.

    Parameters
    ==========

    p1 : Point3D
    p2 : Point3D

    Attributes
    ==========

    length : number or SymPy expression
    midpoint : Point3D

    See Also
    ========

    sympy.geometry.point.Point3D, Line3D

    Examples
    ========

    >>> from sympy import Point3D, Segment3D
    >>> Segment3D((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts
    Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1))
    >>> s = Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7)); s
    Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7))
    >>> s.points
    (Point3D(4, 3, 9), Point3D(1, 1, 7))
    >>> s.length
    sqrt(17)
    >>> s.midpoint
    Point3D(5/2, 2, 8)

    """
    def __new__(cls, p1, p2, **kwargs):
        p1 = Point(p1, dim=3)
        p2 = Point(p2, dim=3)

        if p1 == p2:
            return p1

        return LinearEntity3D.__new__(cls, p1, p2, **kwargs)