File size: 50,263 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
"""Elliptical geometrical entities.

Contains
* Ellipse
* Circle

"""

from sympy.core.expr import Expr
from sympy.core.relational import Eq
from sympy.core import S, pi, sympify
from sympy.core.evalf import N
from sympy.core.parameters import global_parameters
from sympy.core.logic import fuzzy_bool
from sympy.core.numbers import Rational, oo
from sympy.core.sorting import ordered
from sympy.core.symbol import Dummy, uniquely_named_symbol, _symbol
from sympy.simplify import simplify, trigsimp
from sympy.functions.elementary.miscellaneous import sqrt, Max
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.functions.special.elliptic_integrals import elliptic_e
from .entity import GeometryEntity, GeometrySet
from .exceptions import GeometryError
from .line import Line, Segment, Ray2D, Segment2D, Line2D, LinearEntity3D
from .point import Point, Point2D, Point3D
from .util import idiff, find
from sympy.polys import DomainError, Poly, PolynomialError
from sympy.polys.polyutils import _not_a_coeff, _nsort
from sympy.solvers import solve
from sympy.solvers.solveset import linear_coeffs
from sympy.utilities.misc import filldedent, func_name

from mpmath.libmp.libmpf import prec_to_dps

import random

x, y = [Dummy('ellipse_dummy', real=True) for i in range(2)]


class Ellipse(GeometrySet):
    """An elliptical GeometryEntity.

    Parameters
    ==========

    center : Point, optional
        Default value is Point(0, 0)
    hradius : number or SymPy expression, optional
    vradius : number or SymPy expression, optional
    eccentricity : number or SymPy expression, optional
        Two of `hradius`, `vradius` and `eccentricity` must be supplied to
        create an Ellipse. The third is derived from the two supplied.

    Attributes
    ==========

    center
    hradius
    vradius
    area
    circumference
    eccentricity
    periapsis
    apoapsis
    focus_distance
    foci

    Raises
    ======

    GeometryError
        When `hradius`, `vradius` and `eccentricity` are incorrectly supplied
        as parameters.
    TypeError
        When `center` is not a Point.

    See Also
    ========

    Circle

    Notes
    -----
    Constructed from a center and two radii, the first being the horizontal
    radius (along the x-axis) and the second being the vertical radius (along
    the y-axis).

    When symbolic value for hradius and vradius are used, any calculation that
    refers to the foci or the major or minor axis will assume that the ellipse
    has its major radius on the x-axis. If this is not true then a manual
    rotation is necessary.

    Examples
    ========

    >>> from sympy import Ellipse, Point, Rational
    >>> e1 = Ellipse(Point(0, 0), 5, 1)
    >>> e1.hradius, e1.vradius
    (5, 1)
    >>> e2 = Ellipse(Point(3, 1), hradius=3, eccentricity=Rational(4, 5))
    >>> e2
    Ellipse(Point2D(3, 1), 3, 9/5)

    """

    def __contains__(self, o):
        if isinstance(o, Point):
            res = self.equation(x, y).subs({x: o.x, y: o.y})
            return trigsimp(simplify(res)) is S.Zero
        elif isinstance(o, Ellipse):
            return self == o
        return False

    def __eq__(self, o):
        """Is the other GeometryEntity the same as this ellipse?"""
        return isinstance(o, Ellipse) and (self.center == o.center and
                                           self.hradius == o.hradius and
                                           self.vradius == o.vradius)

    def __hash__(self):
        return super().__hash__()

    def __new__(
        cls, center=None, hradius=None, vradius=None, eccentricity=None, **kwargs):

        hradius = sympify(hradius)
        vradius = sympify(vradius)

        if center is None:
            center = Point(0, 0)
        else:
            if len(center) != 2:
                raise ValueError('The center of "{}" must be a two dimensional point'.format(cls))
            center = Point(center, dim=2)

        if len(list(filter(lambda x: x is not None, (hradius, vradius, eccentricity)))) != 2:
            raise ValueError(filldedent('''
                Exactly two arguments of "hradius", "vradius", and
                "eccentricity" must not be None.'''))

        if eccentricity is not None:
            eccentricity = sympify(eccentricity)
            if eccentricity.is_negative:
                raise GeometryError("Eccentricity of ellipse/circle should lie between [0, 1)")
            elif hradius is None:
                hradius = vradius / sqrt(1 - eccentricity**2)
            elif vradius is None:
                vradius = hradius * sqrt(1 - eccentricity**2)

        if hradius == vradius:
            return Circle(center, hradius, **kwargs)

        if S.Zero in (hradius, vradius):
            return Segment(Point(center[0] - hradius, center[1] - vradius), Point(center[0] + hradius, center[1] + vradius))

        if hradius.is_real is False or vradius.is_real is False:
            raise GeometryError("Invalid value encountered when computing hradius / vradius.")

        return GeometryEntity.__new__(cls, center, hradius, vradius, **kwargs)

    def _svg(self, scale_factor=1., fill_color="#66cc99"):
        """Returns SVG ellipse element for the Ellipse.

        Parameters
        ==========

        scale_factor : float
            Multiplication factor for the SVG stroke-width.  Default is 1.
        fill_color : str, optional
            Hex string for fill color. Default is "#66cc99".
        """

        c = N(self.center)
        h, v = N(self.hradius), N(self.vradius)
        return (
            '<ellipse fill="{1}" stroke="#555555" '
            'stroke-width="{0}" opacity="0.6" cx="{2}" cy="{3}" rx="{4}" ry="{5}"/>'
        ).format(2. * scale_factor, fill_color, c.x, c.y, h, v)

    @property
    def ambient_dimension(self):
        return 2

    @property
    def apoapsis(self):
        """The apoapsis of the ellipse.

        The greatest distance between the focus and the contour.

        Returns
        =======

        apoapsis : number

        See Also
        ========

        periapsis : Returns shortest distance between foci and contour

        Examples
        ========

        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.apoapsis
        2*sqrt(2) + 3

        """
        return self.major * (1 + self.eccentricity)

    def arbitrary_point(self, parameter='t'):
        """A parameterized point on the ellipse.

        Parameters
        ==========

        parameter : str, optional
            Default value is 't'.

        Returns
        =======

        arbitrary_point : Point

        Raises
        ======

        ValueError
            When `parameter` already appears in the functions.

        See Also
        ========

        sympy.geometry.point.Point

        Examples
        ========

        >>> from sympy import Point, Ellipse
        >>> e1 = Ellipse(Point(0, 0), 3, 2)
        >>> e1.arbitrary_point()
        Point2D(3*cos(t), 2*sin(t))

        """
        t = _symbol(parameter, real=True)
        if t.name in (f.name for f in self.free_symbols):
            raise ValueError(filldedent('Symbol %s already appears in object '
                                        'and cannot be used as a parameter.' % t.name))
        return Point(self.center.x + self.hradius*cos(t),
                     self.center.y + self.vradius*sin(t))

    @property
    def area(self):
        """The area of the ellipse.

        Returns
        =======

        area : number

        Examples
        ========

        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.area
        3*pi

        """
        return simplify(S.Pi * self.hradius * self.vradius)

    @property
    def bounds(self):
        """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
        rectangle for the geometric figure.

        """

        h, v = self.hradius, self.vradius
        return (self.center.x - h, self.center.y - v, self.center.x + h, self.center.y + v)

    @property
    def center(self):
        """The center of the ellipse.

        Returns
        =======

        center : number

        See Also
        ========

        sympy.geometry.point.Point

        Examples
        ========

        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.center
        Point2D(0, 0)

        """
        return self.args[0]

    @property
    def circumference(self):
        """The circumference of the ellipse.

        Examples
        ========

        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.circumference
        12*elliptic_e(8/9)

        """
        if self.eccentricity == 1:
            # degenerate
            return 4*self.major
        elif self.eccentricity == 0:
            # circle
            return 2*pi*self.hradius
        else:
            return 4*self.major*elliptic_e(self.eccentricity**2)

    @property
    def eccentricity(self):
        """The eccentricity of the ellipse.

        Returns
        =======

        eccentricity : number

        Examples
        ========

        >>> from sympy import Point, Ellipse, sqrt
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, sqrt(2))
        >>> e1.eccentricity
        sqrt(7)/3

        """
        return self.focus_distance / self.major

    def encloses_point(self, p):
        """
        Return True if p is enclosed by (is inside of) self.

        Notes
        -----
        Being on the border of self is considered False.

        Parameters
        ==========

        p : Point

        Returns
        =======

        encloses_point : True, False or None

        See Also
        ========

        sympy.geometry.point.Point

        Examples
        ========

        >>> from sympy import Ellipse, S
        >>> from sympy.abc import t
        >>> e = Ellipse((0, 0), 3, 2)
        >>> e.encloses_point((0, 0))
        True
        >>> e.encloses_point(e.arbitrary_point(t).subs(t, S.Half))
        False
        >>> e.encloses_point((4, 0))
        False

        """
        p = Point(p, dim=2)
        if p in self:
            return False

        if len(self.foci) == 2:
            # if the combined distance from the foci to p (h1 + h2) is less
            # than the combined distance from the foci to the minor axis
            # (which is the same as the major axis length) then p is inside
            # the ellipse
            h1, h2 = [f.distance(p) for f in self.foci]
            test = 2*self.major - (h1 + h2)
        else:
            test = self.radius - self.center.distance(p)

        return fuzzy_bool(test.is_positive)

    def equation(self, x='x', y='y', _slope=None):
        """
        Returns the equation of an ellipse aligned with the x and y axes;
        when slope is given, the equation returned corresponds to an ellipse
        with a major axis having that slope.

        Parameters
        ==========

        x : str, optional
            Label for the x-axis. Default value is 'x'.
        y : str, optional
            Label for the y-axis. Default value is 'y'.
        _slope : Expr, optional
                The slope of the major axis. Ignored when 'None'.

        Returns
        =======

        equation : SymPy expression

        See Also
        ========

        arbitrary_point : Returns parameterized point on ellipse

        Examples
        ========

        >>> from sympy import Point, Ellipse, pi
        >>> from sympy.abc import x, y
        >>> e1 = Ellipse(Point(1, 0), 3, 2)
        >>> eq1 = e1.equation(x, y); eq1
        y**2/4 + (x/3 - 1/3)**2 - 1
        >>> eq2 = e1.equation(x, y, _slope=1); eq2
        (-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1

        A point on e1 satisfies eq1. Let's use one on the x-axis:

        >>> p1 = e1.center + Point(e1.major, 0)
        >>> assert eq1.subs(x, p1.x).subs(y, p1.y) == 0

        When rotated the same as the rotated ellipse, about the center
        point of the ellipse, it will satisfy the rotated ellipse's
        equation, too:

        >>> r1 = p1.rotate(pi/4, e1.center)
        >>> assert eq2.subs(x, r1.x).subs(y, r1.y) == 0

        References
        ==========

        .. [1] https://math.stackexchange.com/questions/108270/what-is-the-equation-of-an-ellipse-that-is-not-aligned-with-the-axis
        .. [2] https://en.wikipedia.org/wiki/Ellipse#Shifted_ellipse

        """

        x = _symbol(x, real=True)
        y = _symbol(y, real=True)

        dx = x - self.center.x
        dy = y - self.center.y

        if _slope is not None:
            L = (dy - _slope*dx)**2
            l = (_slope*dy + dx)**2
            h = 1 + _slope**2
            b = h*self.major**2
            a = h*self.minor**2
            return l/b + L/a - 1

        else:
            t1 = (dx/self.hradius)**2
            t2 = (dy/self.vradius)**2
            return t1 + t2 - 1

    def evolute(self, x='x', y='y'):
        """The equation of evolute of the ellipse.

        Parameters
        ==========

        x : str, optional
            Label for the x-axis. Default value is 'x'.
        y : str, optional
            Label for the y-axis. Default value is 'y'.

        Returns
        =======

        equation : SymPy expression

        Examples
        ========

        >>> from sympy import Point, Ellipse
        >>> e1 = Ellipse(Point(1, 0), 3, 2)
        >>> e1.evolute()
        2**(2/3)*y**(2/3) + (3*x - 3)**(2/3) - 5**(2/3)
        """
        if len(self.args) != 3:
            raise NotImplementedError('Evolute of arbitrary Ellipse is not supported.')
        x = _symbol(x, real=True)
        y = _symbol(y, real=True)
        t1 = (self.hradius*(x - self.center.x))**Rational(2, 3)
        t2 = (self.vradius*(y - self.center.y))**Rational(2, 3)
        return t1 + t2 - (self.hradius**2 - self.vradius**2)**Rational(2, 3)

    @property
    def foci(self):
        """The foci of the ellipse.

        Notes
        -----
        The foci can only be calculated if the major/minor axes are known.

        Raises
        ======

        ValueError
            When the major and minor axis cannot be determined.

        See Also
        ========

        sympy.geometry.point.Point
        focus_distance : Returns the distance between focus and center

        Examples
        ========

        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.foci
        (Point2D(-2*sqrt(2), 0), Point2D(2*sqrt(2), 0))

        """
        c = self.center
        hr, vr = self.hradius, self.vradius
        if hr == vr:
            return (c, c)

        # calculate focus distance manually, since focus_distance calls this
        # routine
        fd = sqrt(self.major**2 - self.minor**2)
        if hr == self.minor:
            # foci on the y-axis
            return (c + Point(0, -fd), c + Point(0, fd))
        elif hr == self.major:
            # foci on the x-axis
            return (c + Point(-fd, 0), c + Point(fd, 0))

    @property
    def focus_distance(self):
        """The focal distance of the ellipse.

        The distance between the center and one focus.

        Returns
        =======

        focus_distance : number

        See Also
        ========

        foci

        Examples
        ========

        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.focus_distance
        2*sqrt(2)

        """
        return Point.distance(self.center, self.foci[0])

    @property
    def hradius(self):
        """The horizontal radius of the ellipse.

        Returns
        =======

        hradius : number

        See Also
        ========

        vradius, major, minor

        Examples
        ========

        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.hradius
        3

        """
        return self.args[1]

    def intersection(self, o):
        """The intersection of this ellipse and another geometrical entity
        `o`.

        Parameters
        ==========

        o : GeometryEntity

        Returns
        =======

        intersection : list of GeometryEntity objects

        Notes
        -----
        Currently supports intersections with Point, Line, Segment, Ray,
        Circle and Ellipse types.

        See Also
        ========

        sympy.geometry.entity.GeometryEntity

        Examples
        ========

        >>> from sympy import Ellipse, Point, Line
        >>> e = Ellipse(Point(0, 0), 5, 7)
        >>> e.intersection(Point(0, 0))
        []
        >>> e.intersection(Point(5, 0))
        [Point2D(5, 0)]
        >>> e.intersection(Line(Point(0,0), Point(0, 1)))
        [Point2D(0, -7), Point2D(0, 7)]
        >>> e.intersection(Line(Point(5,0), Point(5, 1)))
        [Point2D(5, 0)]
        >>> e.intersection(Line(Point(6,0), Point(6, 1)))
        []
        >>> e = Ellipse(Point(-1, 0), 4, 3)
        >>> e.intersection(Ellipse(Point(1, 0), 4, 3))
        [Point2D(0, -3*sqrt(15)/4), Point2D(0, 3*sqrt(15)/4)]
        >>> e.intersection(Ellipse(Point(5, 0), 4, 3))
        [Point2D(2, -3*sqrt(7)/4), Point2D(2, 3*sqrt(7)/4)]
        >>> e.intersection(Ellipse(Point(100500, 0), 4, 3))
        []
        >>> e.intersection(Ellipse(Point(0, 0), 3, 4))
        [Point2D(3, 0), Point2D(-363/175, -48*sqrt(111)/175), Point2D(-363/175, 48*sqrt(111)/175)]
        >>> e.intersection(Ellipse(Point(-1, 0), 3, 4))
        [Point2D(-17/5, -12/5), Point2D(-17/5, 12/5), Point2D(7/5, -12/5), Point2D(7/5, 12/5)]
        """
        # TODO: Replace solve with nonlinsolve, when nonlinsolve will be able to solve in real domain

        if isinstance(o, Point):
            if o in self:
                return [o]
            else:
                return []

        elif isinstance(o, (Segment2D, Ray2D)):
            ellipse_equation = self.equation(x, y)
            result = solve([ellipse_equation, Line(
                o.points[0], o.points[1]).equation(x, y)], [x, y],
                set=True)[1]
            return list(ordered([Point(i) for i in result if i in o]))

        elif isinstance(o, Polygon):
            return o.intersection(self)

        elif isinstance(o, (Ellipse, Line2D)):
            if o == self:
                return self
            else:
                ellipse_equation = self.equation(x, y)
                return list(ordered([Point(i) for i in solve(
                    [ellipse_equation, o.equation(x, y)], [x, y],
                    set=True)[1]]))
        elif isinstance(o, LinearEntity3D):
            raise TypeError('Entity must be two dimensional, not three dimensional')
        else:
            raise TypeError('Intersection not handled for %s' % func_name(o))

    def is_tangent(self, o):
        """Is `o` tangent to the ellipse?

        Parameters
        ==========

        o : GeometryEntity
            An Ellipse, LinearEntity or Polygon

        Raises
        ======

        NotImplementedError
            When the wrong type of argument is supplied.

        Returns
        =======

        is_tangent: boolean
            True if o is tangent to the ellipse, False otherwise.

        See Also
        ========

        tangent_lines

        Examples
        ========

        >>> from sympy import Point, Ellipse, Line
        >>> p0, p1, p2 = Point(0, 0), Point(3, 0), Point(3, 3)
        >>> e1 = Ellipse(p0, 3, 2)
        >>> l1 = Line(p1, p2)
        >>> e1.is_tangent(l1)
        True

        """
        if isinstance(o, Point2D):
            return False
        elif isinstance(o, Ellipse):
            intersect = self.intersection(o)
            if isinstance(intersect, Ellipse):
                return True
            elif intersect:
                return all((self.tangent_lines(i)[0]).equals(o.tangent_lines(i)[0]) for i in intersect)
            else:
                return False
        elif isinstance(o, Line2D):
            hit = self.intersection(o)
            if not hit:
                return False
            if len(hit) == 1:
                return True
            # might return None if it can't decide
            return hit[0].equals(hit[1])
        elif isinstance(o, (Segment2D, Ray2D)):
            intersect = self.intersection(o)
            if len(intersect) == 1:
                return o in self.tangent_lines(intersect[0])[0]
            else:
                return False
        elif isinstance(o, Polygon):
            return all(self.is_tangent(s) for s in o.sides)
        elif isinstance(o, (LinearEntity3D, Point3D)):
            raise TypeError('Entity must be two dimensional, not three dimensional')
        else:
            raise TypeError('Is_tangent not handled for %s' % func_name(o))

    @property
    def major(self):
        """Longer axis of the ellipse (if it can be determined) else hradius.

        Returns
        =======

        major : number or expression

        See Also
        ========

        hradius, vradius, minor

        Examples
        ========

        >>> from sympy import Point, Ellipse, Symbol
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.major
        3

        >>> a = Symbol('a')
        >>> b = Symbol('b')
        >>> Ellipse(p1, a, b).major
        a
        >>> Ellipse(p1, b, a).major
        b

        >>> m = Symbol('m')
        >>> M = m + 1
        >>> Ellipse(p1, m, M).major
        m + 1

        """
        ab = self.args[1:3]
        if len(ab) == 1:
            return ab[0]
        a, b = ab
        o = b - a < 0
        if o == True:
            return a
        elif o == False:
            return b
        return self.hradius

    @property
    def minor(self):
        """Shorter axis of the ellipse (if it can be determined) else vradius.

        Returns
        =======

        minor : number or expression

        See Also
        ========

        hradius, vradius, major

        Examples
        ========

        >>> from sympy import Point, Ellipse, Symbol
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.minor
        1

        >>> a = Symbol('a')
        >>> b = Symbol('b')
        >>> Ellipse(p1, a, b).minor
        b
        >>> Ellipse(p1, b, a).minor
        a

        >>> m = Symbol('m')
        >>> M = m + 1
        >>> Ellipse(p1, m, M).minor
        m

        """
        ab = self.args[1:3]
        if len(ab) == 1:
            return ab[0]
        a, b = ab
        o = a - b < 0
        if o == True:
            return a
        elif o == False:
            return b
        return self.vradius

    def normal_lines(self, p, prec=None):
        """Normal lines between `p` and the ellipse.

        Parameters
        ==========

        p : Point

        Returns
        =======

        normal_lines : list with 1, 2 or 4 Lines

        Examples
        ========

        >>> from sympy import Point, Ellipse
        >>> e = Ellipse((0, 0), 2, 3)
        >>> c = e.center
        >>> e.normal_lines(c + Point(1, 0))
        [Line2D(Point2D(0, 0), Point2D(1, 0))]
        >>> e.normal_lines(c)
        [Line2D(Point2D(0, 0), Point2D(0, 1)), Line2D(Point2D(0, 0), Point2D(1, 0))]

        Off-axis points require the solution of a quartic equation. This
        often leads to very large expressions that may be of little practical
        use. An approximate solution of `prec` digits can be obtained by
        passing in the desired value:

        >>> e.normal_lines((3, 3), prec=2)
        [Line2D(Point2D(-0.81, -2.7), Point2D(0.19, -1.2)),
        Line2D(Point2D(1.5, -2.0), Point2D(2.5, -2.7))]

        Whereas the above solution has an operation count of 12, the exact
        solution has an operation count of 2020.
        """
        p = Point(p, dim=2)

        # XXX change True to something like self.angle == 0 if the arbitrarily
        # rotated ellipse is introduced.
        # https://github.com/sympy/sympy/issues/2815)
        if True:
            rv = []
            if p.x == self.center.x:
                rv.append(Line(self.center, slope=oo))
            if p.y == self.center.y:
                rv.append(Line(self.center, slope=0))
            if rv:
                # at these special orientations of p either 1 or 2 normals
                # exist and we are done
                return rv

        # find the 4 normal points and construct lines through them with
        # the corresponding slope
        eq = self.equation(x, y)
        dydx = idiff(eq, y, x)
        norm = -1/dydx
        slope = Line(p, (x, y)).slope
        seq = slope - norm

        # TODO: Replace solve with solveset, when this line is tested
        yis = solve(seq, y)[0]
        xeq = eq.subs(y, yis).as_numer_denom()[0].expand()
        if len(xeq.free_symbols) == 1:
            try:
                # this is so much faster, it's worth a try
                xsol = Poly(xeq, x).real_roots()
            except (DomainError, PolynomialError, NotImplementedError):
                # TODO: Replace solve with solveset, when these lines are tested
                xsol = _nsort(solve(xeq, x), separated=True)[0]
            points = [Point(i, solve(eq.subs(x, i), y)[0]) for i in xsol]
        else:
            raise NotImplementedError(
                'intersections for the general ellipse are not supported')
        slopes = [norm.subs(zip((x, y), pt.args)) for pt in points]
        if prec is not None:
            points = [pt.n(prec) for pt in points]
            slopes = [i if _not_a_coeff(i) else i.n(prec) for i in slopes]
        return [Line(pt, slope=s) for pt, s in zip(points, slopes)]

    @property
    def periapsis(self):
        """The periapsis of the ellipse.

        The shortest distance between the focus and the contour.

        Returns
        =======

        periapsis : number

        See Also
        ========

        apoapsis : Returns greatest distance between focus and contour

        Examples
        ========

        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.periapsis
        3 - 2*sqrt(2)

        """
        return self.major * (1 - self.eccentricity)

    @property
    def semilatus_rectum(self):
        """
        Calculates the semi-latus rectum of the Ellipse.

        Semi-latus rectum is defined as one half of the chord through a
        focus parallel to the conic section directrix of a conic section.

        Returns
        =======

        semilatus_rectum : number

        See Also
        ========

        apoapsis : Returns greatest distance between focus and contour

        periapsis : The shortest distance between the focus and the contour

        Examples
        ========

        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.semilatus_rectum
        1/3

        References
        ==========

        .. [1] https://mathworld.wolfram.com/SemilatusRectum.html
        .. [2] https://en.wikipedia.org/wiki/Ellipse#Semi-latus_rectum

        """
        return self.major * (1 - self.eccentricity ** 2)

    def auxiliary_circle(self):
        """Returns a Circle whose diameter is the major axis of the ellipse.

        Examples
        ========

        >>> from sympy import Ellipse, Point, symbols
        >>> c = Point(1, 2)
        >>> Ellipse(c, 8, 7).auxiliary_circle()
        Circle(Point2D(1, 2), 8)
        >>> a, b = symbols('a b')
        >>> Ellipse(c, a, b).auxiliary_circle()
        Circle(Point2D(1, 2), Max(a, b))
        """
        return Circle(self.center, Max(self.hradius, self.vradius))

    def director_circle(self):
        """
        Returns a Circle consisting of all points where two perpendicular
        tangent lines to the ellipse cross each other.

        Returns
        =======

        Circle
            A director circle returned as a geometric object.

        Examples
        ========

        >>> from sympy import Ellipse, Point, symbols
        >>> c = Point(3,8)
        >>> Ellipse(c, 7, 9).director_circle()
        Circle(Point2D(3, 8), sqrt(130))
        >>> a, b = symbols('a b')
        >>> Ellipse(c, a, b).director_circle()
        Circle(Point2D(3, 8), sqrt(a**2 + b**2))

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Director_circle

        """
        return Circle(self.center, sqrt(self.hradius**2 + self.vradius**2))

    def plot_interval(self, parameter='t'):
        """The plot interval for the default geometric plot of the Ellipse.

        Parameters
        ==========

        parameter : str, optional
            Default value is 't'.

        Returns
        =======

        plot_interval : list
            [parameter, lower_bound, upper_bound]

        Examples
        ========

        >>> from sympy import Point, Ellipse
        >>> e1 = Ellipse(Point(0, 0), 3, 2)
        >>> e1.plot_interval()
        [t, -pi, pi]

        """
        t = _symbol(parameter, real=True)
        return [t, -S.Pi, S.Pi]

    def random_point(self, seed=None):
        """A random point on the ellipse.

        Returns
        =======

        point : Point

        Examples
        ========

        >>> from sympy import Point, Ellipse
        >>> e1 = Ellipse(Point(0, 0), 3, 2)
        >>> e1.random_point() # gives some random point
        Point2D(...)
        >>> p1 = e1.random_point(seed=0); p1.n(2)
        Point2D(2.1, 1.4)

        Notes
        =====

        When creating a random point, one may simply replace the
        parameter with a random number. When doing so, however, the
        random number should be made a Rational or else the point
        may not test as being in the ellipse:

        >>> from sympy.abc import t
        >>> from sympy import Rational
        >>> arb = e1.arbitrary_point(t); arb
        Point2D(3*cos(t), 2*sin(t))
        >>> arb.subs(t, .1) in e1
        False
        >>> arb.subs(t, Rational(.1)) in e1
        True
        >>> arb.subs(t, Rational('.1')) in e1
        True

        See Also
        ========
        sympy.geometry.point.Point
        arbitrary_point : Returns parameterized point on ellipse
        """
        t = _symbol('t', real=True)
        x, y = self.arbitrary_point(t).args
        # get a random value in [-1, 1) corresponding to cos(t)
        # and confirm that it will test as being in the ellipse
        if seed is not None:
            rng = random.Random(seed)
        else:
            rng = random
        # simplify this now or else the Float will turn s into a Float
        r = Rational(rng.random())
        c = 2*r - 1
        s = sqrt(1 - c**2)
        return Point(x.subs(cos(t), c), y.subs(sin(t), s))

    def reflect(self, line):
        """Override GeometryEntity.reflect since the radius
        is not a GeometryEntity.

        Examples
        ========

        >>> from sympy import Circle, Line
        >>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
        Circle(Point2D(1, 0), -1)
        >>> from sympy import Ellipse, Line, Point
        >>> Ellipse(Point(3, 4), 1, 3).reflect(Line(Point(0, -4), Point(5, 0)))
        Traceback (most recent call last):
        ...
        NotImplementedError:
        General Ellipse is not supported but the equation of the reflected
        Ellipse is given by the zeros of: f(x, y) = (9*x/41 + 40*y/41 +
        37/41)**2 + (40*x/123 - 3*y/41 - 364/123)**2 - 1

        Notes
        =====

        Until the general ellipse (with no axis parallel to the x-axis) is
        supported a NotImplemented error is raised and the equation whose
        zeros define the rotated ellipse is given.

        """

        if line.slope in (0, oo):
            c = self.center
            c = c.reflect(line)
            return self.func(c, -self.hradius, self.vradius)
        else:
            x, y = [uniquely_named_symbol(
                name, (self, line), modify=lambda s: '_' + s, real=True)
                for name in 'xy']
            expr = self.equation(x, y)
            p = Point(x, y).reflect(line)
            result = expr.subs(zip((x, y), p.args
                                   ), simultaneous=True)
            raise NotImplementedError(filldedent(
                'General Ellipse is not supported but the equation '
                'of the reflected Ellipse is given by the zeros of: ' +
                "f(%s, %s) = %s" % (str(x), str(y), str(result))))

    def rotate(self, angle=0, pt=None):
        """Rotate ``angle`` radians counterclockwise about Point ``pt``.

        Note: since the general ellipse is not supported, only rotations that
        are integer multiples of pi/2 are allowed.

        Examples
        ========

        >>> from sympy import Ellipse, pi
        >>> Ellipse((1, 0), 2, 1).rotate(pi/2)
        Ellipse(Point2D(0, 1), 1, 2)
        >>> Ellipse((1, 0), 2, 1).rotate(pi)
        Ellipse(Point2D(-1, 0), 2, 1)
        """
        if self.hradius == self.vradius:
            return self.func(self.center.rotate(angle, pt), self.hradius)
        if (angle/S.Pi).is_integer:
            return super().rotate(angle, pt)
        if (2*angle/S.Pi).is_integer:
            return self.func(self.center.rotate(angle, pt), self.vradius, self.hradius)
        # XXX see https://github.com/sympy/sympy/issues/2815 for general ellipes
        raise NotImplementedError('Only rotations of pi/2 are currently supported for Ellipse.')

    def scale(self, x=1, y=1, pt=None):
        """Override GeometryEntity.scale since it is the major and minor
        axes which must be scaled and they are not GeometryEntities.

        Examples
        ========

        >>> from sympy import Ellipse
        >>> Ellipse((0, 0), 2, 1).scale(2, 4)
        Circle(Point2D(0, 0), 4)
        >>> Ellipse((0, 0), 2, 1).scale(2)
        Ellipse(Point2D(0, 0), 4, 1)
        """
        c = self.center
        if pt:
            pt = Point(pt, dim=2)
            return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
        h = self.hradius
        v = self.vradius
        return self.func(c.scale(x, y), hradius=h*x, vradius=v*y)

    def tangent_lines(self, p):
        """Tangent lines between `p` and the ellipse.

        If `p` is on the ellipse, returns the tangent line through point `p`.
        Otherwise, returns the tangent line(s) from `p` to the ellipse, or
        None if no tangent line is possible (e.g., `p` inside ellipse).

        Parameters
        ==========

        p : Point

        Returns
        =======

        tangent_lines : list with 1 or 2 Lines

        Raises
        ======

        NotImplementedError
            Can only find tangent lines for a point, `p`, on the ellipse.

        See Also
        ========

        sympy.geometry.point.Point, sympy.geometry.line.Line

        Examples
        ========

        >>> from sympy import Point, Ellipse
        >>> e1 = Ellipse(Point(0, 0), 3, 2)
        >>> e1.tangent_lines(Point(3, 0))
        [Line2D(Point2D(3, 0), Point2D(3, -12))]

        """
        p = Point(p, dim=2)
        if self.encloses_point(p):
            return []

        if p in self:
            delta = self.center - p
            rise = (self.vradius**2)*delta.x
            run = -(self.hradius**2)*delta.y
            p2 = Point(simplify(p.x + run),
                       simplify(p.y + rise))
            return [Line(p, p2)]
        else:
            if len(self.foci) == 2:
                f1, f2 = self.foci
                maj = self.hradius
                test = (2*maj -
                        Point.distance(f1, p) -
                        Point.distance(f2, p))
            else:
                test = self.radius - Point.distance(self.center, p)
            if test.is_number and test.is_positive:
                return []
            # else p is outside the ellipse or we can't tell. In case of the
            # latter, the solutions returned will only be valid if
            # the point is not inside the ellipse; if it is, nan will result.
            eq = self.equation(x, y)
            dydx = idiff(eq, y, x)
            slope = Line(p, Point(x, y)).slope

            # TODO: Replace solve with solveset, when this line is tested
            tangent_points = solve([slope - dydx, eq], [x, y])

            # handle horizontal and vertical tangent lines
            if len(tangent_points) == 1:
                if tangent_points[0][
                           0] == p.x or tangent_points[0][1] == p.y:
                    return [Line(p, p + Point(1, 0)), Line(p, p + Point(0, 1))]
                else:
                    return [Line(p, p + Point(0, 1)), Line(p, tangent_points[0])]

            # others
            return [Line(p, tangent_points[0]), Line(p, tangent_points[1])]

    @property
    def vradius(self):
        """The vertical radius of the ellipse.

        Returns
        =======

        vradius : number

        See Also
        ========

        hradius, major, minor

        Examples
        ========

        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.vradius
        1

        """
        return self.args[2]


    def second_moment_of_area(self, point=None):
        """Returns the second moment and product moment area of an ellipse.

        Parameters
        ==========

        point : Point, two-tuple of sympifiable objects, or None(default=None)
            point is the point about which second moment of area is to be found.
            If "point=None" it will be calculated about the axis passing through the
            centroid of the ellipse.

        Returns
        =======

        I_xx, I_yy, I_xy : number or SymPy expression
            I_xx, I_yy are second moment of area of an ellise.
            I_xy is product moment of area of an ellipse.

        Examples
        ========

        >>> from sympy import Point, Ellipse
        >>> p1 = Point(0, 0)
        >>> e1 = Ellipse(p1, 3, 1)
        >>> e1.second_moment_of_area()
        (3*pi/4, 27*pi/4, 0)

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/List_of_second_moments_of_area

        """

        I_xx = (S.Pi*(self.hradius)*(self.vradius**3))/4
        I_yy = (S.Pi*(self.hradius**3)*(self.vradius))/4
        I_xy = 0

        if point is None:
            return I_xx, I_yy, I_xy

        # parallel axis theorem
        I_xx = I_xx + self.area*((point[1] - self.center.y)**2)
        I_yy = I_yy + self.area*((point[0] - self.center.x)**2)
        I_xy = I_xy + self.area*(point[0] - self.center.x)*(point[1] - self.center.y)

        return I_xx, I_yy, I_xy


    def polar_second_moment_of_area(self):
        """Returns the polar second moment of area of an Ellipse

        It is a constituent of the second moment of area, linked through
        the perpendicular axis theorem. While the planar second moment of
        area describes an object's resistance to deflection (bending) when
        subjected to a force applied to a plane parallel to the central
        axis, the polar second moment of area describes an object's
        resistance to deflection when subjected to a moment applied in a
        plane perpendicular to the object's central axis (i.e. parallel to
        the cross-section)

        Examples
        ========

        >>> from sympy import symbols, Circle, Ellipse
        >>> c = Circle((5, 5), 4)
        >>> c.polar_second_moment_of_area()
        128*pi
        >>> a, b = symbols('a, b')
        >>> e = Ellipse((0, 0), a, b)
        >>> e.polar_second_moment_of_area()
        pi*a**3*b/4 + pi*a*b**3/4

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Polar_moment_of_inertia

        """
        second_moment = self.second_moment_of_area()
        return second_moment[0] + second_moment[1]


    def section_modulus(self, point=None):
        """Returns a tuple with the section modulus of an ellipse

        Section modulus is a geometric property of an ellipse defined as the
        ratio of second moment of area to the distance of the extreme end of
        the ellipse from the centroidal axis.

        Parameters
        ==========

        point : Point, two-tuple of sympifyable objects, or None(default=None)
            point is the point at which section modulus is to be found.
            If "point=None" section modulus will be calculated for the
            point farthest from the centroidal axis of the ellipse.

        Returns
        =======

        S_x, S_y: numbers or SymPy expressions
                  S_x is the section modulus with respect to the x-axis
                  S_y is the section modulus with respect to the y-axis
                  A negative sign indicates that the section modulus is
                  determined for a point below the centroidal axis.

        Examples
        ========

        >>> from sympy import Symbol, Ellipse, Circle, Point2D
        >>> d = Symbol('d', positive=True)
        >>> c = Circle((0, 0), d/2)
        >>> c.section_modulus()
        (pi*d**3/32, pi*d**3/32)
        >>> e = Ellipse(Point2D(0, 0), 2, 4)
        >>> e.section_modulus()
        (8*pi, 4*pi)
        >>> e.section_modulus((2, 2))
        (16*pi, 4*pi)

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Section_modulus

        """
        x_c, y_c = self.center
        if point is None:
            # taking x and y as maximum distances from centroid
            x_min, y_min, x_max, y_max = self.bounds
            y = max(y_c - y_min, y_max - y_c)
            x = max(x_c - x_min, x_max - x_c)
        else:
            # taking x and y as distances of the given point from the center
            point = Point2D(point)
            y = point.y - y_c
            x = point.x - x_c

        second_moment = self.second_moment_of_area()
        S_x = second_moment[0]/y
        S_y = second_moment[1]/x

        return S_x, S_y


class Circle(Ellipse):
    """A circle in space.

    Constructed simply from a center and a radius, from three
    non-collinear points, or the equation of a circle.

    Parameters
    ==========

    center : Point
    radius : number or SymPy expression
    points : sequence of three Points
    equation : equation of a circle

    Attributes
    ==========

    radius (synonymous with hradius, vradius, major and minor)
    circumference
    equation

    Raises
    ======

    GeometryError
        When the given equation is not that of a circle.
        When trying to construct circle from incorrect parameters.

    See Also
    ========

    Ellipse, sympy.geometry.point.Point

    Examples
    ========

    >>> from sympy import Point, Circle, Eq
    >>> from sympy.abc import x, y, a, b

    A circle constructed from a center and radius:

    >>> c1 = Circle(Point(0, 0), 5)
    >>> c1.hradius, c1.vradius, c1.radius
    (5, 5, 5)

    A circle constructed from three points:

    >>> c2 = Circle(Point(0, 0), Point(1, 1), Point(1, 0))
    >>> c2.hradius, c2.vradius, c2.radius, c2.center
    (sqrt(2)/2, sqrt(2)/2, sqrt(2)/2, Point2D(1/2, 1/2))

    A circle can be constructed from an equation in the form
    `a*x**2 + by**2 + gx + hy + c = 0`, too:

    >>> Circle(x**2 + y**2 - 25)
    Circle(Point2D(0, 0), 5)

    If the variables corresponding to x and y are named something
    else, their name or symbol can be supplied:

    >>> Circle(Eq(a**2 + b**2, 25), x='a', y=b)
    Circle(Point2D(0, 0), 5)
    """

    def __new__(cls, *args, **kwargs):
        evaluate = kwargs.get('evaluate', global_parameters.evaluate)
        if len(args) == 1 and isinstance(args[0], (Expr, Eq)):
            x = kwargs.get('x', 'x')
            y = kwargs.get('y', 'y')
            equation = args[0].expand()
            if isinstance(equation, Eq):
                equation = equation.lhs - equation.rhs
            x = find(x, equation)
            y = find(y, equation)

            try:
                a, b, c, d, e = linear_coeffs(equation, x**2, y**2, x, y)
            except ValueError:
                raise GeometryError("The given equation is not that of a circle.")

            if S.Zero in (a, b) or a != b:
                raise GeometryError("The given equation is not that of a circle.")

            center_x = -c/a/2
            center_y = -d/b/2
            r2 = (center_x**2) + (center_y**2) - e/a

            return Circle((center_x, center_y), sqrt(r2), evaluate=evaluate)

        else:
            c, r = None, None
            if len(args) == 3:
                args = [Point(a, dim=2, evaluate=evaluate) for a in args]
                t = Triangle(*args)
                if not isinstance(t, Triangle):
                    return t
                c = t.circumcenter
                r = t.circumradius
            elif len(args) == 2:
                # Assume (center, radius) pair
                c = Point(args[0], dim=2, evaluate=evaluate)
                r = args[1]
                # this will prohibit imaginary radius
                try:
                    r = Point(r, 0, evaluate=evaluate).x
                except ValueError:
                    raise GeometryError("Circle with imaginary radius is not permitted")

            if not (c is None or r is None):
                if r == 0:
                    return c
                return GeometryEntity.__new__(cls, c, r, **kwargs)

            raise GeometryError("Circle.__new__ received unknown arguments")

    def _eval_evalf(self, prec=15, **options):
        pt, r = self.args
        dps = prec_to_dps(prec)
        pt = pt.evalf(n=dps, **options)
        r = r.evalf(n=dps, **options)
        return self.func(pt, r, evaluate=False)

    @property
    def circumference(self):
        """The circumference of the circle.

        Returns
        =======

        circumference : number or SymPy expression

        Examples
        ========

        >>> from sympy import Point, Circle
        >>> c1 = Circle(Point(3, 4), 6)
        >>> c1.circumference
        12*pi

        """
        return 2 * S.Pi * self.radius

    def equation(self, x='x', y='y'):
        """The equation of the circle.

        Parameters
        ==========

        x : str or Symbol, optional
            Default value is 'x'.
        y : str or Symbol, optional
            Default value is 'y'.

        Returns
        =======

        equation : SymPy expression

        Examples
        ========

        >>> from sympy import Point, Circle
        >>> c1 = Circle(Point(0, 0), 5)
        >>> c1.equation()
        x**2 + y**2 - 25

        """
        x = _symbol(x, real=True)
        y = _symbol(y, real=True)
        t1 = (x - self.center.x)**2
        t2 = (y - self.center.y)**2
        return t1 + t2 - self.major**2

    def intersection(self, o):
        """The intersection of this circle with another geometrical entity.

        Parameters
        ==========

        o : GeometryEntity

        Returns
        =======

        intersection : list of GeometryEntities

        Examples
        ========

        >>> from sympy import Point, Circle, Line, Ray
        >>> p1, p2, p3 = Point(0, 0), Point(5, 5), Point(6, 0)
        >>> p4 = Point(5, 0)
        >>> c1 = Circle(p1, 5)
        >>> c1.intersection(p2)
        []
        >>> c1.intersection(p4)
        [Point2D(5, 0)]
        >>> c1.intersection(Ray(p1, p2))
        [Point2D(5*sqrt(2)/2, 5*sqrt(2)/2)]
        >>> c1.intersection(Line(p2, p3))
        []

        """
        return Ellipse.intersection(self, o)

    @property
    def radius(self):
        """The radius of the circle.

        Returns
        =======

        radius : number or SymPy expression

        See Also
        ========

        Ellipse.major, Ellipse.minor, Ellipse.hradius, Ellipse.vradius

        Examples
        ========

        >>> from sympy import Point, Circle
        >>> c1 = Circle(Point(3, 4), 6)
        >>> c1.radius
        6

        """
        return self.args[1]

    def reflect(self, line):
        """Override GeometryEntity.reflect since the radius
        is not a GeometryEntity.

        Examples
        ========

        >>> from sympy import Circle, Line
        >>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
        Circle(Point2D(1, 0), -1)
        """
        c = self.center
        c = c.reflect(line)
        return self.func(c, -self.radius)

    def scale(self, x=1, y=1, pt=None):
        """Override GeometryEntity.scale since the radius
        is not a GeometryEntity.

        Examples
        ========

        >>> from sympy import Circle
        >>> Circle((0, 0), 1).scale(2, 2)
        Circle(Point2D(0, 0), 2)
        >>> Circle((0, 0), 1).scale(2, 4)
        Ellipse(Point2D(0, 0), 2, 4)
        """
        c = self.center
        if pt:
            pt = Point(pt, dim=2)
            return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
        c = c.scale(x, y)
        x, y = [abs(i) for i in (x, y)]
        if x == y:
            return self.func(c, x*self.radius)
        h = v = self.radius
        return Ellipse(c, hradius=h*x, vradius=v*y)

    @property
    def vradius(self):
        """
        This Ellipse property is an alias for the Circle's radius.

        Whereas hradius, major and minor can use Ellipse's conventions,
        the vradius does not exist for a circle. It is always a positive
        value in order that the Circle, like Polygons, will have an
        area that can be positive or negative as determined by the sign
        of the hradius.

        Examples
        ========

        >>> from sympy import Point, Circle
        >>> c1 = Circle(Point(3, 4), 6)
        >>> c1.vradius
        6
        """
        return abs(self.radius)


from .polygon import Polygon, Triangle