File size: 19,918 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
from typing import Tuple as tTuple

from sympy.core.basic import Basic
from sympy.core.expr import Expr

from sympy.core import Add, S
from sympy.core.evalf import get_integer_part, PrecisionExhausted
from sympy.core.function import Function
from sympy.core.logic import fuzzy_or
from sympy.core.numbers import Integer, int_valued
from sympy.core.relational import Gt, Lt, Ge, Le, Relational, is_eq
from sympy.core.sympify import _sympify
from sympy.functions.elementary.complexes import im, re
from sympy.multipledispatch import dispatch

###############################################################################
######################### FLOOR and CEILING FUNCTIONS #########################
###############################################################################


class RoundFunction(Function):
    """Abstract base class for rounding functions."""

    args: tTuple[Expr]

    @classmethod
    def eval(cls, arg):
        v = cls._eval_number(arg)
        if v is not None:
            return v

        if arg.is_integer or arg.is_finite is False:
            return arg
        if arg.is_imaginary or (S.ImaginaryUnit*arg).is_real:
            i = im(arg)
            if not i.has(S.ImaginaryUnit):
                return cls(i)*S.ImaginaryUnit
            return cls(arg, evaluate=False)

        # Integral, numerical, symbolic part
        ipart = npart = spart = S.Zero

        # Extract integral (or complex integral) terms
        intof = lambda x: int(x) if int_valued(x) else (
            x if x.is_integer else None)
        for t in Add.make_args(arg):
            if t.is_imaginary and (i := intof(im(t))) is not None:
                ipart += i*S.ImaginaryUnit
            elif (i := intof(t)) is not None:
                ipart += i
            elif t.is_number:
                npart += t
            else:
                spart += t

        if not (npart or spart):
            return ipart

        # Evaluate npart numerically if independent of spart
        if npart and (
            not spart or
            npart.is_real and (spart.is_imaginary or (S.ImaginaryUnit*spart).is_real) or
                npart.is_imaginary and spart.is_real):
            try:
                r, i = get_integer_part(
                    npart, cls._dir, {}, return_ints=True)
                ipart += Integer(r) + Integer(i)*S.ImaginaryUnit
                npart = S.Zero
            except (PrecisionExhausted, NotImplementedError):
                pass

        spart += npart
        if not spart:
            return ipart
        elif spart.is_imaginary or (S.ImaginaryUnit*spart).is_real:
            return ipart + cls(im(spart), evaluate=False)*S.ImaginaryUnit
        elif isinstance(spart, (floor, ceiling)):
            return ipart + spart
        else:
            return ipart + cls(spart, evaluate=False)

    @classmethod
    def _eval_number(cls, arg):
        raise NotImplementedError()

    def _eval_is_finite(self):
        return self.args[0].is_finite

    def _eval_is_real(self):
        return self.args[0].is_real

    def _eval_is_integer(self):
        return self.args[0].is_real


class floor(RoundFunction):
    """
    Floor is a univariate function which returns the largest integer
    value not greater than its argument. This implementation
    generalizes floor to complex numbers by taking the floor of the
    real and imaginary parts separately.

    Examples
    ========

    >>> from sympy import floor, E, I, S, Float, Rational
    >>> floor(17)
    17
    >>> floor(Rational(23, 10))
    2
    >>> floor(2*E)
    5
    >>> floor(-Float(0.567))
    -1
    >>> floor(-I/2)
    -I
    >>> floor(S(5)/2 + 5*I/2)
    2 + 2*I

    See Also
    ========

    sympy.functions.elementary.integers.ceiling

    References
    ==========

    .. [1] "Concrete mathematics" by Graham, pp. 87
    .. [2] https://mathworld.wolfram.com/FloorFunction.html

    """
    _dir = -1

    @classmethod
    def _eval_number(cls, arg):
        if arg.is_Number:
            return arg.floor()
        elif any(isinstance(i, j)
                for i in (arg, -arg) for j in (floor, ceiling)):
            return arg
        if arg.is_NumberSymbol:
            return arg.approximation_interval(Integer)[0]

    def _eval_as_leading_term(self, x, logx=None, cdir=0):
        from sympy.calculus.accumulationbounds import AccumBounds
        arg = self.args[0]
        arg0 = arg.subs(x, 0)
        r = self.subs(x, 0)
        if arg0 is S.NaN or isinstance(arg0, AccumBounds):
            arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
            r = floor(arg0)
        if arg0.is_finite:
            if arg0 == r:
                ndir = arg.dir(x, cdir=cdir if cdir != 0 else 1)
                if ndir.is_negative:
                    return r - 1
                elif ndir.is_positive:
                    return r
                else:
                    raise NotImplementedError("Not sure of sign of %s" % ndir)
            else:
                return r
        return arg.as_leading_term(x, logx=logx, cdir=cdir)

    def _eval_nseries(self, x, n, logx, cdir=0):
        arg = self.args[0]
        arg0 = arg.subs(x, 0)
        r = self.subs(x, 0)
        if arg0 is S.NaN:
            arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
            r = floor(arg0)
        if arg0.is_infinite:
            from sympy.calculus.accumulationbounds import AccumBounds
            from sympy.series.order import Order
            s = arg._eval_nseries(x, n, logx, cdir)
            o = Order(1, (x, 0)) if n <= 0 else AccumBounds(-1, 0)
            return s + o
        if arg0 == r:
            ndir = arg.dir(x, cdir=cdir if cdir != 0 else 1)
            if ndir.is_negative:
                return r - 1
            elif ndir.is_positive:
                return r
            else:
                raise NotImplementedError("Not sure of sign of %s" % ndir)
        else:
            return r

    def _eval_is_negative(self):
        return self.args[0].is_negative

    def _eval_is_nonnegative(self):
        return self.args[0].is_nonnegative

    def _eval_rewrite_as_ceiling(self, arg, **kwargs):
        return -ceiling(-arg)

    def _eval_rewrite_as_frac(self, arg, **kwargs):
        return arg - frac(arg)

    def __le__(self, other):
        other = S(other)
        if self.args[0].is_real:
            if other.is_integer:
                return self.args[0] < other + 1
            if other.is_number and other.is_real:
                return self.args[0] < ceiling(other)
        if self.args[0] == other and other.is_real:
            return S.true
        if other is S.Infinity and self.is_finite:
            return S.true

        return Le(self, other, evaluate=False)

    def __ge__(self, other):
        other = S(other)
        if self.args[0].is_real:
            if other.is_integer:
                return self.args[0] >= other
            if other.is_number and other.is_real:
                return self.args[0] >= ceiling(other)
        if self.args[0] == other and other.is_real:
            return S.false
        if other is S.NegativeInfinity and self.is_finite:
            return S.true

        return Ge(self, other, evaluate=False)

    def __gt__(self, other):
        other = S(other)
        if self.args[0].is_real:
            if other.is_integer:
                return self.args[0] >= other + 1
            if other.is_number and other.is_real:
                return self.args[0] >= ceiling(other)
        if self.args[0] == other and other.is_real:
            return S.false
        if other is S.NegativeInfinity and self.is_finite:
            return S.true

        return Gt(self, other, evaluate=False)

    def __lt__(self, other):
        other = S(other)
        if self.args[0].is_real:
            if other.is_integer:
                return self.args[0] < other
            if other.is_number and other.is_real:
                return self.args[0] < ceiling(other)
        if self.args[0] == other and other.is_real:
            return S.false
        if other is S.Infinity and self.is_finite:
            return S.true

        return Lt(self, other, evaluate=False)


@dispatch(floor, Expr)
def _eval_is_eq(lhs, rhs): # noqa:F811
   return is_eq(lhs.rewrite(ceiling), rhs) or \
        is_eq(lhs.rewrite(frac),rhs)


class ceiling(RoundFunction):
    """
    Ceiling is a univariate function which returns the smallest integer
    value not less than its argument. This implementation
    generalizes ceiling to complex numbers by taking the ceiling of the
    real and imaginary parts separately.

    Examples
    ========

    >>> from sympy import ceiling, E, I, S, Float, Rational
    >>> ceiling(17)
    17
    >>> ceiling(Rational(23, 10))
    3
    >>> ceiling(2*E)
    6
    >>> ceiling(-Float(0.567))
    0
    >>> ceiling(I/2)
    I
    >>> ceiling(S(5)/2 + 5*I/2)
    3 + 3*I

    See Also
    ========

    sympy.functions.elementary.integers.floor

    References
    ==========

    .. [1] "Concrete mathematics" by Graham, pp. 87
    .. [2] https://mathworld.wolfram.com/CeilingFunction.html

    """
    _dir = 1

    @classmethod
    def _eval_number(cls, arg):
        if arg.is_Number:
            return arg.ceiling()
        elif any(isinstance(i, j)
                for i in (arg, -arg) for j in (floor, ceiling)):
            return arg
        if arg.is_NumberSymbol:
            return arg.approximation_interval(Integer)[1]

    def _eval_as_leading_term(self, x, logx=None, cdir=0):
        from sympy.calculus.accumulationbounds import AccumBounds
        arg = self.args[0]
        arg0 = arg.subs(x, 0)
        r = self.subs(x, 0)
        if arg0 is S.NaN or isinstance(arg0, AccumBounds):
            arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
            r = ceiling(arg0)
        if arg0.is_finite:
            if arg0 == r:
                ndir = arg.dir(x, cdir=cdir if cdir != 0 else 1)
                if ndir.is_negative:
                    return r
                elif ndir.is_positive:
                    return r + 1
                else:
                    raise NotImplementedError("Not sure of sign of %s" % ndir)
            else:
                return r
        return arg.as_leading_term(x, logx=logx, cdir=cdir)

    def _eval_nseries(self, x, n, logx, cdir=0):
        arg = self.args[0]
        arg0 = arg.subs(x, 0)
        r = self.subs(x, 0)
        if arg0 is S.NaN:
            arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
            r = ceiling(arg0)
        if arg0.is_infinite:
            from sympy.calculus.accumulationbounds import AccumBounds
            from sympy.series.order import Order
            s = arg._eval_nseries(x, n, logx, cdir)
            o = Order(1, (x, 0)) if n <= 0 else AccumBounds(0, 1)
            return s + o
        if arg0 == r:
            ndir = arg.dir(x, cdir=cdir if cdir != 0 else 1)
            if ndir.is_negative:
                return r
            elif ndir.is_positive:
                return r + 1
            else:
                raise NotImplementedError("Not sure of sign of %s" % ndir)
        else:
            return r

    def _eval_rewrite_as_floor(self, arg, **kwargs):
        return -floor(-arg)

    def _eval_rewrite_as_frac(self, arg, **kwargs):
        return arg + frac(-arg)

    def _eval_is_positive(self):
        return self.args[0].is_positive

    def _eval_is_nonpositive(self):
        return self.args[0].is_nonpositive

    def __lt__(self, other):
        other = S(other)
        if self.args[0].is_real:
            if other.is_integer:
                return self.args[0] <= other - 1
            if other.is_number and other.is_real:
                return self.args[0] <= floor(other)
        if self.args[0] == other and other.is_real:
            return S.false
        if other is S.Infinity and self.is_finite:
            return S.true

        return Lt(self, other, evaluate=False)

    def __gt__(self, other):
        other = S(other)
        if self.args[0].is_real:
            if other.is_integer:
                return self.args[0] > other
            if other.is_number and other.is_real:
                return self.args[0] > floor(other)
        if self.args[0] == other and other.is_real:
            return S.false
        if other is S.NegativeInfinity and self.is_finite:
            return S.true

        return Gt(self, other, evaluate=False)

    def __ge__(self, other):
        other = S(other)
        if self.args[0].is_real:
            if other.is_integer:
                return self.args[0] > other - 1
            if other.is_number and other.is_real:
                return self.args[0] > floor(other)
        if self.args[0] == other and other.is_real:
            return S.true
        if other is S.NegativeInfinity and self.is_finite:
            return S.true

        return Ge(self, other, evaluate=False)

    def __le__(self, other):
        other = S(other)
        if self.args[0].is_real:
            if other.is_integer:
                return self.args[0] <= other
            if other.is_number and other.is_real:
                return self.args[0] <= floor(other)
        if self.args[0] == other and other.is_real:
            return S.false
        if other is S.Infinity and self.is_finite:
            return S.true

        return Le(self, other, evaluate=False)


@dispatch(ceiling, Basic)  # type:ignore
def _eval_is_eq(lhs, rhs): # noqa:F811
    return is_eq(lhs.rewrite(floor), rhs) or is_eq(lhs.rewrite(frac),rhs)


class frac(Function):
    r"""Represents the fractional part of x

    For real numbers it is defined [1]_ as

    .. math::
        x - \left\lfloor{x}\right\rfloor

    Examples
    ========

    >>> from sympy import Symbol, frac, Rational, floor, I
    >>> frac(Rational(4, 3))
    1/3
    >>> frac(-Rational(4, 3))
    2/3

    returns zero for integer arguments

    >>> n = Symbol('n', integer=True)
    >>> frac(n)
    0

    rewrite as floor

    >>> x = Symbol('x')
    >>> frac(x).rewrite(floor)
    x - floor(x)

    for complex arguments

    >>> r = Symbol('r', real=True)
    >>> t = Symbol('t', real=True)
    >>> frac(t + I*r)
    I*frac(r) + frac(t)

    See Also
    ========

    sympy.functions.elementary.integers.floor
    sympy.functions.elementary.integers.ceiling

    References
    ===========

    .. [1] https://en.wikipedia.org/wiki/Fractional_part
    .. [2] https://mathworld.wolfram.com/FractionalPart.html

    """
    @classmethod
    def eval(cls, arg):
        from sympy.calculus.accumulationbounds import AccumBounds

        def _eval(arg):
            if arg in (S.Infinity, S.NegativeInfinity):
                return AccumBounds(0, 1)
            if arg.is_integer:
                return S.Zero
            if arg.is_number:
                if arg is S.NaN:
                    return S.NaN
                elif arg is S.ComplexInfinity:
                    return S.NaN
                else:
                    return arg - floor(arg)
            return cls(arg, evaluate=False)

        real, imag = S.Zero, S.Zero
        for t in Add.make_args(arg):
            # Two checks are needed for complex arguments
            # see issue-7649 for details
            if t.is_imaginary or (S.ImaginaryUnit*t).is_real:
                i = im(t)
                if not i.has(S.ImaginaryUnit):
                    imag += i
                else:
                    real += t
            else:
                real += t

        real = _eval(real)
        imag = _eval(imag)
        return real + S.ImaginaryUnit*imag

    def _eval_rewrite_as_floor(self, arg, **kwargs):
        return arg - floor(arg)

    def _eval_rewrite_as_ceiling(self, arg, **kwargs):
        return arg + ceiling(-arg)

    def _eval_is_finite(self):
        return True

    def _eval_is_real(self):
        return self.args[0].is_extended_real

    def _eval_is_imaginary(self):
        return self.args[0].is_imaginary

    def _eval_is_integer(self):
        return self.args[0].is_integer

    def _eval_is_zero(self):
        return fuzzy_or([self.args[0].is_zero, self.args[0].is_integer])

    def _eval_is_negative(self):
        return False

    def __ge__(self, other):
        if self.is_extended_real:
            other = _sympify(other)
            # Check if other <= 0
            if other.is_extended_nonpositive:
                return S.true
            # Check if other >= 1
            res = self._value_one_or_more(other)
            if res is not None:
                return not(res)
        return Ge(self, other, evaluate=False)

    def __gt__(self, other):
        if self.is_extended_real:
            other = _sympify(other)
            # Check if other < 0
            res = self._value_one_or_more(other)
            if res is not None:
                return not(res)
            # Check if other >= 1
            if other.is_extended_negative:
                return S.true
        return Gt(self, other, evaluate=False)

    def __le__(self, other):
        if self.is_extended_real:
            other = _sympify(other)
            # Check if other < 0
            if other.is_extended_negative:
                return S.false
            # Check if other >= 1
            res = self._value_one_or_more(other)
            if res is not None:
                return res
        return Le(self, other, evaluate=False)

    def __lt__(self, other):
        if self.is_extended_real:
            other = _sympify(other)
            # Check if other <= 0
            if other.is_extended_nonpositive:
                return S.false
            # Check if other >= 1
            res = self._value_one_or_more(other)
            if res is not None:
                return res
        return Lt(self, other, evaluate=False)

    def _value_one_or_more(self, other):
        if other.is_extended_real:
            if other.is_number:
                res = other >= 1
                if res and not isinstance(res, Relational):
                    return S.true
            if other.is_integer and other.is_positive:
                return S.true

    def _eval_as_leading_term(self, x, logx=None, cdir=0):
        from sympy.calculus.accumulationbounds import AccumBounds
        arg = self.args[0]
        arg0 = arg.subs(x, 0)
        r = self.subs(x, 0)

        if arg0.is_finite:
            if r.is_zero:
                ndir = arg.dir(x, cdir=cdir)
                if ndir.is_negative:
                    return S.One
                return (arg - arg0).as_leading_term(x, logx=logx, cdir=cdir)
            else:
                return r
        elif arg0 in (S.ComplexInfinity, S.Infinity, S.NegativeInfinity):
            return AccumBounds(0, 1)
        return arg.as_leading_term(x, logx=logx, cdir=cdir)

    def _eval_nseries(self, x, n, logx, cdir=0):
        from sympy.series.order import Order
        arg = self.args[0]
        arg0 = arg.subs(x, 0)
        r = self.subs(x, 0)

        if arg0.is_infinite:
            from sympy.calculus.accumulationbounds import AccumBounds
            o = Order(1, (x, 0)) if n <= 0 else AccumBounds(0, 1) + Order(x**n, (x, 0))
            return o
        else:
            res = (arg - arg0)._eval_nseries(x, n, logx=logx, cdir=cdir)
            if r.is_zero:
                ndir = arg.dir(x, cdir=cdir)
                res += S.One if ndir.is_negative else S.Zero
            else:
                res += r
            return res


@dispatch(frac, Basic)  # type:ignore
def _eval_is_eq(lhs, rhs): # noqa:F811
    if (lhs.rewrite(floor) == rhs) or \
        (lhs.rewrite(ceiling) == rhs):
        return True
    # Check if other < 0
    if rhs.is_extended_negative:
        return False
    # Check if other >= 1
    res = lhs._value_one_or_more(rhs)
    if res is not None:
        return False