Spaces:
Sleeping
Sleeping
File size: 43,414 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 |
from itertools import product
from typing import Tuple as tTuple
from sympy.core.add import Add
from sympy.core.cache import cacheit
from sympy.core.expr import Expr
from sympy.core.function import (Function, ArgumentIndexError, expand_log,
expand_mul, FunctionClass, PoleError, expand_multinomial, expand_complex)
from sympy.core.logic import fuzzy_and, fuzzy_not, fuzzy_or
from sympy.core.mul import Mul
from sympy.core.numbers import Integer, Rational, pi, I
from sympy.core.parameters import global_parameters
from sympy.core.power import Pow
from sympy.core.relational import Ge
from sympy.core.singleton import S
from sympy.core.symbol import Wild, Dummy
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.complexes import arg, unpolarify, im, re, Abs
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.ntheory import multiplicity, perfect_power
from sympy.ntheory.factor_ import factorint
# NOTE IMPORTANT
# The series expansion code in this file is an important part of the gruntz
# algorithm for determining limits. _eval_nseries has to return a generalized
# power series with coefficients in C(log(x), log).
# In more detail, the result of _eval_nseries(self, x, n) must be
# c_0*x**e_0 + ... (finitely many terms)
# where e_i are numbers (not necessarily integers) and c_i involve only
# numbers, the function log, and log(x). [This also means it must not contain
# log(x(1+p)), this *has* to be expanded to log(x)+log(1+p) if x.is_positive and
# p.is_positive.]
class ExpBase(Function):
unbranched = True
_singularities = (S.ComplexInfinity,)
@property
def kind(self):
return self.exp.kind
def inverse(self, argindex=1):
"""
Returns the inverse function of ``exp(x)``.
"""
return log
def as_numer_denom(self):
"""
Returns this with a positive exponent as a 2-tuple (a fraction).
Examples
========
>>> from sympy import exp
>>> from sympy.abc import x
>>> exp(-x).as_numer_denom()
(1, exp(x))
>>> exp(x).as_numer_denom()
(exp(x), 1)
"""
# this should be the same as Pow.as_numer_denom wrt
# exponent handling
if not self.is_commutative:
return self, S.One
exp = self.exp
neg_exp = exp.is_negative
if not neg_exp and not (-exp).is_negative:
neg_exp = exp.could_extract_minus_sign()
if neg_exp:
return S.One, self.func(-exp)
return self, S.One
@property
def exp(self):
"""
Returns the exponent of the function.
"""
return self.args[0]
def as_base_exp(self):
"""
Returns the 2-tuple (base, exponent).
"""
return self.func(1), Mul(*self.args)
def _eval_adjoint(self):
return self.func(self.exp.adjoint())
def _eval_conjugate(self):
return self.func(self.exp.conjugate())
def _eval_transpose(self):
return self.func(self.exp.transpose())
def _eval_is_finite(self):
arg = self.exp
if arg.is_infinite:
if arg.is_extended_negative:
return True
if arg.is_extended_positive:
return False
if arg.is_finite:
return True
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
z = s.exp.is_zero
if z:
return True
elif s.exp.is_rational and fuzzy_not(z):
return False
else:
return s.is_rational
def _eval_is_zero(self):
return self.exp is S.NegativeInfinity
def _eval_power(self, other):
"""exp(arg)**e -> exp(arg*e) if assumptions allow it.
"""
b, e = self.as_base_exp()
return Pow._eval_power(Pow(b, e, evaluate=False), other)
def _eval_expand_power_exp(self, **hints):
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
arg = self.args[0]
if arg.is_Add and arg.is_commutative:
return Mul.fromiter(self.func(x) for x in arg.args)
elif isinstance(arg, Sum) and arg.is_commutative:
return Product(self.func(arg.function), *arg.limits)
return self.func(arg)
class exp_polar(ExpBase):
r"""
Represent a *polar number* (see g-function Sphinx documentation).
Explanation
===========
``exp_polar`` represents the function
`Exp: \mathbb{C} \rightarrow \mathcal{S}`, sending the complex number
`z = a + bi` to the polar number `r = exp(a), \theta = b`. It is one of
the main functions to construct polar numbers.
Examples
========
>>> from sympy import exp_polar, pi, I, exp
The main difference is that polar numbers do not "wrap around" at `2 \pi`:
>>> exp(2*pi*I)
1
>>> exp_polar(2*pi*I)
exp_polar(2*I*pi)
apart from that they behave mostly like classical complex numbers:
>>> exp_polar(2)*exp_polar(3)
exp_polar(5)
See Also
========
sympy.simplify.powsimp.powsimp
polar_lift
periodic_argument
principal_branch
"""
is_polar = True
is_comparable = False # cannot be evalf'd
def _eval_Abs(self): # Abs is never a polar number
return exp(re(self.args[0]))
def _eval_evalf(self, prec):
""" Careful! any evalf of polar numbers is flaky """
i = im(self.args[0])
try:
bad = (i <= -pi or i > pi)
except TypeError:
bad = True
if bad:
return self # cannot evalf for this argument
res = exp(self.args[0])._eval_evalf(prec)
if i > 0 and im(res) < 0:
# i ~ pi, but exp(I*i) evaluated to argument slightly bigger than pi
return re(res)
return res
def _eval_power(self, other):
return self.func(self.args[0]*other)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def as_base_exp(self):
# XXX exp_polar(0) is special!
if self.args[0] == 0:
return self, S.One
return ExpBase.as_base_exp(self)
class ExpMeta(FunctionClass):
def __instancecheck__(cls, instance):
if exp in instance.__class__.__mro__:
return True
return isinstance(instance, Pow) and instance.base is S.Exp1
class exp(ExpBase, metaclass=ExpMeta):
"""
The exponential function, :math:`e^x`.
Examples
========
>>> from sympy import exp, I, pi
>>> from sympy.abc import x
>>> exp(x)
exp(x)
>>> exp(x).diff(x)
exp(x)
>>> exp(I*pi)
-1
Parameters
==========
arg : Expr
See Also
========
log
"""
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return self
else:
raise ArgumentIndexError(self, argindex)
def _eval_refine(self, assumptions):
from sympy.assumptions import ask, Q
arg = self.args[0]
if arg.is_Mul:
Ioo = I*S.Infinity
if arg in [Ioo, -Ioo]:
return S.NaN
coeff = arg.as_coefficient(pi*I)
if coeff:
if ask(Q.integer(2*coeff)):
if ask(Q.even(coeff)):
return S.One
elif ask(Q.odd(coeff)):
return S.NegativeOne
elif ask(Q.even(coeff + S.Half)):
return -I
elif ask(Q.odd(coeff + S.Half)):
return I
@classmethod
def eval(cls, arg):
from sympy.calculus import AccumBounds
from sympy.matrices.matrixbase import MatrixBase
from sympy.sets.setexpr import SetExpr
from sympy.simplify.simplify import logcombine
if isinstance(arg, MatrixBase):
return arg.exp()
elif global_parameters.exp_is_pow:
return Pow(S.Exp1, arg)
elif arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.One
elif arg is S.One:
return S.Exp1
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Zero
elif arg is S.ComplexInfinity:
return S.NaN
elif isinstance(arg, log):
return arg.args[0]
elif isinstance(arg, AccumBounds):
return AccumBounds(exp(arg.min), exp(arg.max))
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
elif arg.is_Mul:
coeff = arg.as_coefficient(pi*I)
if coeff:
if (2*coeff).is_integer:
if coeff.is_even:
return S.One
elif coeff.is_odd:
return S.NegativeOne
elif (coeff + S.Half).is_even:
return -I
elif (coeff + S.Half).is_odd:
return I
elif coeff.is_Rational:
ncoeff = coeff % 2 # restrict to [0, 2pi)
if ncoeff > 1: # restrict to (-pi, pi]
ncoeff -= 2
if ncoeff != coeff:
return cls(ncoeff*pi*I)
# Warning: code in risch.py will be very sensitive to changes
# in this (see DifferentialExtension).
# look for a single log factor
coeff, terms = arg.as_coeff_Mul()
# but it can't be multiplied by oo
if coeff in [S.NegativeInfinity, S.Infinity]:
if terms.is_number:
if coeff is S.NegativeInfinity:
terms = -terms
if re(terms).is_zero and terms is not S.Zero:
return S.NaN
if re(terms).is_positive and im(terms) is not S.Zero:
return S.ComplexInfinity
if re(terms).is_negative:
return S.Zero
return None
coeffs, log_term = [coeff], None
for term in Mul.make_args(terms):
term_ = logcombine(term)
if isinstance(term_, log):
if log_term is None:
log_term = term_.args[0]
else:
return None
elif term.is_comparable:
coeffs.append(term)
else:
return None
return log_term**Mul(*coeffs) if log_term else None
elif arg.is_Add:
out = []
add = []
argchanged = False
for a in arg.args:
if a is S.One:
add.append(a)
continue
newa = cls(a)
if isinstance(newa, cls):
if newa.args[0] != a:
add.append(newa.args[0])
argchanged = True
else:
add.append(a)
else:
out.append(newa)
if out or argchanged:
return Mul(*out)*cls(Add(*add), evaluate=False)
if arg.is_zero:
return S.One
@property
def base(self):
"""
Returns the base of the exponential function.
"""
return S.Exp1
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
"""
Calculates the next term in the Taylor series expansion.
"""
if n < 0:
return S.Zero
if n == 0:
return S.One
x = sympify(x)
if previous_terms:
p = previous_terms[-1]
if p is not None:
return p * x / n
return x**n/factorial(n)
def as_real_imag(self, deep=True, **hints):
"""
Returns this function as a 2-tuple representing a complex number.
Examples
========
>>> from sympy import exp, I
>>> from sympy.abc import x
>>> exp(x).as_real_imag()
(exp(re(x))*cos(im(x)), exp(re(x))*sin(im(x)))
>>> exp(1).as_real_imag()
(E, 0)
>>> exp(I).as_real_imag()
(cos(1), sin(1))
>>> exp(1+I).as_real_imag()
(E*cos(1), E*sin(1))
See Also
========
sympy.functions.elementary.complexes.re
sympy.functions.elementary.complexes.im
"""
from sympy.functions.elementary.trigonometric import cos, sin
re, im = self.args[0].as_real_imag()
if deep:
re = re.expand(deep, **hints)
im = im.expand(deep, **hints)
cos, sin = cos(im), sin(im)
return (exp(re)*cos, exp(re)*sin)
def _eval_subs(self, old, new):
# keep processing of power-like args centralized in Pow
if old.is_Pow: # handle (exp(3*log(x))).subs(x**2, z) -> z**(3/2)
old = exp(old.exp*log(old.base))
elif old is S.Exp1 and new.is_Function:
old = exp
if isinstance(old, exp) or old is S.Exp1:
f = lambda a: Pow(*a.as_base_exp(), evaluate=False) if (
a.is_Pow or isinstance(a, exp)) else a
return Pow._eval_subs(f(self), f(old), new)
if old is exp and not new.is_Function:
return new**self.exp._subs(old, new)
return Function._eval_subs(self, old, new)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
elif self.args[0].is_imaginary:
arg2 = -S(2) * I * self.args[0] / pi
return arg2.is_even
def _eval_is_complex(self):
def complex_extended_negative(arg):
yield arg.is_complex
yield arg.is_extended_negative
return fuzzy_or(complex_extended_negative(self.args[0]))
def _eval_is_algebraic(self):
if (self.exp / pi / I).is_rational:
return True
if fuzzy_not(self.exp.is_zero):
if self.exp.is_algebraic:
return False
elif (self.exp / pi).is_rational:
return False
def _eval_is_extended_positive(self):
if self.exp.is_extended_real:
return self.args[0] is not S.NegativeInfinity
elif self.exp.is_imaginary:
arg2 = -I * self.args[0] / pi
return arg2.is_even
def _eval_nseries(self, x, n, logx, cdir=0):
# NOTE Please see the comment at the beginning of this file, labelled
# IMPORTANT.
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.integers import ceiling
from sympy.series.limits import limit
from sympy.series.order import Order
from sympy.simplify.powsimp import powsimp
arg = self.exp
arg_series = arg._eval_nseries(x, n=n, logx=logx)
if arg_series.is_Order:
return 1 + arg_series
arg0 = limit(arg_series.removeO(), x, 0)
if arg0 is S.NegativeInfinity:
return Order(x**n, x)
if arg0 is S.Infinity:
return self
if arg0.is_infinite:
raise PoleError("Cannot expand %s around 0" % (self))
# checking for indecisiveness/ sign terms in arg0
if any(isinstance(arg, sign) for arg in arg0.args):
return self
t = Dummy("t")
nterms = n
try:
cf = Order(arg.as_leading_term(x, logx=logx), x).getn()
except (NotImplementedError, PoleError):
cf = 0
if cf and cf > 0:
nterms = ceiling(n/cf)
exp_series = exp(t)._taylor(t, nterms)
r = exp(arg0)*exp_series.subs(t, arg_series - arg0)
rep = {logx: log(x)} if logx is not None else {}
if r.subs(rep) == self:
return r
if cf and cf > 1:
r += Order((arg_series - arg0)**n, x)/x**((cf-1)*n)
else:
r += Order((arg_series - arg0)**n, x)
r = r.expand()
r = powsimp(r, deep=True, combine='exp')
# powsimp may introduce unexpanded (-1)**Rational; see PR #17201
simplerat = lambda x: x.is_Rational and x.q in [3, 4, 6]
w = Wild('w', properties=[simplerat])
r = r.replace(S.NegativeOne**w, expand_complex(S.NegativeOne**w))
return r
def _taylor(self, x, n):
l = []
g = None
for i in range(n):
g = self.taylor_term(i, self.args[0], g)
g = g.nseries(x, n=n)
l.append(g.removeO())
return Add(*l)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.util import AccumBounds
arg = self.args[0].cancel().as_leading_term(x, logx=logx)
arg0 = arg.subs(x, 0)
if arg is S.NaN:
return S.NaN
if isinstance(arg0, AccumBounds):
# This check addresses a corner case involving AccumBounds.
# if isinstance(arg, AccumBounds) is True, then arg0 can either be 0,
# AccumBounds(-oo, 0) or AccumBounds(-oo, oo).
# Check out function: test_issue_18473() in test_exponential.py and
# test_limits.py for more information.
if re(cdir) < S.Zero:
return exp(-arg0)
return exp(arg0)
if arg0 is S.NaN:
arg0 = arg.limit(x, 0)
if arg0.is_infinite is False:
return exp(arg0)
raise PoleError("Cannot expand %s around 0" % (self))
def _eval_rewrite_as_sin(self, arg, **kwargs):
from sympy.functions.elementary.trigonometric import sin
return sin(I*arg + pi/2) - I*sin(I*arg)
def _eval_rewrite_as_cos(self, arg, **kwargs):
from sympy.functions.elementary.trigonometric import cos
return cos(I*arg) + I*cos(I*arg + pi/2)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
from sympy.functions.elementary.hyperbolic import tanh
return (1 + tanh(arg/2))/(1 - tanh(arg/2))
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
from sympy.functions.elementary.trigonometric import sin, cos
if arg.is_Mul:
coeff = arg.coeff(pi*I)
if coeff and coeff.is_number:
cosine, sine = cos(pi*coeff), sin(pi*coeff)
if not isinstance(cosine, cos) and not isinstance (sine, sin):
return cosine + I*sine
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if arg.is_Mul:
logs = [a for a in arg.args if isinstance(a, log) and len(a.args) == 1]
if logs:
return Pow(logs[0].args[0], arg.coeff(logs[0]))
def match_real_imag(expr):
r"""
Try to match expr with $a + Ib$ for real $a$ and $b$.
``match_real_imag`` returns a tuple containing the real and imaginary
parts of expr or ``(None, None)`` if direct matching is not possible. Contrary
to :func:`~.re()`, :func:`~.im()``, and ``as_real_imag()``, this helper will not force things
by returning expressions themselves containing ``re()`` or ``im()`` and it
does not expand its argument either.
"""
r_, i_ = expr.as_independent(I, as_Add=True)
if i_ == 0 and r_.is_real:
return (r_, i_)
i_ = i_.as_coefficient(I)
if i_ and i_.is_real and r_.is_real:
return (r_, i_)
else:
return (None, None) # simpler to check for than None
class log(Function):
r"""
The natural logarithm function `\ln(x)` or `\log(x)`.
Explanation
===========
Logarithms are taken with the natural base, `e`. To get
a logarithm of a different base ``b``, use ``log(x, b)``,
which is essentially short-hand for ``log(x)/log(b)``.
``log`` represents the principal branch of the natural
logarithm. As such it has a branch cut along the negative
real axis and returns values having a complex argument in
`(-\pi, \pi]`.
Examples
========
>>> from sympy import log, sqrt, S, I
>>> log(8, 2)
3
>>> log(S(8)/3, 2)
-log(3)/log(2) + 3
>>> log(-1 + I*sqrt(3))
log(2) + 2*I*pi/3
See Also
========
exp
"""
args: tTuple[Expr]
_singularities = (S.Zero, S.ComplexInfinity)
def fdiff(self, argindex=1):
"""
Returns the first derivative of the function.
"""
if argindex == 1:
return 1/self.args[0]
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
r"""
Returns `e^x`, the inverse function of `\log(x)`.
"""
return exp
@classmethod
def eval(cls, arg, base=None):
from sympy.calculus import AccumBounds
from sympy.sets.setexpr import SetExpr
arg = sympify(arg)
if base is not None:
base = sympify(base)
if base == 1:
if arg == 1:
return S.NaN
else:
return S.ComplexInfinity
try:
# handle extraction of powers of the base now
# or else expand_log in Mul would have to handle this
n = multiplicity(base, arg)
if n:
return n + log(arg / base**n) / log(base)
else:
return log(arg)/log(base)
except ValueError:
pass
if base is not S.Exp1:
return cls(arg)/cls(base)
else:
return cls(arg)
if arg.is_Number:
if arg.is_zero:
return S.ComplexInfinity
elif arg is S.One:
return S.Zero
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Infinity
elif arg is S.NaN:
return S.NaN
elif arg.is_Rational and arg.p == 1:
return -cls(arg.q)
if arg.is_Pow and arg.base is S.Exp1 and arg.exp.is_extended_real:
return arg.exp
if isinstance(arg, exp) and arg.exp.is_extended_real:
return arg.exp
elif isinstance(arg, exp) and arg.exp.is_number:
r_, i_ = match_real_imag(arg.exp)
if i_ and i_.is_comparable:
i_ %= 2*pi
if i_ > pi:
i_ -= 2*pi
return r_ + expand_mul(i_ * I, deep=False)
elif isinstance(arg, exp_polar):
return unpolarify(arg.exp)
elif isinstance(arg, AccumBounds):
if arg.min.is_positive:
return AccumBounds(log(arg.min), log(arg.max))
elif arg.min.is_zero:
return AccumBounds(S.NegativeInfinity, log(arg.max))
else:
return S.NaN
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.is_number:
if arg.is_negative:
return pi * I + cls(-arg)
elif arg is S.ComplexInfinity:
return S.ComplexInfinity
elif arg is S.Exp1:
return S.One
if arg.is_zero:
return S.ComplexInfinity
# don't autoexpand Pow or Mul (see the issue 3351):
if not arg.is_Add:
coeff = arg.as_coefficient(I)
if coeff is not None:
if coeff is S.Infinity:
return S.Infinity
elif coeff is S.NegativeInfinity:
return S.Infinity
elif coeff.is_Rational:
if coeff.is_nonnegative:
return pi * I * S.Half + cls(coeff)
else:
return -pi * I * S.Half + cls(-coeff)
if arg.is_number and arg.is_algebraic:
# Match arg = coeff*(r_ + i_*I) with coeff>0, r_ and i_ real.
coeff, arg_ = arg.as_independent(I, as_Add=False)
if coeff.is_negative:
coeff *= -1
arg_ *= -1
arg_ = expand_mul(arg_, deep=False)
r_, i_ = arg_.as_independent(I, as_Add=True)
i_ = i_.as_coefficient(I)
if coeff.is_real and i_ and i_.is_real and r_.is_real:
if r_.is_zero:
if i_.is_positive:
return pi * I * S.Half + cls(coeff * i_)
elif i_.is_negative:
return -pi * I * S.Half + cls(coeff * -i_)
else:
from sympy.simplify import ratsimp
# Check for arguments involving rational multiples of pi
t = (i_/r_).cancel()
t1 = (-t).cancel()
atan_table = _log_atan_table()
if t in atan_table:
modulus = ratsimp(coeff * Abs(arg_))
if r_.is_positive:
return cls(modulus) + I * atan_table[t]
else:
return cls(modulus) + I * (atan_table[t] - pi)
elif t1 in atan_table:
modulus = ratsimp(coeff * Abs(arg_))
if r_.is_positive:
return cls(modulus) + I * (-atan_table[t1])
else:
return cls(modulus) + I * (pi - atan_table[t1])
def as_base_exp(self):
"""
Returns this function in the form (base, exponent).
"""
return self, S.One
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms): # of log(1+x)
r"""
Returns the next term in the Taylor series expansion of `\log(1+x)`.
"""
from sympy.simplify.powsimp import powsimp
if n < 0:
return S.Zero
x = sympify(x)
if n == 0:
return x
if previous_terms:
p = previous_terms[-1]
if p is not None:
return powsimp((-n) * p * x / (n + 1), deep=True, combine='exp')
return (1 - 2*(n % 2)) * x**(n + 1)/(n + 1)
def _eval_expand_log(self, deep=True, **hints):
from sympy.concrete import Sum, Product
force = hints.get('force', False)
factor = hints.get('factor', False)
if (len(self.args) == 2):
return expand_log(self.func(*self.args), deep=deep, force=force)
arg = self.args[0]
if arg.is_Integer:
# remove perfect powers
p = perfect_power(arg)
logarg = None
coeff = 1
if p is not False:
arg, coeff = p
logarg = self.func(arg)
# expand as product of its prime factors if factor=True
if factor:
p = factorint(arg)
if arg not in p.keys():
logarg = sum(n*log(val) for val, n in p.items())
if logarg is not None:
return coeff*logarg
elif arg.is_Rational:
return log(arg.p) - log(arg.q)
elif arg.is_Mul:
expr = []
nonpos = []
for x in arg.args:
if force or x.is_positive or x.is_polar:
a = self.func(x)
if isinstance(a, log):
expr.append(self.func(x)._eval_expand_log(**hints))
else:
expr.append(a)
elif x.is_negative:
a = self.func(-x)
expr.append(a)
nonpos.append(S.NegativeOne)
else:
nonpos.append(x)
return Add(*expr) + log(Mul(*nonpos))
elif arg.is_Pow or isinstance(arg, exp):
if force or (arg.exp.is_extended_real and (arg.base.is_positive or ((arg.exp+1)
.is_positive and (arg.exp-1).is_nonpositive))) or arg.base.is_polar:
b = arg.base
e = arg.exp
a = self.func(b)
if isinstance(a, log):
return unpolarify(e) * a._eval_expand_log(**hints)
else:
return unpolarify(e) * a
elif isinstance(arg, Product):
if force or arg.function.is_positive:
return Sum(log(arg.function), *arg.limits)
return self.func(arg)
def _eval_simplify(self, **kwargs):
from sympy.simplify.simplify import expand_log, simplify, inversecombine
if len(self.args) == 2: # it's unevaluated
return simplify(self.func(*self.args), **kwargs)
expr = self.func(simplify(self.args[0], **kwargs))
if kwargs['inverse']:
expr = inversecombine(expr)
expr = expand_log(expr, deep=True)
return min([expr, self], key=kwargs['measure'])
def as_real_imag(self, deep=True, **hints):
"""
Returns this function as a complex coordinate.
Examples
========
>>> from sympy import I, log
>>> from sympy.abc import x
>>> log(x).as_real_imag()
(log(Abs(x)), arg(x))
>>> log(I).as_real_imag()
(0, pi/2)
>>> log(1 + I).as_real_imag()
(log(sqrt(2)), pi/4)
>>> log(I*x).as_real_imag()
(log(Abs(x)), arg(I*x))
"""
sarg = self.args[0]
if deep:
sarg = self.args[0].expand(deep, **hints)
sarg_abs = Abs(sarg)
if sarg_abs == sarg:
return self, S.Zero
sarg_arg = arg(sarg)
if hints.get('log', False): # Expand the log
hints['complex'] = False
return (log(sarg_abs).expand(deep, **hints), sarg_arg)
else:
return log(sarg_abs), sarg_arg
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if (self.args[0] - 1).is_zero:
return True
if s.args[0].is_rational and fuzzy_not((self.args[0] - 1).is_zero):
return False
else:
return s.is_rational
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if (self.args[0] - 1).is_zero:
return True
elif fuzzy_not((self.args[0] - 1).is_zero):
if self.args[0].is_algebraic:
return False
else:
return s.is_algebraic
def _eval_is_extended_real(self):
return self.args[0].is_extended_positive
def _eval_is_complex(self):
z = self.args[0]
return fuzzy_and([z.is_complex, fuzzy_not(z.is_zero)])
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_zero:
return False
return arg.is_finite
def _eval_is_extended_positive(self):
return (self.args[0] - 1).is_extended_positive
def _eval_is_zero(self):
return (self.args[0] - 1).is_zero
def _eval_is_extended_nonnegative(self):
return (self.args[0] - 1).is_extended_nonnegative
def _eval_nseries(self, x, n, logx, cdir=0):
# NOTE Please see the comment at the beginning of this file, labelled
# IMPORTANT.
from sympy.series.order import Order
from sympy.simplify.simplify import logcombine
from sympy.core.symbol import Dummy
if self.args[0] == x:
return log(x) if logx is None else logx
arg = self.args[0]
t = Dummy('t', positive=True)
if cdir == 0:
cdir = 1
z = arg.subs(x, cdir*t)
k, l = Wild("k"), Wild("l")
r = z.match(k*t**l)
if r is not None:
k, l = r[k], r[l]
if l != 0 and not l.has(t) and not k.has(t):
r = l*log(x) if logx is None else l*logx
r += log(k) - l*log(cdir) # XXX true regardless of assumptions?
return r
def coeff_exp(term, x):
coeff, exp = S.One, S.Zero
for factor in Mul.make_args(term):
if factor.has(x):
base, exp = factor.as_base_exp()
if base != x:
try:
return term.leadterm(x)
except ValueError:
return term, S.Zero
else:
coeff *= factor
return coeff, exp
# TODO new and probably slow
try:
a, b = z.leadterm(t, logx=logx, cdir=1)
except (ValueError, NotImplementedError, PoleError):
s = z._eval_nseries(t, n=n, logx=logx, cdir=1)
while s.is_Order:
n += 1
s = z._eval_nseries(t, n=n, logx=logx, cdir=1)
try:
a, b = s.removeO().leadterm(t, cdir=1)
except ValueError:
a, b = s.removeO().as_leading_term(t, cdir=1), S.Zero
p = (z/(a*t**b) - 1)._eval_nseries(t, n=n, logx=logx, cdir=1)
if p.has(exp):
p = logcombine(p)
if isinstance(p, Order):
n = p.getn()
_, d = coeff_exp(p, t)
logx = log(x) if logx is None else logx
if not d.is_positive:
res = log(a) - b*log(cdir) + b*logx
_res = res
logflags = {"deep": True, "log": True, "mul": False, "power_exp": False,
"power_base": False, "multinomial": False, "basic": False, "force": True,
"factor": False}
expr = self.expand(**logflags)
if (not a.could_extract_minus_sign() and
logx.could_extract_minus_sign()):
_res = _res.subs(-logx, -log(x)).expand(**logflags)
else:
_res = _res.subs(logx, log(x)).expand(**logflags)
if _res == expr:
return res
return res + Order(x**n, x)
def mul(d1, d2):
res = {}
for e1, e2 in product(d1, d2):
ex = e1 + e2
if ex < n:
res[ex] = res.get(ex, S.Zero) + d1[e1]*d2[e2]
return res
pterms = {}
for term in Add.make_args(p.removeO()):
co1, e1 = coeff_exp(term, t)
pterms[e1] = pterms.get(e1, S.Zero) + co1
k = S.One
terms = {}
pk = pterms
while k*d < n:
coeff = -S.NegativeOne**k/k
for ex in pk:
_ = terms.get(ex, S.Zero) + coeff*pk[ex]
terms[ex] = _.nsimplify()
pk = mul(pk, pterms)
k += S.One
res = log(a) - b*log(cdir) + b*logx
for ex in terms:
res += terms[ex]*t**(ex)
if a.is_negative and im(z) != 0:
from sympy.functions.special.delta_functions import Heaviside
for i, term in enumerate(z.lseries(t)):
if not term.is_real or i == 5:
break
if i < 5:
coeff, _ = term.as_coeff_exponent(t)
res += -2*I*pi*Heaviside(-im(coeff), 0)
res = res.subs(t, x/cdir)
return res + Order(x**n, x)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
# NOTE
# Refer https://github.com/sympy/sympy/pull/23592 for more information
# on each of the following steps involved in this method.
arg0 = self.args[0].together()
# STEP 1
t = Dummy('t', positive=True)
if cdir == 0:
cdir = 1
z = arg0.subs(x, cdir*t)
# STEP 2
try:
c, e = z.leadterm(t, logx=logx, cdir=1)
except ValueError:
arg = arg0.as_leading_term(x, logx=logx, cdir=cdir)
return log(arg)
if c.has(t):
c = c.subs(t, x/cdir)
if e != 0:
raise PoleError("Cannot expand %s around 0" % (self))
return log(c)
# STEP 3
if c == S.One and e == S.Zero:
return (arg0 - S.One).as_leading_term(x, logx=logx)
# STEP 4
res = log(c) - e*log(cdir)
logx = log(x) if logx is None else logx
res += e*logx
# STEP 5
if c.is_negative and im(z) != 0:
from sympy.functions.special.delta_functions import Heaviside
for i, term in enumerate(z.lseries(t)):
if not term.is_real or i == 5:
break
if i < 5:
coeff, _ = term.as_coeff_exponent(t)
res += -2*I*pi*Heaviside(-im(coeff), 0)
return res
class LambertW(Function):
r"""
The Lambert W function $W(z)$ is defined as the inverse
function of $w \exp(w)$ [1]_.
Explanation
===========
In other words, the value of $W(z)$ is such that $z = W(z) \exp(W(z))$
for any complex number $z$. The Lambert W function is a multivalued
function with infinitely many branches $W_k(z)$, indexed by
$k \in \mathbb{Z}$. Each branch gives a different solution $w$
of the equation $z = w \exp(w)$.
The Lambert W function has two partially real branches: the
principal branch ($k = 0$) is real for real $z > -1/e$, and the
$k = -1$ branch is real for $-1/e < z < 0$. All branches except
$k = 0$ have a logarithmic singularity at $z = 0$.
Examples
========
>>> from sympy import LambertW
>>> LambertW(1.2)
0.635564016364870
>>> LambertW(1.2, -1).n()
-1.34747534407696 - 4.41624341514535*I
>>> LambertW(-1).is_real
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Lambert_W_function
"""
_singularities = (-Pow(S.Exp1, -1, evaluate=False), S.ComplexInfinity)
@classmethod
def eval(cls, x, k=None):
if k == S.Zero:
return cls(x)
elif k is None:
k = S.Zero
if k.is_zero:
if x.is_zero:
return S.Zero
if x is S.Exp1:
return S.One
w = Wild('w')
# W(x*log(x)) = log(x) for x >= 1/e
# e.g., W(-1/e) = -1, W(2*log(2)) = log(2)
result = x.match(w*log(w))
if result is not None and Ge(result[w]*S.Exp1, S.One) is S.true:
return log(result[w])
if x == -log(2)/2:
return -log(2)
# W(x**(x+1)*log(x)) = x*log(x) for x > 0
# e.g., W(81*log(3)) = 3*log(3)
result = x.match(w**(w+1)*log(w))
if result is not None and result[w].is_positive is True:
return result[w]*log(result[w])
# W(e**(1/n)/n) = 1/n
# e.g., W(sqrt(e)/2) = 1/2
result = x.match(S.Exp1**(1/w)/w)
if result is not None:
return 1 / result[w]
if x == -pi/2:
return I*pi/2
if x == exp(1 + S.Exp1):
return S.Exp1
if x is S.Infinity:
return S.Infinity
if fuzzy_not(k.is_zero):
if x.is_zero:
return S.NegativeInfinity
if k is S.NegativeOne:
if x == -pi/2:
return -I*pi/2
elif x == -1/S.Exp1:
return S.NegativeOne
elif x == -2*exp(-2):
return -Integer(2)
def fdiff(self, argindex=1):
"""
Return the first derivative of this function.
"""
x = self.args[0]
if len(self.args) == 1:
if argindex == 1:
return LambertW(x)/(x*(1 + LambertW(x)))
else:
k = self.args[1]
if argindex == 1:
return LambertW(x, k)/(x*(1 + LambertW(x, k)))
raise ArgumentIndexError(self, argindex)
def _eval_is_extended_real(self):
x = self.args[0]
if len(self.args) == 1:
k = S.Zero
else:
k = self.args[1]
if k.is_zero:
if (x + 1/S.Exp1).is_positive:
return True
elif (x + 1/S.Exp1).is_nonpositive:
return False
elif (k + 1).is_zero:
if x.is_negative and (x + 1/S.Exp1).is_positive:
return True
elif x.is_nonpositive or (x + 1/S.Exp1).is_nonnegative:
return False
elif fuzzy_not(k.is_zero) and fuzzy_not((k + 1).is_zero):
if x.is_extended_real:
return False
def _eval_is_finite(self):
return self.args[0].is_finite
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic:
return False
else:
return s.is_algebraic
def _eval_as_leading_term(self, x, logx=None, cdir=0):
if len(self.args) == 1:
arg = self.args[0]
arg0 = arg.subs(x, 0).cancel()
if not arg0.is_zero:
return self.func(arg0)
return arg.as_leading_term(x)
def _eval_nseries(self, x, n, logx, cdir=0):
if len(self.args) == 1:
from sympy.functions.elementary.integers import ceiling
from sympy.series.order import Order
arg = self.args[0].nseries(x, n=n, logx=logx)
lt = arg.as_leading_term(x, logx=logx)
lte = 1
if lt.is_Pow:
lte = lt.exp
if ceiling(n/lte) >= 1:
s = Add(*[(-S.One)**(k - 1)*Integer(k)**(k - 2)/
factorial(k - 1)*arg**k for k in range(1, ceiling(n/lte))])
s = expand_multinomial(s)
else:
s = S.Zero
return s + Order(x**n, x)
return super()._eval_nseries(x, n, logx)
def _eval_is_zero(self):
x = self.args[0]
if len(self.args) == 1:
return x.is_zero
else:
return fuzzy_and([x.is_zero, self.args[1].is_zero])
@cacheit
def _log_atan_table():
return {
# first quadrant only
sqrt(3): pi / 3,
1: pi / 4,
sqrt(5 - 2 * sqrt(5)): pi / 5,
sqrt(2) * sqrt(5 - sqrt(5)) / (1 + sqrt(5)): pi / 5,
sqrt(5 + 2 * sqrt(5)): pi * Rational(2, 5),
sqrt(2) * sqrt(sqrt(5) + 5) / (-1 + sqrt(5)): pi * Rational(2, 5),
sqrt(3) / 3: pi / 6,
sqrt(2) - 1: pi / 8,
sqrt(2 - sqrt(2)) / sqrt(sqrt(2) + 2): pi / 8,
sqrt(2) + 1: pi * Rational(3, 8),
sqrt(sqrt(2) + 2) / sqrt(2 - sqrt(2)): pi * Rational(3, 8),
sqrt(1 - 2 * sqrt(5) / 5): pi / 10,
(-sqrt(2) + sqrt(10)) / (2 * sqrt(sqrt(5) + 5)): pi / 10,
sqrt(1 + 2 * sqrt(5) / 5): pi * Rational(3, 10),
(sqrt(2) + sqrt(10)) / (2 * sqrt(5 - sqrt(5))): pi * Rational(3, 10),
2 - sqrt(3): pi / 12,
(-1 + sqrt(3)) / (1 + sqrt(3)): pi / 12,
2 + sqrt(3): pi * Rational(5, 12),
(1 + sqrt(3)) / (-1 + sqrt(3)): pi * Rational(5, 12)
}
|