Spaces:
Sleeping
Sleeping
File size: 99,695 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 |
"""
This module implements some special functions that commonly appear in
combinatorial contexts (e.g. in power series); in particular,
sequences of rational numbers such as Bernoulli and Fibonacci numbers.
Factorials, binomial coefficients and related functions are located in
the separate 'factorials' module.
"""
from math import prod
from collections import defaultdict
from typing import Tuple as tTuple
from sympy.core import S, Symbol, Add, Dummy
from sympy.core.cache import cacheit
from sympy.core.containers import Dict
from sympy.core.expr import Expr
from sympy.core.function import ArgumentIndexError, Function, expand_mul
from sympy.core.logic import fuzzy_not
from sympy.core.mul import Mul
from sympy.core.numbers import E, I, pi, oo, Rational, Integer
from sympy.core.relational import Eq, is_le, is_gt, is_lt
from sympy.external.gmpy import SYMPY_INTS, remove, lcm, legendre, jacobi, kronecker
from sympy.functions.combinatorial.factorials import (binomial,
factorial, subfactorial)
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.piecewise import Piecewise
from sympy.ntheory.factor_ import (factorint, _divisor_sigma, is_carmichael,
find_carmichael_numbers_in_range, find_first_n_carmichaels)
from sympy.ntheory.generate import _primepi
from sympy.ntheory.partitions_ import _partition, _partition_rec
from sympy.ntheory.primetest import isprime, is_square
from sympy.polys.appellseqs import bernoulli_poly, euler_poly, genocchi_poly
from sympy.polys.polytools import cancel
from sympy.utilities.enumerative import MultisetPartitionTraverser
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.iterables import multiset, multiset_derangements, iterable
from sympy.utilities.memoization import recurrence_memo
from sympy.utilities.misc import as_int
from mpmath import mp, workprec
from mpmath.libmp import ifib as _ifib
def _product(a, b):
return prod(range(a, b + 1))
# Dummy symbol used for computing polynomial sequences
_sym = Symbol('x')
#----------------------------------------------------------------------------#
# #
# Carmichael numbers #
# #
#----------------------------------------------------------------------------#
class carmichael(Function):
r"""
Carmichael Numbers:
Certain cryptographic algorithms make use of big prime numbers.
However, checking whether a big number is prime is not so easy.
Randomized prime number checking tests exist that offer a high degree of
confidence of accurate determination at low cost, such as the Fermat test.
Let 'a' be a random number between $2$ and $n - 1$, where $n$ is the
number whose primality we are testing. Then, $n$ is probably prime if it
satisfies the modular arithmetic congruence relation:
.. math :: a^{n-1} = 1 \pmod{n}
(where mod refers to the modulo operation)
If a number passes the Fermat test several times, then it is prime with a
high probability.
Unfortunately, certain composite numbers (non-primes) still pass the Fermat
test with every number smaller than themselves.
These numbers are called Carmichael numbers.
A Carmichael number will pass a Fermat primality test to every base $b$
relatively prime to the number, even though it is not actually prime.
This makes tests based on Fermat's Little Theorem less effective than
strong probable prime tests such as the Baillie-PSW primality test and
the Miller-Rabin primality test.
Examples
========
>>> from sympy.ntheory.factor_ import find_first_n_carmichaels, find_carmichael_numbers_in_range
>>> find_first_n_carmichaels(5)
[561, 1105, 1729, 2465, 2821]
>>> find_carmichael_numbers_in_range(0, 562)
[561]
>>> find_carmichael_numbers_in_range(0,1000)
[561]
>>> find_carmichael_numbers_in_range(0,2000)
[561, 1105, 1729]
References
==========
.. [1] https://en.wikipedia.org/wiki/Carmichael_number
.. [2] https://en.wikipedia.org/wiki/Fermat_primality_test
.. [3] https://www.jstor.org/stable/23248683?seq=1#metadata_info_tab_contents
"""
@staticmethod
def is_perfect_square(n):
sympy_deprecation_warning(
"""
is_perfect_square is just a wrapper around sympy.ntheory.primetest.is_square
so use that directly instead.
""",
deprecated_since_version="1.11",
active_deprecations_target='deprecated-carmichael-static-methods',
)
return is_square(n)
@staticmethod
def divides(p, n):
sympy_deprecation_warning(
"""
divides can be replaced by directly testing n % p == 0.
""",
deprecated_since_version="1.11",
active_deprecations_target='deprecated-carmichael-static-methods',
)
return n % p == 0
@staticmethod
def is_prime(n):
sympy_deprecation_warning(
"""
is_prime is just a wrapper around sympy.ntheory.primetest.isprime so use that
directly instead.
""",
deprecated_since_version="1.11",
active_deprecations_target='deprecated-carmichael-static-methods',
)
return isprime(n)
@staticmethod
def is_carmichael(n):
sympy_deprecation_warning(
"""
is_carmichael is just a wrapper around sympy.ntheory.factor_.is_carmichael so use that
directly instead.
""",
deprecated_since_version="1.13",
active_deprecations_target='deprecated-ntheory-symbolic-functions',
)
return is_carmichael(n)
@staticmethod
def find_carmichael_numbers_in_range(x, y):
sympy_deprecation_warning(
"""
find_carmichael_numbers_in_range is just a wrapper around sympy.ntheory.factor_.find_carmichael_numbers_in_range so use that
directly instead.
""",
deprecated_since_version="1.13",
active_deprecations_target='deprecated-ntheory-symbolic-functions',
)
return find_carmichael_numbers_in_range(x, y)
@staticmethod
def find_first_n_carmichaels(n):
sympy_deprecation_warning(
"""
find_first_n_carmichaels is just a wrapper around sympy.ntheory.factor_.find_first_n_carmichaels so use that
directly instead.
""",
deprecated_since_version="1.13",
active_deprecations_target='deprecated-ntheory-symbolic-functions',
)
return find_first_n_carmichaels(n)
#----------------------------------------------------------------------------#
# #
# Fibonacci numbers #
# #
#----------------------------------------------------------------------------#
class fibonacci(Function):
r"""
Fibonacci numbers / Fibonacci polynomials
The Fibonacci numbers are the integer sequence defined by the
initial terms `F_0 = 0`, `F_1 = 1` and the two-term recurrence
relation `F_n = F_{n-1} + F_{n-2}`. This definition
extended to arbitrary real and complex arguments using
the formula
.. math :: F_z = \frac{\phi^z - \cos(\pi z) \phi^{-z}}{\sqrt 5}
The Fibonacci polynomials are defined by `F_1(x) = 1`,
`F_2(x) = x`, and `F_n(x) = x*F_{n-1}(x) + F_{n-2}(x)` for `n > 2`.
For all positive integers `n`, `F_n(1) = F_n`.
* ``fibonacci(n)`` gives the `n^{th}` Fibonacci number, `F_n`
* ``fibonacci(n, x)`` gives the `n^{th}` Fibonacci polynomial in `x`, `F_n(x)`
Examples
========
>>> from sympy import fibonacci, Symbol
>>> [fibonacci(x) for x in range(11)]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fibonacci(5, Symbol('t'))
t**4 + 3*t**2 + 1
See Also
========
bell, bernoulli, catalan, euler, harmonic, lucas, genocchi, partition, tribonacci
References
==========
.. [1] https://en.wikipedia.org/wiki/Fibonacci_number
.. [2] https://mathworld.wolfram.com/FibonacciNumber.html
"""
@staticmethod
def _fib(n):
return _ifib(n)
@staticmethod
@recurrence_memo([None, S.One, _sym])
def _fibpoly(n, prev):
return (prev[-2] + _sym*prev[-1]).expand()
@classmethod
def eval(cls, n, sym=None):
if n is S.Infinity:
return S.Infinity
if n.is_Integer:
if sym is None:
n = int(n)
if n < 0:
return S.NegativeOne**(n + 1) * fibonacci(-n)
else:
return Integer(cls._fib(n))
else:
if n < 1:
raise ValueError("Fibonacci polynomials are defined "
"only for positive integer indices.")
return cls._fibpoly(n).subs(_sym, sym)
def _eval_rewrite_as_tractable(self, n, **kwargs):
from sympy.functions import sqrt, cos
return (S.GoldenRatio**n - cos(S.Pi*n)/S.GoldenRatio**n)/sqrt(5)
def _eval_rewrite_as_sqrt(self, n, **kwargs):
from sympy.functions.elementary.miscellaneous import sqrt
return 2**(-n)*sqrt(5)*((1 + sqrt(5))**n - (-sqrt(5) + 1)**n) / 5
def _eval_rewrite_as_GoldenRatio(self,n, **kwargs):
return (S.GoldenRatio**n - 1/(-S.GoldenRatio)**n)/(2*S.GoldenRatio-1)
#----------------------------------------------------------------------------#
# #
# Lucas numbers #
# #
#----------------------------------------------------------------------------#
class lucas(Function):
"""
Lucas numbers
Lucas numbers satisfy a recurrence relation similar to that of
the Fibonacci sequence, in which each term is the sum of the
preceding two. They are generated by choosing the initial
values `L_0 = 2` and `L_1 = 1`.
* ``lucas(n)`` gives the `n^{th}` Lucas number
Examples
========
>>> from sympy import lucas
>>> [lucas(x) for x in range(11)]
[2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123]
See Also
========
bell, bernoulli, catalan, euler, fibonacci, harmonic, genocchi, partition, tribonacci
References
==========
.. [1] https://en.wikipedia.org/wiki/Lucas_number
.. [2] https://mathworld.wolfram.com/LucasNumber.html
"""
@classmethod
def eval(cls, n):
if n is S.Infinity:
return S.Infinity
if n.is_Integer:
return fibonacci(n + 1) + fibonacci(n - 1)
def _eval_rewrite_as_sqrt(self, n, **kwargs):
from sympy.functions.elementary.miscellaneous import sqrt
return 2**(-n)*((1 + sqrt(5))**n + (-sqrt(5) + 1)**n)
#----------------------------------------------------------------------------#
# #
# Tribonacci numbers #
# #
#----------------------------------------------------------------------------#
class tribonacci(Function):
r"""
Tribonacci numbers / Tribonacci polynomials
The Tribonacci numbers are the integer sequence defined by the
initial terms `T_0 = 0`, `T_1 = 1`, `T_2 = 1` and the three-term
recurrence relation `T_n = T_{n-1} + T_{n-2} + T_{n-3}`.
The Tribonacci polynomials are defined by `T_0(x) = 0`, `T_1(x) = 1`,
`T_2(x) = x^2`, and `T_n(x) = x^2 T_{n-1}(x) + x T_{n-2}(x) + T_{n-3}(x)`
for `n > 2`. For all positive integers `n`, `T_n(1) = T_n`.
* ``tribonacci(n)`` gives the `n^{th}` Tribonacci number, `T_n`
* ``tribonacci(n, x)`` gives the `n^{th}` Tribonacci polynomial in `x`, `T_n(x)`
Examples
========
>>> from sympy import tribonacci, Symbol
>>> [tribonacci(x) for x in range(11)]
[0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149]
>>> tribonacci(5, Symbol('t'))
t**8 + 3*t**5 + 3*t**2
See Also
========
bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition
References
==========
.. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers
.. [2] https://mathworld.wolfram.com/TribonacciNumber.html
.. [3] https://oeis.org/A000073
"""
@staticmethod
@recurrence_memo([S.Zero, S.One, S.One])
def _trib(n, prev):
return (prev[-3] + prev[-2] + prev[-1])
@staticmethod
@recurrence_memo([S.Zero, S.One, _sym**2])
def _tribpoly(n, prev):
return (prev[-3] + _sym*prev[-2] + _sym**2*prev[-1]).expand()
@classmethod
def eval(cls, n, sym=None):
if n is S.Infinity:
return S.Infinity
if n.is_Integer:
n = int(n)
if n < 0:
raise ValueError("Tribonacci polynomials are defined "
"only for non-negative integer indices.")
if sym is None:
return Integer(cls._trib(n))
else:
return cls._tribpoly(n).subs(_sym, sym)
def _eval_rewrite_as_sqrt(self, n, **kwargs):
from sympy.functions.elementary.miscellaneous import cbrt, sqrt
w = (-1 + S.ImaginaryUnit * sqrt(3)) / 2
a = (1 + cbrt(19 + 3*sqrt(33)) + cbrt(19 - 3*sqrt(33))) / 3
b = (1 + w*cbrt(19 + 3*sqrt(33)) + w**2*cbrt(19 - 3*sqrt(33))) / 3
c = (1 + w**2*cbrt(19 + 3*sqrt(33)) + w*cbrt(19 - 3*sqrt(33))) / 3
Tn = (a**(n + 1)/((a - b)*(a - c))
+ b**(n + 1)/((b - a)*(b - c))
+ c**(n + 1)/((c - a)*(c - b)))
return Tn
def _eval_rewrite_as_TribonacciConstant(self, n, **kwargs):
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.miscellaneous import cbrt, sqrt
b = cbrt(586 + 102*sqrt(33))
Tn = 3 * b * S.TribonacciConstant**n / (b**2 - 2*b + 4)
return floor(Tn + S.Half)
#----------------------------------------------------------------------------#
# #
# Bernoulli numbers #
# #
#----------------------------------------------------------------------------#
class bernoulli(Function):
r"""
Bernoulli numbers / Bernoulli polynomials / Bernoulli function
The Bernoulli numbers are a sequence of rational numbers
defined by `B_0 = 1` and the recursive relation (`n > 0`):
.. math :: n+1 = \sum_{k=0}^n \binom{n+1}{k} B_k
They are also commonly defined by their exponential generating
function, which is `\frac{x}{1 - e^{-x}}`. For odd indices > 1,
the Bernoulli numbers are zero.
The Bernoulli polynomials satisfy the analogous formula:
.. math :: B_n(x) = \sum_{k=0}^n (-1)^k \binom{n}{k} B_k x^{n-k}
Bernoulli numbers and Bernoulli polynomials are related as
`B_n(1) = B_n`.
The generalized Bernoulli function `\operatorname{B}(s, a)`
is defined for any complex `s` and `a`, except where `a` is a
nonpositive integer and `s` is not a nonnegative integer. It is
an entire function of `s` for fixed `a`, related to the Hurwitz
zeta function by
.. math:: \operatorname{B}(s, a) = \begin{cases}
-s \zeta(1-s, a) & s \ne 0 \\ 1 & s = 0 \end{cases}
When `s` is a nonnegative integer this function reduces to the
Bernoulli polynomials: `\operatorname{B}(n, x) = B_n(x)`. When
`a` is omitted it is assumed to be 1, yielding the (ordinary)
Bernoulli function which interpolates the Bernoulli numbers and is
related to the Riemann zeta function.
We compute Bernoulli numbers using Ramanujan's formula:
.. math :: B_n = \frac{A(n) - S(n)}{\binom{n+3}{n}}
where:
.. math :: A(n) = \begin{cases} \frac{n+3}{3} &
n \equiv 0\ \text{or}\ 2 \pmod{6} \\
-\frac{n+3}{6} & n \equiv 4 \pmod{6} \end{cases}
and:
.. math :: S(n) = \sum_{k=1}^{[n/6]} \binom{n+3}{n-6k} B_{n-6k}
This formula is similar to the sum given in the definition, but
cuts `\frac{2}{3}` of the terms. For Bernoulli polynomials, we use
Appell sequences.
For `n` a nonnegative integer and `s`, `a`, `x` arbitrary complex numbers,
* ``bernoulli(n)`` gives the nth Bernoulli number, `B_n`
* ``bernoulli(s)`` gives the Bernoulli function `\operatorname{B}(s)`
* ``bernoulli(n, x)`` gives the nth Bernoulli polynomial in `x`, `B_n(x)`
* ``bernoulli(s, a)`` gives the generalized Bernoulli function
`\operatorname{B}(s, a)`
.. versionchanged:: 1.12
``bernoulli(1)`` gives `+\frac{1}{2}` instead of `-\frac{1}{2}`.
This choice of value confers several theoretical advantages [5]_,
including the extension to complex parameters described above
which this function now implements. The previous behavior, defined
only for nonnegative integers `n`, can be obtained with
``(-1)**n*bernoulli(n)``.
Examples
========
>>> from sympy import bernoulli
>>> from sympy.abc import x
>>> [bernoulli(n) for n in range(11)]
[1, 1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66]
>>> bernoulli(1000001)
0
>>> bernoulli(3, x)
x**3 - 3*x**2/2 + x/2
See Also
========
andre, bell, catalan, euler, fibonacci, harmonic, lucas, genocchi,
partition, tribonacci, sympy.polys.appellseqs.bernoulli_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Bernoulli_number
.. [2] https://en.wikipedia.org/wiki/Bernoulli_polynomial
.. [3] https://mathworld.wolfram.com/BernoulliNumber.html
.. [4] https://mathworld.wolfram.com/BernoulliPolynomial.html
.. [5] Peter Luschny, "The Bernoulli Manifesto",
https://luschny.de/math/zeta/The-Bernoulli-Manifesto.html
.. [6] Peter Luschny, "An introduction to the Bernoulli function",
https://arxiv.org/abs/2009.06743
"""
args: tTuple[Integer]
# Calculates B_n for positive even n
@staticmethod
def _calc_bernoulli(n):
s = 0
a = int(binomial(n + 3, n - 6))
for j in range(1, n//6 + 1):
s += a * bernoulli(n - 6*j)
# Avoid computing each binomial coefficient from scratch
a *= _product(n - 6 - 6*j + 1, n - 6*j)
a //= _product(6*j + 4, 6*j + 9)
if n % 6 == 4:
s = -Rational(n + 3, 6) - s
else:
s = Rational(n + 3, 3) - s
return s / binomial(n + 3, n)
# We implement a specialized memoization scheme to handle each
# case modulo 6 separately
_cache = {0: S.One, 1: Rational(1, 2), 2: Rational(1, 6), 4: Rational(-1, 30)}
_highest = {0: 0, 1: 1, 2: 2, 4: 4}
@classmethod
def eval(cls, n, x=None):
if x is S.One:
return cls(n)
elif n.is_zero:
return S.One
elif n.is_integer is False or n.is_nonnegative is False:
if x is not None and x.is_Integer and x.is_nonpositive:
return S.NaN
return
# Bernoulli numbers
elif x is None:
if n is S.One:
return S.Half
elif n.is_odd and (n-1).is_positive:
return S.Zero
elif n.is_Number:
n = int(n)
# Use mpmath for enormous Bernoulli numbers
if n > 500:
p, q = mp.bernfrac(n)
return Rational(int(p), int(q))
case = n % 6
highest_cached = cls._highest[case]
if n <= highest_cached:
return cls._cache[n]
# To avoid excessive recursion when, say, bernoulli(1000) is
# requested, calculate and cache the entire sequence ... B_988,
# B_994, B_1000 in increasing order
for i in range(highest_cached + 6, n + 6, 6):
b = cls._calc_bernoulli(i)
cls._cache[i] = b
cls._highest[case] = i
return b
# Bernoulli polynomials
elif n.is_Number:
return bernoulli_poly(n, x)
def _eval_rewrite_as_zeta(self, n, x=1, **kwargs):
from sympy.functions.special.zeta_functions import zeta
return Piecewise((1, Eq(n, 0)), (-n * zeta(1-n, x), True))
def _eval_evalf(self, prec):
if not all(x.is_number for x in self.args):
return
n = self.args[0]._to_mpmath(prec)
x = (self.args[1] if len(self.args) > 1 else S.One)._to_mpmath(prec)
with workprec(prec):
if n == 0:
res = mp.mpf(1)
elif n == 1:
res = x - mp.mpf(0.5)
elif mp.isint(n) and n >= 0:
res = mp.bernoulli(n) if x == 1 else mp.bernpoly(n, x)
else:
res = -n * mp.zeta(1-n, x)
return Expr._from_mpmath(res, prec)
#----------------------------------------------------------------------------#
# #
# Bell numbers #
# #
#----------------------------------------------------------------------------#
class bell(Function):
r"""
Bell numbers / Bell polynomials
The Bell numbers satisfy `B_0 = 1` and
.. math:: B_n = \sum_{k=0}^{n-1} \binom{n-1}{k} B_k.
They are also given by:
.. math:: B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}.
The Bell polynomials are given by `B_0(x) = 1` and
.. math:: B_n(x) = x \sum_{k=1}^{n-1} \binom{n-1}{k-1} B_{k-1}(x).
The second kind of Bell polynomials (are sometimes called "partial" Bell
polynomials or incomplete Bell polynomials) are defined as
.. math:: B_{n,k}(x_1, x_2,\dotsc x_{n-k+1}) =
\sum_{j_1+j_2+j_2+\dotsb=k \atop j_1+2j_2+3j_2+\dotsb=n}
\frac{n!}{j_1!j_2!\dotsb j_{n-k+1}!}
\left(\frac{x_1}{1!} \right)^{j_1}
\left(\frac{x_2}{2!} \right)^{j_2} \dotsb
\left(\frac{x_{n-k+1}}{(n-k+1)!} \right) ^{j_{n-k+1}}.
* ``bell(n)`` gives the `n^{th}` Bell number, `B_n`.
* ``bell(n, x)`` gives the `n^{th}` Bell polynomial, `B_n(x)`.
* ``bell(n, k, (x1, x2, ...))`` gives Bell polynomials of the second kind,
`B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})`.
Notes
=====
Not to be confused with Bernoulli numbers and Bernoulli polynomials,
which use the same notation.
Examples
========
>>> from sympy import bell, Symbol, symbols
>>> [bell(n) for n in range(11)]
[1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975]
>>> bell(30)
846749014511809332450147
>>> bell(4, Symbol('t'))
t**4 + 6*t**3 + 7*t**2 + t
>>> bell(6, 2, symbols('x:6')[1:])
6*x1*x5 + 15*x2*x4 + 10*x3**2
See Also
========
bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci
References
==========
.. [1] https://en.wikipedia.org/wiki/Bell_number
.. [2] https://mathworld.wolfram.com/BellNumber.html
.. [3] https://mathworld.wolfram.com/BellPolynomial.html
"""
@staticmethod
@recurrence_memo([1, 1])
def _bell(n, prev):
s = 1
a = 1
for k in range(1, n):
a = a * (n - k) // k
s += a * prev[k]
return s
@staticmethod
@recurrence_memo([S.One, _sym])
def _bell_poly(n, prev):
s = 1
a = 1
for k in range(2, n + 1):
a = a * (n - k + 1) // (k - 1)
s += a * prev[k - 1]
return expand_mul(_sym * s)
@staticmethod
def _bell_incomplete_poly(n, k, symbols):
r"""
The second kind of Bell polynomials (incomplete Bell polynomials).
Calculated by recurrence formula:
.. math:: B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1}) =
\sum_{m=1}^{n-k+1}
\x_m \binom{n-1}{m-1} B_{n-m,k-1}(x_1, x_2, \dotsc, x_{n-m-k})
where
`B_{0,0} = 1;`
`B_{n,0} = 0; for n \ge 1`
`B_{0,k} = 0; for k \ge 1`
"""
if (n == 0) and (k == 0):
return S.One
elif (n == 0) or (k == 0):
return S.Zero
s = S.Zero
a = S.One
for m in range(1, n - k + 2):
s += a * bell._bell_incomplete_poly(
n - m, k - 1, symbols) * symbols[m - 1]
a = a * (n - m) / m
return expand_mul(s)
@classmethod
def eval(cls, n, k_sym=None, symbols=None):
if n is S.Infinity:
if k_sym is None:
return S.Infinity
else:
raise ValueError("Bell polynomial is not defined")
if n.is_negative or n.is_integer is False:
raise ValueError("a non-negative integer expected")
if n.is_Integer and n.is_nonnegative:
if k_sym is None:
return Integer(cls._bell(int(n)))
elif symbols is None:
return cls._bell_poly(int(n)).subs(_sym, k_sym)
else:
r = cls._bell_incomplete_poly(int(n), int(k_sym), symbols)
return r
def _eval_rewrite_as_Sum(self, n, k_sym=None, symbols=None, **kwargs):
from sympy.concrete.summations import Sum
if (k_sym is not None) or (symbols is not None):
return self
# Dobinski's formula
if not n.is_nonnegative:
return self
k = Dummy('k', integer=True, nonnegative=True)
return 1 / E * Sum(k**n / factorial(k), (k, 0, S.Infinity))
#----------------------------------------------------------------------------#
# #
# Harmonic numbers #
# #
#----------------------------------------------------------------------------#
class harmonic(Function):
r"""
Harmonic numbers
The nth harmonic number is given by `\operatorname{H}_{n} =
1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}`.
More generally:
.. math:: \operatorname{H}_{n,m} = \sum_{k=1}^{n} \frac{1}{k^m}
As `n \rightarrow \infty`, `\operatorname{H}_{n,m} \rightarrow \zeta(m)`,
the Riemann zeta function.
* ``harmonic(n)`` gives the nth harmonic number, `\operatorname{H}_n`
* ``harmonic(n, m)`` gives the nth generalized harmonic number
of order `m`, `\operatorname{H}_{n,m}`, where
``harmonic(n) == harmonic(n, 1)``
This function can be extended to complex `n` and `m` where `n` is not a
negative integer or `m` is a nonpositive integer as
.. math:: \operatorname{H}_{n,m} = \begin{cases} \zeta(m) - \zeta(m, n+1)
& m \ne 1 \\ \psi(n+1) + \gamma & m = 1 \end{cases}
Examples
========
>>> from sympy import harmonic, oo
>>> [harmonic(n) for n in range(6)]
[0, 1, 3/2, 11/6, 25/12, 137/60]
>>> [harmonic(n, 2) for n in range(6)]
[0, 1, 5/4, 49/36, 205/144, 5269/3600]
>>> harmonic(oo, 2)
pi**2/6
>>> from sympy import Symbol, Sum
>>> n = Symbol("n")
>>> harmonic(n).rewrite(Sum)
Sum(1/_k, (_k, 1, n))
We can evaluate harmonic numbers for all integral and positive
rational arguments:
>>> from sympy import S, expand_func, simplify
>>> harmonic(8)
761/280
>>> harmonic(11)
83711/27720
>>> H = harmonic(1/S(3))
>>> H
harmonic(1/3)
>>> He = expand_func(H)
>>> He
-log(6) - sqrt(3)*pi/6 + 2*Sum(log(sin(_k*pi/3))*cos(2*_k*pi/3), (_k, 1, 1))
+ 3*Sum(1/(3*_k + 1), (_k, 0, 0))
>>> He.doit()
-log(6) - sqrt(3)*pi/6 - log(sqrt(3)/2) + 3
>>> H = harmonic(25/S(7))
>>> He = simplify(expand_func(H).doit())
>>> He
log(sin(2*pi/7)**(2*cos(16*pi/7))/(14*sin(pi/7)**(2*cos(pi/7))*cos(pi/14)**(2*sin(pi/14)))) + pi*tan(pi/14)/2 + 30247/9900
>>> He.n(40)
1.983697455232980674869851942390639915940
>>> harmonic(25/S(7)).n(40)
1.983697455232980674869851942390639915940
We can rewrite harmonic numbers in terms of polygamma functions:
>>> from sympy import digamma, polygamma
>>> m = Symbol("m", integer=True, positive=True)
>>> harmonic(n).rewrite(digamma)
polygamma(0, n + 1) + EulerGamma
>>> harmonic(n).rewrite(polygamma)
polygamma(0, n + 1) + EulerGamma
>>> harmonic(n,3).rewrite(polygamma)
polygamma(2, n + 1)/2 + zeta(3)
>>> simplify(harmonic(n,m).rewrite(polygamma))
Piecewise((polygamma(0, n + 1) + EulerGamma, Eq(m, 1)),
(-(-1)**m*polygamma(m - 1, n + 1)/factorial(m - 1) + zeta(m), True))
Integer offsets in the argument can be pulled out:
>>> from sympy import expand_func
>>> expand_func(harmonic(n+4))
harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1)
>>> expand_func(harmonic(n-4))
harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n
Some limits can be computed as well:
>>> from sympy import limit, oo
>>> limit(harmonic(n), n, oo)
oo
>>> limit(harmonic(n, 2), n, oo)
pi**2/6
>>> limit(harmonic(n, 3), n, oo)
zeta(3)
For `m > 1`, `H_{n,m}` tends to `\zeta(m)` in the limit of infinite `n`:
>>> m = Symbol("m", positive=True)
>>> limit(harmonic(n, m+1), n, oo)
zeta(m + 1)
See Also
========
bell, bernoulli, catalan, euler, fibonacci, lucas, genocchi, partition, tribonacci
References
==========
.. [1] https://en.wikipedia.org/wiki/Harmonic_number
.. [2] https://functions.wolfram.com/GammaBetaErf/HarmonicNumber/
.. [3] https://functions.wolfram.com/GammaBetaErf/HarmonicNumber2/
"""
@classmethod
def eval(cls, n, m=None):
from sympy.functions.special.zeta_functions import zeta
if m is S.One:
return cls(n)
if m is None:
m = S.One
if n.is_zero:
return S.Zero
elif m.is_zero:
return n
elif n is S.Infinity:
if m.is_negative:
return S.NaN
elif is_le(m, S.One):
return S.Infinity
elif is_gt(m, S.One):
return zeta(m)
elif m.is_Integer and m.is_nonpositive:
return (bernoulli(1-m, n+1) - bernoulli(1-m)) / (1-m)
elif n.is_Integer:
if n.is_negative and (m.is_integer is False or m.is_nonpositive is False):
return S.ComplexInfinity if m is S.One else S.NaN
if n.is_nonnegative:
return Add(*(k**(-m) for k in range(1, int(n)+1)))
def _eval_rewrite_as_polygamma(self, n, m=S.One, **kwargs):
from sympy.functions.special.gamma_functions import gamma, polygamma
if m.is_integer and m.is_positive:
return Piecewise((polygamma(0, n+1) + S.EulerGamma, Eq(m, 1)),
(S.NegativeOne**m * (polygamma(m-1, 1) - polygamma(m-1, n+1)) /
gamma(m), True))
def _eval_rewrite_as_digamma(self, n, m=1, **kwargs):
from sympy.functions.special.gamma_functions import polygamma
return self.rewrite(polygamma)
def _eval_rewrite_as_trigamma(self, n, m=1, **kwargs):
from sympy.functions.special.gamma_functions import polygamma
return self.rewrite(polygamma)
def _eval_rewrite_as_Sum(self, n, m=None, **kwargs):
from sympy.concrete.summations import Sum
k = Dummy("k", integer=True)
if m is None:
m = S.One
return Sum(k**(-m), (k, 1, n))
def _eval_rewrite_as_zeta(self, n, m=S.One, **kwargs):
from sympy.functions.special.zeta_functions import zeta
from sympy.functions.special.gamma_functions import digamma
return Piecewise((digamma(n + 1) + S.EulerGamma, Eq(m, 1)),
(zeta(m) - zeta(m, n+1), True))
def _eval_expand_func(self, **hints):
from sympy.concrete.summations import Sum
n = self.args[0]
m = self.args[1] if len(self.args) == 2 else 1
if m == S.One:
if n.is_Add:
off = n.args[0]
nnew = n - off
if off.is_Integer and off.is_positive:
result = [S.One/(nnew + i) for i in range(off, 0, -1)] + [harmonic(nnew)]
return Add(*result)
elif off.is_Integer and off.is_negative:
result = [-S.One/(nnew + i) for i in range(0, off, -1)] + [harmonic(nnew)]
return Add(*result)
if n.is_Rational:
# Expansions for harmonic numbers at general rational arguments (u + p/q)
# Split n as u + p/q with p < q
p, q = n.as_numer_denom()
u = p // q
p = p - u * q
if u.is_nonnegative and p.is_positive and q.is_positive and p < q:
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.trigonometric import sin, cos, cot
k = Dummy("k")
t1 = q * Sum(1 / (q * k + p), (k, 0, u))
t2 = 2 * Sum(cos((2 * pi * p * k) / S(q)) *
log(sin((pi * k) / S(q))),
(k, 1, floor((q - 1) / S(2))))
t3 = (pi / 2) * cot((pi * p) / q) + log(2 * q)
return t1 + t2 - t3
return self
def _eval_rewrite_as_tractable(self, n, m=1, limitvar=None, **kwargs):
from sympy.functions.special.zeta_functions import zeta
from sympy.functions.special.gamma_functions import polygamma
pg = self.rewrite(polygamma)
if not isinstance(pg, harmonic):
return pg.rewrite("tractable", deep=True)
arg = m - S.One
if arg.is_nonzero:
return (zeta(m) - zeta(m, n+1)).rewrite("tractable", deep=True)
def _eval_evalf(self, prec):
if not all(x.is_number for x in self.args):
return
n = self.args[0]._to_mpmath(prec)
m = (self.args[1] if len(self.args) > 1 else S.One)._to_mpmath(prec)
if mp.isint(n) and n < 0:
return S.NaN
with workprec(prec):
if m == 1:
res = mp.harmonic(n)
else:
res = mp.zeta(m) - mp.zeta(m, n+1)
return Expr._from_mpmath(res, prec)
def fdiff(self, argindex=1):
from sympy.functions.special.zeta_functions import zeta
if len(self.args) == 2:
n, m = self.args
else:
n, m = self.args + (1,)
if argindex == 1:
return m * zeta(m+1, n+1)
else:
raise ArgumentIndexError
#----------------------------------------------------------------------------#
# #
# Euler numbers #
# #
#----------------------------------------------------------------------------#
class euler(Function):
r"""
Euler numbers / Euler polynomials / Euler function
The Euler numbers are given by:
.. math:: E_{2n} = I \sum_{k=1}^{2n+1} \sum_{j=0}^k \binom{k}{j}
\frac{(-1)^j (k-2j)^{2n+1}}{2^k I^k k}
.. math:: E_{2n+1} = 0
Euler numbers and Euler polynomials are related by
.. math:: E_n = 2^n E_n\left(\frac{1}{2}\right).
We compute symbolic Euler polynomials using Appell sequences,
but numerical evaluation of the Euler polynomial is computed
more efficiently (and more accurately) using the mpmath library.
The Euler polynomials are special cases of the generalized Euler function,
related to the Genocchi function as
.. math:: \operatorname{E}(s, a) = -\frac{\operatorname{G}(s+1, a)}{s+1}
with the limit of `\psi\left(\frac{a+1}{2}\right) - \psi\left(\frac{a}{2}\right)`
being taken when `s = -1`. The (ordinary) Euler function interpolating
the Euler numbers is then obtained as
`\operatorname{E}(s) = 2^s \operatorname{E}\left(s, \frac{1}{2}\right)`.
* ``euler(n)`` gives the nth Euler number `E_n`.
* ``euler(s)`` gives the Euler function `\operatorname{E}(s)`.
* ``euler(n, x)`` gives the nth Euler polynomial `E_n(x)`.
* ``euler(s, a)`` gives the generalized Euler function `\operatorname{E}(s, a)`.
Examples
========
>>> from sympy import euler, Symbol, S
>>> [euler(n) for n in range(10)]
[1, 0, -1, 0, 5, 0, -61, 0, 1385, 0]
>>> [2**n*euler(n,1) for n in range(10)]
[1, 1, 0, -2, 0, 16, 0, -272, 0, 7936]
>>> n = Symbol("n")
>>> euler(n + 2*n)
euler(3*n)
>>> x = Symbol("x")
>>> euler(n, x)
euler(n, x)
>>> euler(0, x)
1
>>> euler(1, x)
x - 1/2
>>> euler(2, x)
x**2 - x
>>> euler(3, x)
x**3 - 3*x**2/2 + 1/4
>>> euler(4, x)
x**4 - 2*x**3 + x
>>> euler(12, S.Half)
2702765/4096
>>> euler(12)
2702765
See Also
========
andre, bell, bernoulli, catalan, fibonacci, harmonic, lucas, genocchi,
partition, tribonacci, sympy.polys.appellseqs.euler_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler_numbers
.. [2] https://mathworld.wolfram.com/EulerNumber.html
.. [3] https://en.wikipedia.org/wiki/Alternating_permutation
.. [4] https://mathworld.wolfram.com/AlternatingPermutation.html
"""
@classmethod
def eval(cls, n, x=None):
if n.is_zero:
return S.One
elif n is S.NegativeOne:
if x is None:
return S.Pi/2
from sympy.functions.special.gamma_functions import digamma
return digamma((x+1)/2) - digamma(x/2)
elif n.is_integer is False or n.is_nonnegative is False:
return
# Euler numbers
elif x is None:
if n.is_odd and n.is_positive:
return S.Zero
elif n.is_Number:
from mpmath import mp
n = n._to_mpmath(mp.prec)
res = mp.eulernum(n, exact=True)
return Integer(res)
# Euler polynomials
elif n.is_Number:
return euler_poly(n, x)
def _eval_rewrite_as_Sum(self, n, x=None, **kwargs):
from sympy.concrete.summations import Sum
if x is None and n.is_even:
k = Dummy("k", integer=True)
j = Dummy("j", integer=True)
n = n / 2
Em = (S.ImaginaryUnit * Sum(Sum(binomial(k, j) * (S.NegativeOne**j *
(k - 2*j)**(2*n + 1)) /
(2**k*S.ImaginaryUnit**k * k), (j, 0, k)), (k, 1, 2*n + 1)))
return Em
if x:
k = Dummy("k", integer=True)
return Sum(binomial(n, k)*euler(k)/2**k*(x - S.Half)**(n - k), (k, 0, n))
def _eval_rewrite_as_genocchi(self, n, x=None, **kwargs):
if x is None:
return Piecewise((S.Pi/2, Eq(n, -1)),
(-2**n * genocchi(n+1, S.Half) / (n+1), True))
from sympy.functions.special.gamma_functions import digamma
return Piecewise((digamma((x+1)/2) - digamma(x/2), Eq(n, -1)),
(-genocchi(n+1, x) / (n+1), True))
def _eval_evalf(self, prec):
if not all(i.is_number for i in self.args):
return
from mpmath import mp
m, x = (self.args[0], None) if len(self.args) == 1 else self.args
m = m._to_mpmath(prec)
if x is not None:
x = x._to_mpmath(prec)
with workprec(prec):
if mp.isint(m) and m >= 0:
res = mp.eulernum(m) if x is None else mp.eulerpoly(m, x)
else:
if m == -1:
res = mp.pi if x is None else mp.digamma((x+1)/2) - mp.digamma(x/2)
else:
y = 0.5 if x is None else x
res = 2 * (mp.zeta(-m, y) - 2**(m+1) * mp.zeta(-m, (y+1)/2))
if x is None:
res *= 2**m
return Expr._from_mpmath(res, prec)
#----------------------------------------------------------------------------#
# #
# Catalan numbers #
# #
#----------------------------------------------------------------------------#
class catalan(Function):
r"""
Catalan numbers
The `n^{th}` catalan number is given by:
.. math :: C_n = \frac{1}{n+1} \binom{2n}{n}
* ``catalan(n)`` gives the `n^{th}` Catalan number, `C_n`
Examples
========
>>> from sympy import (Symbol, binomial, gamma, hyper,
... catalan, diff, combsimp, Rational, I)
>>> [catalan(i) for i in range(1,10)]
[1, 2, 5, 14, 42, 132, 429, 1430, 4862]
>>> n = Symbol("n", integer=True)
>>> catalan(n)
catalan(n)
Catalan numbers can be transformed into several other, identical
expressions involving other mathematical functions
>>> catalan(n).rewrite(binomial)
binomial(2*n, n)/(n + 1)
>>> catalan(n).rewrite(gamma)
4**n*gamma(n + 1/2)/(sqrt(pi)*gamma(n + 2))
>>> catalan(n).rewrite(hyper)
hyper((-n, 1 - n), (2,), 1)
For some non-integer values of n we can get closed form
expressions by rewriting in terms of gamma functions:
>>> catalan(Rational(1, 2)).rewrite(gamma)
8/(3*pi)
We can differentiate the Catalan numbers C(n) interpreted as a
continuous real function in n:
>>> diff(catalan(n), n)
(polygamma(0, n + 1/2) - polygamma(0, n + 2) + log(4))*catalan(n)
As a more advanced example consider the following ratio
between consecutive numbers:
>>> combsimp((catalan(n + 1)/catalan(n)).rewrite(binomial))
2*(2*n + 1)/(n + 2)
The Catalan numbers can be generalized to complex numbers:
>>> catalan(I).rewrite(gamma)
4**I*gamma(1/2 + I)/(sqrt(pi)*gamma(2 + I))
and evaluated with arbitrary precision:
>>> catalan(I).evalf(20)
0.39764993382373624267 - 0.020884341620842555705*I
See Also
========
andre, bell, bernoulli, euler, fibonacci, harmonic, lucas, genocchi,
partition, tribonacci, sympy.functions.combinatorial.factorials.binomial
References
==========
.. [1] https://en.wikipedia.org/wiki/Catalan_number
.. [2] https://mathworld.wolfram.com/CatalanNumber.html
.. [3] https://functions.wolfram.com/GammaBetaErf/CatalanNumber/
.. [4] http://geometer.org/mathcircles/catalan.pdf
"""
@classmethod
def eval(cls, n):
from sympy.functions.special.gamma_functions import gamma
if (n.is_Integer and n.is_nonnegative) or \
(n.is_noninteger and n.is_negative):
return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2))
if (n.is_integer and n.is_negative):
if (n + 1).is_negative:
return S.Zero
if (n + 1).is_zero:
return Rational(-1, 2)
def fdiff(self, argindex=1):
from sympy.functions.elementary.exponential import log
from sympy.functions.special.gamma_functions import polygamma
n = self.args[0]
return catalan(n)*(polygamma(0, n + S.Half) - polygamma(0, n + 2) + log(4))
def _eval_rewrite_as_binomial(self, n, **kwargs):
return binomial(2*n, n)/(n + 1)
def _eval_rewrite_as_factorial(self, n, **kwargs):
return factorial(2*n) / (factorial(n+1) * factorial(n))
def _eval_rewrite_as_gamma(self, n, piecewise=True, **kwargs):
from sympy.functions.special.gamma_functions import gamma
# The gamma function allows to generalize Catalan numbers to complex n
return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2))
def _eval_rewrite_as_hyper(self, n, **kwargs):
from sympy.functions.special.hyper import hyper
return hyper([1 - n, -n], [2], 1)
def _eval_rewrite_as_Product(self, n, **kwargs):
from sympy.concrete.products import Product
if not (n.is_integer and n.is_nonnegative):
return self
k = Dummy('k', integer=True, positive=True)
return Product((n + k) / k, (k, 2, n))
def _eval_is_integer(self):
if self.args[0].is_integer and self.args[0].is_nonnegative:
return True
def _eval_is_positive(self):
if self.args[0].is_nonnegative:
return True
def _eval_is_composite(self):
if self.args[0].is_integer and (self.args[0] - 3).is_positive:
return True
def _eval_evalf(self, prec):
from sympy.functions.special.gamma_functions import gamma
if self.args[0].is_number:
return self.rewrite(gamma)._eval_evalf(prec)
#----------------------------------------------------------------------------#
# #
# Genocchi numbers #
# #
#----------------------------------------------------------------------------#
class genocchi(Function):
r"""
Genocchi numbers / Genocchi polynomials / Genocchi function
The Genocchi numbers are a sequence of integers `G_n` that satisfy the
relation:
.. math:: \frac{-2t}{1 + e^{-t}} = \sum_{n=0}^\infty \frac{G_n t^n}{n!}
They are related to the Bernoulli numbers by
.. math:: G_n = 2 (1 - 2^n) B_n
and generalize like the Bernoulli numbers to the Genocchi polynomials and
function as
.. math:: \operatorname{G}(s, a) = 2 \left(\operatorname{B}(s, a) -
2^s \operatorname{B}\left(s, \frac{a+1}{2}\right)\right)
.. versionchanged:: 1.12
``genocchi(1)`` gives `-1` instead of `1`.
Examples
========
>>> from sympy import genocchi, Symbol
>>> [genocchi(n) for n in range(9)]
[0, -1, -1, 0, 1, 0, -3, 0, 17]
>>> n = Symbol('n', integer=True, positive=True)
>>> genocchi(2*n + 1)
0
>>> x = Symbol('x')
>>> genocchi(4, x)
-4*x**3 + 6*x**2 - 1
See Also
========
bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, partition, tribonacci
sympy.polys.appellseqs.genocchi_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Genocchi_number
.. [2] https://mathworld.wolfram.com/GenocchiNumber.html
.. [3] Peter Luschny, "An introduction to the Bernoulli function",
https://arxiv.org/abs/2009.06743
"""
@classmethod
def eval(cls, n, x=None):
if x is S.One:
return cls(n)
elif n.is_integer is False or n.is_nonnegative is False:
return
# Genocchi numbers
elif x is None:
if n.is_odd and (n-1).is_positive:
return S.Zero
elif n.is_Number:
return 2 * (1-S(2)**n) * bernoulli(n)
# Genocchi polynomials
elif n.is_Number:
return genocchi_poly(n, x)
def _eval_rewrite_as_bernoulli(self, n, x=1, **kwargs):
if x == 1 and n.is_integer and n.is_nonnegative:
return 2 * (1-S(2)**n) * bernoulli(n)
return 2 * (bernoulli(n, x) - 2**n * bernoulli(n, (x+1) / 2))
def _eval_rewrite_as_dirichlet_eta(self, n, x=1, **kwargs):
from sympy.functions.special.zeta_functions import dirichlet_eta
return -2*n * dirichlet_eta(1-n, x)
def _eval_is_integer(self):
if len(self.args) > 1 and self.args[1] != 1:
return
n = self.args[0]
if n.is_integer and n.is_nonnegative:
return True
def _eval_is_negative(self):
if len(self.args) > 1 and self.args[1] != 1:
return
n = self.args[0]
if n.is_integer and n.is_nonnegative:
if n.is_odd:
return fuzzy_not((n-1).is_positive)
return (n/2).is_odd
def _eval_is_positive(self):
if len(self.args) > 1 and self.args[1] != 1:
return
n = self.args[0]
if n.is_integer and n.is_nonnegative:
if n.is_zero or n.is_odd:
return False
return (n/2).is_even
def _eval_is_even(self):
if len(self.args) > 1 and self.args[1] != 1:
return
n = self.args[0]
if n.is_integer and n.is_nonnegative:
if n.is_even:
return n.is_zero
return (n-1).is_positive
def _eval_is_odd(self):
if len(self.args) > 1 and self.args[1] != 1:
return
n = self.args[0]
if n.is_integer and n.is_nonnegative:
if n.is_even:
return fuzzy_not(n.is_zero)
return fuzzy_not((n-1).is_positive)
def _eval_is_prime(self):
if len(self.args) > 1 and self.args[1] != 1:
return
n = self.args[0]
# only G_6 = -3 and G_8 = 17 are prime,
# but SymPy does not consider negatives as prime
# so only n=8 is tested
return (n-8).is_zero
def _eval_evalf(self, prec):
if all(i.is_number for i in self.args):
return self.rewrite(bernoulli)._eval_evalf(prec)
#----------------------------------------------------------------------------#
# #
# Andre numbers #
# #
#----------------------------------------------------------------------------#
class andre(Function):
r"""
Andre numbers / Andre function
The Andre number `\mathcal{A}_n` is Luschny's name for half the number of
*alternating permutations* on `n` elements, where a permutation is alternating
if adjacent elements alternately compare "greater" and "smaller" going from
left to right. For example, `2 < 3 > 1 < 4` is an alternating permutation.
This sequence is A000111 in the OEIS, which assigns the names *up/down numbers*
and *Euler zigzag numbers*. It satisfies a recurrence relation similar to that
for the Catalan numbers, with `\mathcal{A}_0 = 1` and
.. math:: 2 \mathcal{A}_{n+1} = \sum_{k=0}^n \binom{n}{k} \mathcal{A}_k \mathcal{A}_{n-k}
The Bernoulli and Euler numbers are signed transformations of the odd- and
even-indexed elements of this sequence respectively:
.. math :: \operatorname{B}_{2k} = \frac{2k \mathcal{A}_{2k-1}}{(-4)^k - (-16)^k}
.. math :: \operatorname{E}_{2k} = (-1)^k \mathcal{A}_{2k}
Like the Bernoulli and Euler numbers, the Andre numbers are interpolated by the
entire Andre function:
.. math :: \mathcal{A}(s) = (-i)^{s+1} \operatorname{Li}_{-s}(i) +
i^{s+1} \operatorname{Li}_{-s}(-i) = \\ \frac{2 \Gamma(s+1)}{(2\pi)^{s+1}}
(\zeta(s+1, 1/4) - \zeta(s+1, 3/4) \cos{\pi s})
Examples
========
>>> from sympy import andre, euler, bernoulli
>>> [andre(n) for n in range(11)]
[1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521]
>>> [(-1)**k * andre(2*k) for k in range(7)]
[1, -1, 5, -61, 1385, -50521, 2702765]
>>> [euler(2*k) for k in range(7)]
[1, -1, 5, -61, 1385, -50521, 2702765]
>>> [andre(2*k-1) * (2*k) / ((-4)**k - (-16)**k) for k in range(1, 8)]
[1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6]
>>> [bernoulli(2*k) for k in range(1, 8)]
[1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6]
See Also
========
bernoulli, catalan, euler, sympy.polys.appellseqs.andre_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Alternating_permutation
.. [2] https://mathworld.wolfram.com/EulerZigzagNumber.html
.. [3] Peter Luschny, "An introduction to the Bernoulli function",
https://arxiv.org/abs/2009.06743
"""
@classmethod
def eval(cls, n):
if n is S.NaN:
return S.NaN
elif n is S.Infinity:
return S.Infinity
if n.is_zero:
return S.One
elif n == -1:
return -log(2)
elif n == -2:
return -2*S.Catalan
elif n.is_Integer:
if n.is_nonnegative and n.is_even:
return abs(euler(n))
elif n.is_odd:
from sympy.functions.special.zeta_functions import zeta
m = -n-1
return I**m * Rational(1-2**m, 4**m) * zeta(-n)
def _eval_rewrite_as_zeta(self, s, **kwargs):
from sympy.functions.elementary.trigonometric import cos
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.zeta_functions import zeta
return 2 * gamma(s+1) / (2*pi)**(s+1) * \
(zeta(s+1, S.One/4) - cos(pi*s) * zeta(s+1, S(3)/4))
def _eval_rewrite_as_polylog(self, s, **kwargs):
from sympy.functions.special.zeta_functions import polylog
return (-I)**(s+1) * polylog(-s, I) + I**(s+1) * polylog(-s, -I)
def _eval_is_integer(self):
n = self.args[0]
if n.is_integer and n.is_nonnegative:
return True
def _eval_is_positive(self):
if self.args[0].is_nonnegative:
return True
def _eval_evalf(self, prec):
if not self.args[0].is_number:
return
s = self.args[0]._to_mpmath(prec+12)
with workprec(prec+12):
sp, cp = mp.sinpi(s/2), mp.cospi(s/2)
res = 2*mp.dirichlet(-s, (-sp, cp, sp, -cp))
return Expr._from_mpmath(res, prec)
#----------------------------------------------------------------------------#
# #
# Partition numbers #
# #
#----------------------------------------------------------------------------#
class partition(Function):
r"""
Partition numbers
The Partition numbers are a sequence of integers `p_n` that represent the
number of distinct ways of representing `n` as a sum of natural numbers
(with order irrelevant). The generating function for `p_n` is given by:
.. math:: \sum_{n=0}^\infty p_n x^n = \prod_{k=1}^\infty (1 - x^k)^{-1}
Examples
========
>>> from sympy import partition, Symbol
>>> [partition(n) for n in range(9)]
[1, 1, 2, 3, 5, 7, 11, 15, 22]
>>> n = Symbol('n', integer=True, negative=True)
>>> partition(n)
0
See Also
========
bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, tribonacci
References
==========
.. [1] https://en.wikipedia.org/wiki/Partition_(number_theory%29
.. [2] https://en.wikipedia.org/wiki/Pentagonal_number_theorem
"""
is_integer = True
is_nonnegative = True
@classmethod
def eval(cls, n):
if n.is_integer is False:
raise TypeError("n should be an integer")
if n.is_negative is True:
return S.Zero
if n.is_zero is True or n is S.One:
return S.One
if n.is_Integer is True:
return S(_partition(as_int(n)))
def _eval_is_positive(self):
if self.args[0].is_nonnegative is True:
return True
class divisor_sigma(Function):
r"""
Calculate the divisor function `\sigma_k(n)` for positive integer n
``divisor_sigma(n, k)`` is equal to ``sum([x**k for x in divisors(n)])``
If n's prime factorization is:
.. math ::
n = \prod_{i=1}^\omega p_i^{m_i},
then
.. math ::
\sigma_k(n) = \prod_{i=1}^\omega (1+p_i^k+p_i^{2k}+\cdots
+ p_i^{m_ik}).
Examples
========
>>> from sympy.functions.combinatorial.numbers import divisor_sigma
>>> divisor_sigma(18, 0)
6
>>> divisor_sigma(39, 1)
56
>>> divisor_sigma(12, 2)
210
>>> divisor_sigma(37)
38
See Also
========
sympy.ntheory.factor_.divisor_count, totient, sympy.ntheory.factor_.divisors, sympy.ntheory.factor_.factorint
References
==========
.. [1] https://en.wikipedia.org/wiki/Divisor_function
"""
is_integer = True
is_positive = True
@classmethod
def eval(cls, n, k=S.One):
if n.is_integer is False:
raise TypeError("n should be an integer")
if n.is_positive is False:
raise ValueError("n should be a positive integer")
if k.is_integer is False:
raise TypeError("k should be an integer")
if k.is_nonnegative is False:
raise ValueError("k should be a nonnegative integer")
if n.is_prime is True:
return 1 + n**k
if n is S.One:
return S.One
if n.is_Integer is True:
if k.is_zero is True:
return Mul(*[e + 1 for e in factorint(n).values()])
if k.is_Integer is True:
return S(_divisor_sigma(as_int(n), as_int(k)))
if k.is_zero is False:
return Mul(*[cancel((p**(k*(e + 1)) - 1) / (p**k - 1)) for p, e in factorint(n).items()])
class udivisor_sigma(Function):
r"""
Calculate the unitary divisor function `\sigma_k^*(n)` for positive integer n
``udivisor_sigma(n, k)`` is equal to ``sum([x**k for x in udivisors(n)])``
If n's prime factorization is:
.. math ::
n = \prod_{i=1}^\omega p_i^{m_i},
then
.. math ::
\sigma_k^*(n) = \prod_{i=1}^\omega (1+ p_i^{m_ik}).
Parameters
==========
k : power of divisors in the sum
for k = 0, 1:
``udivisor_sigma(n, 0)`` is equal to ``udivisor_count(n)``
``udivisor_sigma(n, 1)`` is equal to ``sum(udivisors(n))``
Default for k is 1.
Examples
========
>>> from sympy.functions.combinatorial.numbers import udivisor_sigma
>>> udivisor_sigma(18, 0)
4
>>> udivisor_sigma(74, 1)
114
>>> udivisor_sigma(36, 3)
47450
>>> udivisor_sigma(111)
152
See Also
========
sympy.ntheory.factor_.divisor_count, totient, sympy.ntheory.factor_.divisors,
sympy.ntheory.factor_.udivisors, sympy.ntheory.factor_.udivisor_count, divisor_sigma,
sympy.ntheory.factor_.factorint
References
==========
.. [1] https://mathworld.wolfram.com/UnitaryDivisorFunction.html
"""
is_integer = True
is_positive = True
@classmethod
def eval(cls, n, k=S.One):
if n.is_integer is False:
raise TypeError("n should be an integer")
if n.is_positive is False:
raise ValueError("n should be a positive integer")
if k.is_integer is False:
raise TypeError("k should be an integer")
if k.is_nonnegative is False:
raise ValueError("k should be a nonnegative integer")
if n.is_prime is True:
return 1 + n**k
if n.is_Integer:
return Mul(*[1+p**(k*e) for p, e in factorint(n).items()])
class legendre_symbol(Function):
r"""
Returns the Legendre symbol `(a / p)`.
For an integer ``a`` and an odd prime ``p``, the Legendre symbol is
defined as
.. math ::
\genfrac(){}{}{a}{p} = \begin{cases}
0 & \text{if } p \text{ divides } a\\
1 & \text{if } a \text{ is a quadratic residue modulo } p\\
-1 & \text{if } a \text{ is a quadratic nonresidue modulo } p
\end{cases}
Examples
========
>>> from sympy.functions.combinatorial.numbers import legendre_symbol
>>> [legendre_symbol(i, 7) for i in range(7)]
[0, 1, 1, -1, 1, -1, -1]
>>> sorted(set([i**2 % 7 for i in range(7)]))
[0, 1, 2, 4]
See Also
========
sympy.ntheory.residue_ntheory.is_quad_residue, jacobi_symbol
"""
is_integer = True
is_prime = False
@classmethod
def eval(cls, a, p):
if a.is_integer is False:
raise TypeError("a should be an integer")
if p.is_integer is False:
raise TypeError("p should be an integer")
if p.is_prime is False or p.is_odd is False:
raise ValueError("p should be an odd prime integer")
if (a % p).is_zero is True:
return S.Zero
if a is S.One:
return S.One
if a.is_Integer is True and p.is_Integer is True:
return S(legendre(as_int(a), as_int(p)))
class jacobi_symbol(Function):
r"""
Returns the Jacobi symbol `(m / n)`.
For any integer ``m`` and any positive odd integer ``n`` the Jacobi symbol
is defined as the product of the Legendre symbols corresponding to the
prime factors of ``n``:
.. math ::
\genfrac(){}{}{m}{n} =
\genfrac(){}{}{m}{p^{1}}^{\alpha_1}
\genfrac(){}{}{m}{p^{2}}^{\alpha_2}
...
\genfrac(){}{}{m}{p^{k}}^{\alpha_k}
\text{ where } n =
p_1^{\alpha_1}
p_2^{\alpha_2}
...
p_k^{\alpha_k}
Like the Legendre symbol, if the Jacobi symbol `\genfrac(){}{}{m}{n} = -1`
then ``m`` is a quadratic nonresidue modulo ``n``.
But, unlike the Legendre symbol, if the Jacobi symbol
`\genfrac(){}{}{m}{n} = 1` then ``m`` may or may not be a quadratic residue
modulo ``n``.
Examples
========
>>> from sympy.functions.combinatorial.numbers import jacobi_symbol, legendre_symbol
>>> from sympy import S
>>> jacobi_symbol(45, 77)
-1
>>> jacobi_symbol(60, 121)
1
The relationship between the ``jacobi_symbol`` and ``legendre_symbol`` can
be demonstrated as follows:
>>> L = legendre_symbol
>>> S(45).factors()
{3: 2, 5: 1}
>>> jacobi_symbol(7, 45) == L(7, 3)**2 * L(7, 5)**1
True
See Also
========
sympy.ntheory.residue_ntheory.is_quad_residue, legendre_symbol
"""
is_integer = True
is_prime = False
@classmethod
def eval(cls, m, n):
if m.is_integer is False:
raise TypeError("m should be an integer")
if n.is_integer is False:
raise TypeError("n should be an integer")
if n.is_positive is False or n.is_odd is False:
raise ValueError("n should be an odd positive integer")
if m is S.One or n is S.One:
return S.One
if (m % n).is_zero is True:
return S.Zero
if m.is_Integer is True and n.is_Integer is True:
return S(jacobi(as_int(m), as_int(n)))
class kronecker_symbol(Function):
r"""
Returns the Kronecker symbol `(a / n)`.
Examples
========
>>> from sympy.functions.combinatorial.numbers import kronecker_symbol
>>> kronecker_symbol(45, 77)
-1
>>> kronecker_symbol(13, -120)
1
See Also
========
jacobi_symbol, legendre_symbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Kronecker_symbol
"""
is_integer = True
is_prime = False
@classmethod
def eval(cls, a, n):
if a.is_integer is False:
raise TypeError("a should be an integer")
if n.is_integer is False:
raise TypeError("n should be an integer")
if a is S.One or n is S.One:
return S.One
if a.is_Integer is True and n.is_Integer is True:
return S(kronecker(as_int(a), as_int(n)))
class mobius(Function):
"""
Mobius function maps natural number to {-1, 0, 1}
It is defined as follows:
1) `1` if `n = 1`.
2) `0` if `n` has a squared prime factor.
3) `(-1)^k` if `n` is a square-free positive integer with `k`
number of prime factors.
It is an important multiplicative function in number theory
and combinatorics. It has applications in mathematical series,
algebraic number theory and also physics (Fermion operator has very
concrete realization with Mobius Function model).
Examples
========
>>> from sympy.functions.combinatorial.numbers import mobius
>>> mobius(13*7)
1
>>> mobius(1)
1
>>> mobius(13*7*5)
-1
>>> mobius(13**2)
0
Even in the case of a symbol, if it clearly contains a squared prime factor, it will be zero.
>>> from sympy import Symbol
>>> n = Symbol("n", integer=True, positive=True)
>>> mobius(4*n)
0
>>> mobius(n**2)
0
References
==========
.. [1] https://en.wikipedia.org/wiki/M%C3%B6bius_function
.. [2] Thomas Koshy "Elementary Number Theory with Applications"
.. [3] https://oeis.org/A008683
"""
is_integer = True
is_prime = False
@classmethod
def eval(cls, n):
if n.is_integer is False:
raise TypeError("n should be an integer")
if n.is_positive is False:
raise ValueError("n should be a positive integer")
if n.is_prime is True:
return S.NegativeOne
if n is S.One:
return S.One
result = None
for m, e in (_.as_base_exp() for _ in Mul.make_args(n)):
if m.is_integer is True and m.is_positive is True and \
e.is_integer is True and e.is_positive is True:
lt = is_lt(S.One, e) # 1 < e
if lt is True:
result = S.Zero
elif m.is_Integer is True:
factors = factorint(m)
if any(v > 1 for v in factors.values()):
result = S.Zero
elif lt is False:
s = S.NegativeOne if len(factors) % 2 else S.One
if result is None:
result = s
else:
result *= s
else:
return
return result
class primenu(Function):
r"""
Calculate the number of distinct prime factors for a positive integer n.
If n's prime factorization is:
.. math ::
n = \prod_{i=1}^k p_i^{m_i},
then ``primenu(n)`` or `\nu(n)` is:
.. math ::
\nu(n) = k.
Examples
========
>>> from sympy.functions.combinatorial.numbers import primenu
>>> primenu(1)
0
>>> primenu(30)
3
See Also
========
sympy.ntheory.factor_.factorint
References
==========
.. [1] https://mathworld.wolfram.com/PrimeFactor.html
.. [2] https://oeis.org/A001221
"""
is_integer = True
is_nonnegative = True
@classmethod
def eval(cls, n):
if n.is_integer is False:
raise TypeError("n should be an integer")
if n.is_positive is False:
raise ValueError("n should be a positive integer")
if n.is_prime is True:
return S.One
if n is S.One:
return S.Zero
if n.is_Integer is True:
return S(len(factorint(n)))
class primeomega(Function):
r"""
Calculate the number of prime factors counting multiplicities for a
positive integer n.
If n's prime factorization is:
.. math ::
n = \prod_{i=1}^k p_i^{m_i},
then ``primeomega(n)`` or `\Omega(n)` is:
.. math ::
\Omega(n) = \sum_{i=1}^k m_i.
Examples
========
>>> from sympy.functions.combinatorial.numbers import primeomega
>>> primeomega(1)
0
>>> primeomega(20)
3
See Also
========
sympy.ntheory.factor_.factorint
References
==========
.. [1] https://mathworld.wolfram.com/PrimeFactor.html
.. [2] https://oeis.org/A001222
"""
is_integer = True
is_nonnegative = True
@classmethod
def eval(cls, n):
if n.is_integer is False:
raise TypeError("n should be an integer")
if n.is_positive is False:
raise ValueError("n should be a positive integer")
if n.is_prime is True:
return S.One
if n is S.One:
return S.Zero
if n.is_Integer is True:
return S(sum(factorint(n).values()))
class totient(Function):
r"""
Calculate the Euler totient function phi(n)
``totient(n)`` or `\phi(n)` is the number of positive integers `\leq` n
that are relatively prime to n.
Examples
========
>>> from sympy.functions.combinatorial.numbers import totient
>>> totient(1)
1
>>> totient(25)
20
>>> totient(45) == totient(5)*totient(9)
True
See Also
========
sympy.ntheory.factor_.divisor_count
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler%27s_totient_function
.. [2] https://mathworld.wolfram.com/TotientFunction.html
.. [3] https://oeis.org/A000010
"""
is_integer = True
is_positive = True
@classmethod
def eval(cls, n):
if n.is_integer is False:
raise TypeError("n should be an integer")
if n.is_positive is False:
raise ValueError("n should be a positive integer")
if n is S.One:
return S.One
if n.is_prime is True:
return n - 1
if isinstance(n, Dict):
return S(prod(p**(k-1)*(p-1) for p, k in n.items()))
if n.is_Integer is True:
return S(prod(p**(k-1)*(p-1) for p, k in factorint(n).items()))
class reduced_totient(Function):
r"""
Calculate the Carmichael reduced totient function lambda(n)
``reduced_totient(n)`` or `\lambda(n)` is the smallest m > 0 such that
`k^m \equiv 1 \mod n` for all k relatively prime to n.
Examples
========
>>> from sympy.functions.combinatorial.numbers import reduced_totient
>>> reduced_totient(1)
1
>>> reduced_totient(8)
2
>>> reduced_totient(30)
4
See Also
========
totient
References
==========
.. [1] https://en.wikipedia.org/wiki/Carmichael_function
.. [2] https://mathworld.wolfram.com/CarmichaelFunction.html
.. [3] https://oeis.org/A002322
"""
is_integer = True
is_positive = True
@classmethod
def eval(cls, n):
if n.is_integer is False:
raise TypeError("n should be an integer")
if n.is_positive is False:
raise ValueError("n should be a positive integer")
if n is S.One:
return S.One
if n.is_prime is True:
return n - 1
if isinstance(n, Dict):
t = 1
if 2 in n:
t = (1 << (n[2] - 2)) if 2 < n[2] else n[2]
return S(lcm(int(t), *(int(p-1)*int(p)**int(k-1) for p, k in n.items() if p != 2)))
if n.is_Integer is True:
n, t = remove(int(n), 2)
if not t:
t = 1
elif 2 < t:
t = 1 << (t - 2)
return S(lcm(t, *((p-1)*p**(k-1) for p, k in factorint(n).items())))
class primepi(Function):
r""" Represents the prime counting function pi(n) = the number
of prime numbers less than or equal to n.
Examples
========
>>> from sympy.functions.combinatorial.numbers import primepi
>>> from sympy import prime, prevprime, isprime
>>> primepi(25)
9
So there are 9 primes less than or equal to 25. Is 25 prime?
>>> isprime(25)
False
It is not. So the first prime less than 25 must be the
9th prime:
>>> prevprime(25) == prime(9)
True
See Also
========
sympy.ntheory.primetest.isprime : Test if n is prime
sympy.ntheory.generate.primerange : Generate all primes in a given range
sympy.ntheory.generate.prime : Return the nth prime
References
==========
.. [1] https://oeis.org/A000720
"""
is_integer = True
is_nonnegative = True
@classmethod
def eval(cls, n):
if n is S.Infinity:
return S.Infinity
if n is S.NegativeInfinity:
return S.Zero
if n.is_real is False:
raise TypeError("n should be a real")
if is_lt(n, S(2)) is True:
return S.Zero
try:
n = int(n)
except TypeError:
return
return S(_primepi(n))
#######################################################################
###
### Functions for enumerating partitions, permutations and combinations
###
#######################################################################
class _MultisetHistogram(tuple):
pass
_N = -1
_ITEMS = -2
_M = slice(None, _ITEMS)
def _multiset_histogram(n):
"""Return tuple used in permutation and combination counting. Input
is a dictionary giving items with counts as values or a sequence of
items (which need not be sorted).
The data is stored in a class deriving from tuple so it is easily
recognized and so it can be converted easily to a list.
"""
if isinstance(n, dict): # item: count
if not all(isinstance(v, int) and v >= 0 for v in n.values()):
raise ValueError
tot = sum(n.values())
items = sum(1 for k in n if n[k] > 0)
return _MultisetHistogram([n[k] for k in n if n[k] > 0] + [items, tot])
else:
n = list(n)
s = set(n)
lens = len(s)
lenn = len(n)
if lens == lenn:
n = [1]*lenn + [lenn, lenn]
return _MultisetHistogram(n)
m = dict(zip(s, range(lens)))
d = dict(zip(range(lens), (0,)*lens))
for i in n:
d[m[i]] += 1
return _multiset_histogram(d)
def nP(n, k=None, replacement=False):
"""Return the number of permutations of ``n`` items taken ``k`` at a time.
Possible values for ``n``:
integer - set of length ``n``
sequence - converted to a multiset internally
multiset - {element: multiplicity}
If ``k`` is None then the total of all permutations of length 0
through the number of items represented by ``n`` will be returned.
If ``replacement`` is True then a given item can appear more than once
in the ``k`` items. (For example, for 'ab' permutations of 2 would
include 'aa', 'ab', 'ba' and 'bb'.) The multiplicity of elements in
``n`` is ignored when ``replacement`` is True but the total number
of elements is considered since no element can appear more times than
the number of elements in ``n``.
Examples
========
>>> from sympy.functions.combinatorial.numbers import nP
>>> from sympy.utilities.iterables import multiset_permutations, multiset
>>> nP(3, 2)
6
>>> nP('abc', 2) == nP(multiset('abc'), 2) == 6
True
>>> nP('aab', 2)
3
>>> nP([1, 2, 2], 2)
3
>>> [nP(3, i) for i in range(4)]
[1, 3, 6, 6]
>>> nP(3) == sum(_)
True
When ``replacement`` is True, each item can have multiplicity
equal to the length represented by ``n``:
>>> nP('aabc', replacement=True)
121
>>> [len(list(multiset_permutations('aaaabbbbcccc', i))) for i in range(5)]
[1, 3, 9, 27, 81]
>>> sum(_)
121
See Also
========
sympy.utilities.iterables.multiset_permutations
References
==========
.. [1] https://en.wikipedia.org/wiki/Permutation
"""
try:
n = as_int(n)
except ValueError:
return Integer(_nP(_multiset_histogram(n), k, replacement))
return Integer(_nP(n, k, replacement))
@cacheit
def _nP(n, k=None, replacement=False):
if k == 0:
return 1
if isinstance(n, SYMPY_INTS): # n different items
# assert n >= 0
if k is None:
return sum(_nP(n, i, replacement) for i in range(n + 1))
elif replacement:
return n**k
elif k > n:
return 0
elif k == n:
return factorial(k)
elif k == 1:
return n
else:
# assert k >= 0
return _product(n - k + 1, n)
elif isinstance(n, _MultisetHistogram):
if k is None:
return sum(_nP(n, i, replacement) for i in range(n[_N] + 1))
elif replacement:
return n[_ITEMS]**k
elif k == n[_N]:
return factorial(k)/prod([factorial(i) for i in n[_M] if i > 1])
elif k > n[_N]:
return 0
elif k == 1:
return n[_ITEMS]
else:
# assert k >= 0
tot = 0
n = list(n)
for i in range(len(n[_M])):
if not n[i]:
continue
n[_N] -= 1
if n[i] == 1:
n[i] = 0
n[_ITEMS] -= 1
tot += _nP(_MultisetHistogram(n), k - 1)
n[_ITEMS] += 1
n[i] = 1
else:
n[i] -= 1
tot += _nP(_MultisetHistogram(n), k - 1)
n[i] += 1
n[_N] += 1
return tot
@cacheit
def _AOP_product(n):
"""for n = (m1, m2, .., mk) return the coefficients of the polynomial,
prod(sum(x**i for i in range(nj + 1)) for nj in n); i.e. the coefficients
of the product of AOPs (all-one polynomials) or order given in n. The
resulting coefficient corresponding to x**r is the number of r-length
combinations of sum(n) elements with multiplicities given in n.
The coefficients are given as a default dictionary (so if a query is made
for a key that is not present, 0 will be returned).
Examples
========
>>> from sympy.functions.combinatorial.numbers import _AOP_product
>>> from sympy.abc import x
>>> n = (2, 2, 3) # e.g. aabbccc
>>> prod = ((x**2 + x + 1)*(x**2 + x + 1)*(x**3 + x**2 + x + 1)).expand()
>>> c = _AOP_product(n); dict(c)
{0: 1, 1: 3, 2: 6, 3: 8, 4: 8, 5: 6, 6: 3, 7: 1}
>>> [c[i] for i in range(8)] == [prod.coeff(x, i) for i in range(8)]
True
The generating poly used here is the same as that listed in
https://tinyurl.com/cep849r, but in a refactored form.
"""
n = list(n)
ord = sum(n)
need = (ord + 2)//2
rv = [1]*(n.pop() + 1)
rv.extend((0,) * (need - len(rv)))
rv = rv[:need]
while n:
ni = n.pop()
N = ni + 1
was = rv[:]
for i in range(1, min(N, len(rv))):
rv[i] += rv[i - 1]
for i in range(N, need):
rv[i] += rv[i - 1] - was[i - N]
rev = list(reversed(rv))
if ord % 2:
rv = rv + rev
else:
rv[-1:] = rev
d = defaultdict(int)
for i, r in enumerate(rv):
d[i] = r
return d
def nC(n, k=None, replacement=False):
"""Return the number of combinations of ``n`` items taken ``k`` at a time.
Possible values for ``n``:
integer - set of length ``n``
sequence - converted to a multiset internally
multiset - {element: multiplicity}
If ``k`` is None then the total of all combinations of length 0
through the number of items represented in ``n`` will be returned.
If ``replacement`` is True then a given item can appear more than once
in the ``k`` items. (For example, for 'ab' sets of 2 would include 'aa',
'ab', and 'bb'.) The multiplicity of elements in ``n`` is ignored when
``replacement`` is True but the total number of elements is considered
since no element can appear more times than the number of elements in
``n``.
Examples
========
>>> from sympy.functions.combinatorial.numbers import nC
>>> from sympy.utilities.iterables import multiset_combinations
>>> nC(3, 2)
3
>>> nC('abc', 2)
3
>>> nC('aab', 2)
2
When ``replacement`` is True, each item can have multiplicity
equal to the length represented by ``n``:
>>> nC('aabc', replacement=True)
35
>>> [len(list(multiset_combinations('aaaabbbbcccc', i))) for i in range(5)]
[1, 3, 6, 10, 15]
>>> sum(_)
35
If there are ``k`` items with multiplicities ``m_1, m_2, ..., m_k``
then the total of all combinations of length 0 through ``k`` is the
product, ``(m_1 + 1)*(m_2 + 1)*...*(m_k + 1)``. When the multiplicity
of each item is 1 (i.e., k unique items) then there are 2**k
combinations. For example, if there are 4 unique items, the total number
of combinations is 16:
>>> sum(nC(4, i) for i in range(5))
16
See Also
========
sympy.utilities.iterables.multiset_combinations
References
==========
.. [1] https://en.wikipedia.org/wiki/Combination
.. [2] https://tinyurl.com/cep849r
"""
if isinstance(n, SYMPY_INTS):
if k is None:
if not replacement:
return 2**n
return sum(nC(n, i, replacement) for i in range(n + 1))
if k < 0:
raise ValueError("k cannot be negative")
if replacement:
return binomial(n + k - 1, k)
return binomial(n, k)
if isinstance(n, _MultisetHistogram):
N = n[_N]
if k is None:
if not replacement:
return prod(m + 1 for m in n[_M])
return sum(nC(n, i, replacement) for i in range(N + 1))
elif replacement:
return nC(n[_ITEMS], k, replacement)
# assert k >= 0
elif k in (1, N - 1):
return n[_ITEMS]
elif k in (0, N):
return 1
return _AOP_product(tuple(n[_M]))[k]
else:
return nC(_multiset_histogram(n), k, replacement)
def _eval_stirling1(n, k):
if n == k == 0:
return S.One
if 0 in (n, k):
return S.Zero
# some special values
if n == k:
return S.One
elif k == n - 1:
return binomial(n, 2)
elif k == n - 2:
return (3*n - 1)*binomial(n, 3)/4
elif k == n - 3:
return binomial(n, 2)*binomial(n, 4)
return _stirling1(n, k)
@cacheit
def _stirling1(n, k):
row = [0, 1]+[0]*(k-1) # for n = 1
for i in range(2, n+1):
for j in range(min(k,i), 0, -1):
row[j] = (i-1) * row[j] + row[j-1]
return Integer(row[k])
def _eval_stirling2(n, k):
if n == k == 0:
return S.One
if 0 in (n, k):
return S.Zero
# some special values
if n == k:
return S.One
elif k == n - 1:
return binomial(n, 2)
elif k == 1:
return S.One
elif k == 2:
return Integer(2**(n - 1) - 1)
return _stirling2(n, k)
@cacheit
def _stirling2(n, k):
row = [0, 1]+[0]*(k-1) # for n = 1
for i in range(2, n+1):
for j in range(min(k,i), 0, -1):
row[j] = j * row[j] + row[j-1]
return Integer(row[k])
def stirling(n, k, d=None, kind=2, signed=False):
r"""Return Stirling number $S(n, k)$ of the first or second (default) kind.
The sum of all Stirling numbers of the second kind for $k = 1$
through $n$ is ``bell(n)``. The recurrence relationship for these numbers
is:
.. math :: {0 \brace 0} = 1; {n \brace 0} = {0 \brace k} = 0;
.. math :: {{n+1} \brace k} = j {n \brace k} + {n \brace {k-1}}
where $j$ is:
$n$ for Stirling numbers of the first kind,
$-n$ for signed Stirling numbers of the first kind,
$k$ for Stirling numbers of the second kind.
The first kind of Stirling number counts the number of permutations of
``n`` distinct items that have ``k`` cycles; the second kind counts the
ways in which ``n`` distinct items can be partitioned into ``k`` parts.
If ``d`` is given, the "reduced Stirling number of the second kind" is
returned: $S^{d}(n, k) = S(n - d + 1, k - d + 1)$ with $n \ge k \ge d$.
(This counts the ways to partition $n$ consecutive integers into $k$
groups with no pairwise difference less than $d$. See example below.)
To obtain the signed Stirling numbers of the first kind, use keyword
``signed=True``. Using this keyword automatically sets ``kind`` to 1.
Examples
========
>>> from sympy.functions.combinatorial.numbers import stirling, bell
>>> from sympy.combinatorics import Permutation
>>> from sympy.utilities.iterables import multiset_partitions, permutations
First kind (unsigned by default):
>>> [stirling(6, i, kind=1) for i in range(7)]
[0, 120, 274, 225, 85, 15, 1]
>>> perms = list(permutations(range(4)))
>>> [sum(Permutation(p).cycles == i for p in perms) for i in range(5)]
[0, 6, 11, 6, 1]
>>> [stirling(4, i, kind=1) for i in range(5)]
[0, 6, 11, 6, 1]
First kind (signed):
>>> [stirling(4, i, signed=True) for i in range(5)]
[0, -6, 11, -6, 1]
Second kind:
>>> [stirling(10, i) for i in range(12)]
[0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1, 0]
>>> sum(_) == bell(10)
True
>>> len(list(multiset_partitions(range(4), 2))) == stirling(4, 2)
True
Reduced second kind:
>>> from sympy import subsets, oo
>>> def delta(p):
... if len(p) == 1:
... return oo
... return min(abs(i[0] - i[1]) for i in subsets(p, 2))
>>> parts = multiset_partitions(range(5), 3)
>>> d = 2
>>> sum(1 for p in parts if all(delta(i) >= d for i in p))
7
>>> stirling(5, 3, 2)
7
See Also
========
sympy.utilities.iterables.multiset_partitions
References
==========
.. [1] https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
.. [2] https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
"""
# TODO: make this a class like bell()
n = as_int(n)
k = as_int(k)
if n < 0:
raise ValueError('n must be nonnegative')
if k > n:
return S.Zero
if d:
# assert k >= d
# kind is ignored -- only kind=2 is supported
return _eval_stirling2(n - d + 1, k - d + 1)
elif signed:
# kind is ignored -- only kind=1 is supported
return S.NegativeOne**(n - k)*_eval_stirling1(n, k)
if kind == 1:
return _eval_stirling1(n, k)
elif kind == 2:
return _eval_stirling2(n, k)
else:
raise ValueError('kind must be 1 or 2, not %s' % k)
@cacheit
def _nT(n, k):
"""Return the partitions of ``n`` items into ``k`` parts. This
is used by ``nT`` for the case when ``n`` is an integer."""
# really quick exits
if k > n or k < 0:
return 0
if k in (1, n):
return 1
if k == 0:
return 0
# exits that could be done below but this is quicker
if k == 2:
return n//2
d = n - k
if d <= 3:
return d
# quick exit
if 3*k >= n: # or, equivalently, 2*k >= d
# all the information needed in this case
# will be in the cache needed to calculate
# partition(d), so...
# update cache
tot = _partition_rec(d)
# and correct for values not needed
if d - k > 0:
tot -= sum(_partition_rec.fetch_item(slice(d - k)))
return tot
# regular exit
# nT(n, k) = Sum(nT(n - k, m), (m, 1, k));
# calculate needed nT(i, j) values
p = [1]*d
for i in range(2, k + 1):
for m in range(i + 1, d):
p[m] += p[m - i]
d -= 1
# if p[0] were appended to the end of p then the last
# k values of p are the nT(n, j) values for 0 < j < k in reverse
# order p[-1] = nT(n, 1), p[-2] = nT(n, 2), etc.... Instead of
# putting the 1 from p[0] there, however, it is simply added to
# the sum below which is valid for 1 < k <= n//2
return (1 + sum(p[1 - k:]))
def nT(n, k=None):
"""Return the number of ``k``-sized partitions of ``n`` items.
Possible values for ``n``:
integer - ``n`` identical items
sequence - converted to a multiset internally
multiset - {element: multiplicity}
Note: the convention for ``nT`` is different than that of ``nC`` and
``nP`` in that
here an integer indicates ``n`` *identical* items instead of a set of
length ``n``; this is in keeping with the ``partitions`` function which
treats its integer-``n`` input like a list of ``n`` 1s. One can use
``range(n)`` for ``n`` to indicate ``n`` distinct items.
If ``k`` is None then the total number of ways to partition the elements
represented in ``n`` will be returned.
Examples
========
>>> from sympy.functions.combinatorial.numbers import nT
Partitions of the given multiset:
>>> [nT('aabbc', i) for i in range(1, 7)]
[1, 8, 11, 5, 1, 0]
>>> nT('aabbc') == sum(_)
True
>>> [nT("mississippi", i) for i in range(1, 12)]
[1, 74, 609, 1521, 1768, 1224, 579, 197, 50, 9, 1]
Partitions when all items are identical:
>>> [nT(5, i) for i in range(1, 6)]
[1, 2, 2, 1, 1]
>>> nT('1'*5) == sum(_)
True
When all items are different:
>>> [nT(range(5), i) for i in range(1, 6)]
[1, 15, 25, 10, 1]
>>> nT(range(5)) == sum(_)
True
Partitions of an integer expressed as a sum of positive integers:
>>> from sympy import partition
>>> partition(4)
5
>>> nT(4, 1) + nT(4, 2) + nT(4, 3) + nT(4, 4)
5
>>> nT('1'*4)
5
See Also
========
sympy.utilities.iterables.partitions
sympy.utilities.iterables.multiset_partitions
sympy.functions.combinatorial.numbers.partition
References
==========
.. [1] https://web.archive.org/web/20210507012732/https://teaching.csse.uwa.edu.au/units/CITS7209/partition.pdf
"""
if isinstance(n, SYMPY_INTS):
# n identical items
if k is None:
return partition(n)
if isinstance(k, SYMPY_INTS):
n = as_int(n)
k = as_int(k)
return Integer(_nT(n, k))
if not isinstance(n, _MultisetHistogram):
try:
# if n contains hashable items there is some
# quick handling that can be done
u = len(set(n))
if u <= 1:
return nT(len(n), k)
elif u == len(n):
n = range(u)
raise TypeError
except TypeError:
n = _multiset_histogram(n)
N = n[_N]
if k is None and N == 1:
return 1
if k in (1, N):
return 1
if k == 2 or N == 2 and k is None:
m, r = divmod(N, 2)
rv = sum(nC(n, i) for i in range(1, m + 1))
if not r:
rv -= nC(n, m)//2
if k is None:
rv += 1 # for k == 1
return rv
if N == n[_ITEMS]:
# all distinct
if k is None:
return bell(N)
return stirling(N, k)
m = MultisetPartitionTraverser()
if k is None:
return m.count_partitions(n[_M])
# MultisetPartitionTraverser does not have a range-limited count
# method, so need to enumerate and count
tot = 0
for discard in m.enum_range(n[_M], k-1, k):
tot += 1
return tot
#-----------------------------------------------------------------------------#
# #
# Motzkin numbers #
# #
#-----------------------------------------------------------------------------#
class motzkin(Function):
"""
The nth Motzkin number is the number
of ways of drawing non-intersecting chords
between n points on a circle (not necessarily touching
every point by a chord). The Motzkin numbers are named
after Theodore Motzkin and have diverse applications
in geometry, combinatorics and number theory.
Motzkin numbers are the integer sequence defined by the
initial terms `M_0 = 1`, `M_1 = 1` and the two-term recurrence relation
`M_n = \frac{2*n + 1}{n + 2} * M_{n-1} + \frac{3n - 3}{n + 2} * M_{n-2}`.
Examples
========
>>> from sympy import motzkin
>>> motzkin.is_motzkin(5)
False
>>> motzkin.find_motzkin_numbers_in_range(2,300)
[2, 4, 9, 21, 51, 127]
>>> motzkin.find_motzkin_numbers_in_range(2,900)
[2, 4, 9, 21, 51, 127, 323, 835]
>>> motzkin.find_first_n_motzkins(10)
[1, 1, 2, 4, 9, 21, 51, 127, 323, 835]
References
==========
.. [1] https://en.wikipedia.org/wiki/Motzkin_number
.. [2] https://mathworld.wolfram.com/MotzkinNumber.html
"""
@staticmethod
def is_motzkin(n):
try:
n = as_int(n)
except ValueError:
return False
if n > 0:
if n in (1, 2):
return True
tn1 = 1
tn = 2
i = 3
while tn < n:
a = ((2*i + 1)*tn + (3*i - 3)*tn1)/(i + 2)
i += 1
tn1 = tn
tn = a
if tn == n:
return True
else:
return False
else:
return False
@staticmethod
def find_motzkin_numbers_in_range(x, y):
if 0 <= x <= y:
motzkins = []
if x <= 1 <= y:
motzkins.append(1)
tn1 = 1
tn = 2
i = 3
while tn <= y:
if tn >= x:
motzkins.append(tn)
a = ((2*i + 1)*tn + (3*i - 3)*tn1)/(i + 2)
i += 1
tn1 = tn
tn = int(a)
return motzkins
else:
raise ValueError('The provided range is not valid. This condition should satisfy x <= y')
@staticmethod
def find_first_n_motzkins(n):
try:
n = as_int(n)
except ValueError:
raise ValueError('The provided number must be a positive integer')
if n < 0:
raise ValueError('The provided number must be a positive integer')
motzkins = [1]
if n >= 1:
motzkins.append(1)
tn1 = 1
tn = 2
i = 3
while i <= n:
motzkins.append(tn)
a = ((2*i + 1)*tn + (3*i - 3)*tn1)/(i + 2)
i += 1
tn1 = tn
tn = int(a)
return motzkins
@staticmethod
@recurrence_memo([S.One, S.One])
def _motzkin(n, prev):
return ((2*n + 1)*prev[-1] + (3*n - 3)*prev[-2]) // (n + 2)
@classmethod
def eval(cls, n):
try:
n = as_int(n)
except ValueError:
raise ValueError('The provided number must be a positive integer')
if n < 0:
raise ValueError('The provided number must be a positive integer')
return Integer(cls._motzkin(n - 1))
def nD(i=None, brute=None, *, n=None, m=None):
"""return the number of derangements for: ``n`` unique items, ``i``
items (as a sequence or multiset), or multiplicities, ``m`` given
as a sequence or multiset.
Examples
========
>>> from sympy.utilities.iterables import generate_derangements as enum
>>> from sympy.functions.combinatorial.numbers import nD
A derangement ``d`` of sequence ``s`` has all ``d[i] != s[i]``:
>>> set([''.join(i) for i in enum('abc')])
{'bca', 'cab'}
>>> nD('abc')
2
Input as iterable or dictionary (multiset form) is accepted:
>>> assert nD([1, 2, 2, 3, 3, 3]) == nD({1: 1, 2: 2, 3: 3})
By default, a brute-force enumeration and count of multiset permutations
is only done if there are fewer than 9 elements. There may be cases when
there is high multiplicity with few unique elements that will benefit
from a brute-force enumeration, too. For this reason, the `brute`
keyword (default None) is provided. When False, the brute-force
enumeration will never be used. When True, it will always be used.
>>> nD('1111222233', brute=True)
44
For convenience, one may specify ``n`` distinct items using the
``n`` keyword:
>>> assert nD(n=3) == nD('abc') == 2
Since the number of derangments depends on the multiplicity of the
elements and not the elements themselves, it may be more convenient
to give a list or multiset of multiplicities using keyword ``m``:
>>> assert nD('abc') == nD(m=(1,1,1)) == nD(m={1:3}) == 2
"""
from sympy.integrals.integrals import integrate
from sympy.functions.special.polynomials import laguerre
from sympy.abc import x
def ok(x):
if not isinstance(x, SYMPY_INTS):
raise TypeError('expecting integer values')
if x < 0:
raise ValueError('value must not be negative')
return True
if (i, n, m).count(None) != 2:
raise ValueError('enter only 1 of i, n, or m')
if i is not None:
if isinstance(i, SYMPY_INTS):
raise TypeError('items must be a list or dictionary')
if not i:
return S.Zero
if type(i) is not dict:
s = list(i)
ms = multiset(s)
elif type(i) is dict:
all(ok(_) for _ in i.values())
ms = {k: v for k, v in i.items() if v}
s = None
if not ms:
return S.Zero
N = sum(ms.values())
counts = multiset(ms.values())
nkey = len(ms)
elif n is not None:
ok(n)
if not n:
return S.Zero
return subfactorial(n)
elif m is not None:
if isinstance(m, dict):
all(ok(i) and ok(j) for i, j in m.items())
counts = {k: v for k, v in m.items() if k*v}
elif iterable(m) or isinstance(m, str):
m = list(m)
all(ok(i) for i in m)
counts = multiset([i for i in m if i])
else:
raise TypeError('expecting iterable')
if not counts:
return S.Zero
N = sum(k*v for k, v in counts.items())
nkey = sum(counts.values())
s = None
big = int(max(counts))
if big == 1: # no repetition
return subfactorial(nkey)
nval = len(counts)
if big*2 > N:
return S.Zero
if big*2 == N:
if nkey == 2 and nval == 1:
return S.One # aaabbb
if nkey - 1 == big: # one element repeated
return factorial(big) # e.g. abc part of abcddd
if N < 9 and brute is None or brute:
# for all possibilities, this was found to be faster
if s is None:
s = []
i = 0
for m, v in counts.items():
for j in range(v):
s.extend([i]*m)
i += 1
return Integer(sum(1 for i in multiset_derangements(s)))
from sympy.functions.elementary.exponential import exp
return Integer(abs(integrate(exp(-x)*Mul(*[
laguerre(i, x)**m for i, m in counts.items()]), (x, 0, oo))))
|