Spaces:
Sleeping
Sleeping
File size: 11,243 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
"""
PythonMPQ: Rational number type based on Python integers.
This class is intended as a pure Python fallback for when gmpy2 is not
installed. If gmpy2 is installed then its mpq type will be used instead. The
mpq type is around 20x faster. We could just use the stdlib Fraction class
here but that is slower:
from fractions import Fraction
from sympy.external.pythonmpq import PythonMPQ
nums = range(1000)
dens = range(5, 1005)
rats = [Fraction(n, d) for n, d in zip(nums, dens)]
sum(rats) # <--- 24 milliseconds
rats = [PythonMPQ(n, d) for n, d in zip(nums, dens)]
sum(rats) # <--- 7 milliseconds
Both mpq and Fraction have some awkward features like the behaviour of
division with // and %:
>>> from fractions import Fraction
>>> Fraction(2, 3) % Fraction(1, 4)
1/6
For the QQ domain we do not want this behaviour because there should be no
remainder when dividing rational numbers. SymPy does not make use of this
aspect of mpq when gmpy2 is installed. Since this class is a fallback for that
case we do not bother implementing e.g. __mod__ so that we can be sure we
are not using it when gmpy2 is installed either.
"""
import operator
from math import gcd
from decimal import Decimal
from fractions import Fraction
import sys
from typing import Tuple as tTuple, Type
# Used for __hash__
_PyHASH_MODULUS = sys.hash_info.modulus
_PyHASH_INF = sys.hash_info.inf
class PythonMPQ:
"""Rational number implementation that is intended to be compatible with
gmpy2's mpq.
Also slightly faster than fractions.Fraction.
PythonMPQ should be treated as immutable although no effort is made to
prevent mutation (since that might slow down calculations).
"""
__slots__ = ('numerator', 'denominator')
def __new__(cls, numerator, denominator=None):
"""Construct PythonMPQ with gcd computation and checks"""
if denominator is not None:
#
# PythonMPQ(n, d): require n and d to be int and d != 0
#
if isinstance(numerator, int) and isinstance(denominator, int):
# This is the slow part:
divisor = gcd(numerator, denominator)
numerator //= divisor
denominator //= divisor
return cls._new_check(numerator, denominator)
else:
#
# PythonMPQ(q)
#
# Here q can be PythonMPQ, int, Decimal, float, Fraction or str
#
if isinstance(numerator, int):
return cls._new(numerator, 1)
elif isinstance(numerator, PythonMPQ):
return cls._new(numerator.numerator, numerator.denominator)
# Let Fraction handle Decimal/float conversion and str parsing
if isinstance(numerator, (Decimal, float, str)):
numerator = Fraction(numerator)
if isinstance(numerator, Fraction):
return cls._new(numerator.numerator, numerator.denominator)
#
# Reject everything else. This is more strict than mpq which allows
# things like mpq(Fraction, Fraction) or mpq(Decimal, any). The mpq
# behaviour is somewhat inconsistent so we choose to accept only a
# more strict subset of what mpq allows.
#
raise TypeError("PythonMPQ() requires numeric or string argument")
@classmethod
def _new_check(cls, numerator, denominator):
"""Construct PythonMPQ, check divide by zero and canonicalize signs"""
if not denominator:
raise ZeroDivisionError(f'Zero divisor {numerator}/{denominator}')
elif denominator < 0:
numerator = -numerator
denominator = -denominator
return cls._new(numerator, denominator)
@classmethod
def _new(cls, numerator, denominator):
"""Construct PythonMPQ efficiently (no checks)"""
obj = super().__new__(cls)
obj.numerator = numerator
obj.denominator = denominator
return obj
def __int__(self):
"""Convert to int (truncates towards zero)"""
p, q = self.numerator, self.denominator
if p < 0:
return -(-p//q)
return p//q
def __float__(self):
"""Convert to float (approximately)"""
return self.numerator / self.denominator
def __bool__(self):
"""True/False if nonzero/zero"""
return bool(self.numerator)
def __eq__(self, other):
"""Compare equal with PythonMPQ, int, float, Decimal or Fraction"""
if isinstance(other, PythonMPQ):
return (self.numerator == other.numerator
and self.denominator == other.denominator)
elif isinstance(other, self._compatible_types):
return self.__eq__(PythonMPQ(other))
else:
return NotImplemented
def __hash__(self):
"""hash - same as mpq/Fraction"""
try:
dinv = pow(self.denominator, -1, _PyHASH_MODULUS)
except ValueError:
hash_ = _PyHASH_INF
else:
hash_ = hash(hash(abs(self.numerator)) * dinv)
result = hash_ if self.numerator >= 0 else -hash_
return -2 if result == -1 else result
def __reduce__(self):
"""Deconstruct for pickling"""
return type(self), (self.numerator, self.denominator)
def __str__(self):
"""Convert to string"""
if self.denominator != 1:
return f"{self.numerator}/{self.denominator}"
else:
return f"{self.numerator}"
def __repr__(self):
"""Convert to string"""
return f"MPQ({self.numerator},{self.denominator})"
def _cmp(self, other, op):
"""Helper for lt/le/gt/ge"""
if not isinstance(other, self._compatible_types):
return NotImplemented
lhs = self.numerator * other.denominator
rhs = other.numerator * self.denominator
return op(lhs, rhs)
def __lt__(self, other):
"""self < other"""
return self._cmp(other, operator.lt)
def __le__(self, other):
"""self <= other"""
return self._cmp(other, operator.le)
def __gt__(self, other):
"""self > other"""
return self._cmp(other, operator.gt)
def __ge__(self, other):
"""self >= other"""
return self._cmp(other, operator.ge)
def __abs__(self):
"""abs(q)"""
return self._new(abs(self.numerator), self.denominator)
def __pos__(self):
"""+q"""
return self
def __neg__(self):
"""-q"""
return self._new(-self.numerator, self.denominator)
def __add__(self, other):
"""q1 + q2"""
if isinstance(other, PythonMPQ):
#
# This is much faster than the naive method used in the stdlib
# fractions module. Not sure where this method comes from
# though...
#
# Compare timings for something like:
# nums = range(1000)
# rats = [PythonMPQ(n, d) for n, d in zip(nums[:-5], nums[5:])]
# sum(rats) # <-- time this
#
ap, aq = self.numerator, self.denominator
bp, bq = other.numerator, other.denominator
g = gcd(aq, bq)
if g == 1:
p = ap*bq + aq*bp
q = bq*aq
else:
q1, q2 = aq//g, bq//g
p, q = ap*q2 + bp*q1, q1*q2
g2 = gcd(p, g)
p, q = (p // g2), q * (g // g2)
elif isinstance(other, int):
p = self.numerator + self.denominator * other
q = self.denominator
else:
return NotImplemented
return self._new(p, q)
def __radd__(self, other):
"""z1 + q2"""
if isinstance(other, int):
p = self.numerator + self.denominator * other
q = self.denominator
return self._new(p, q)
else:
return NotImplemented
def __sub__(self ,other):
"""q1 - q2"""
if isinstance(other, PythonMPQ):
ap, aq = self.numerator, self.denominator
bp, bq = other.numerator, other.denominator
g = gcd(aq, bq)
if g == 1:
p = ap*bq - aq*bp
q = bq*aq
else:
q1, q2 = aq//g, bq//g
p, q = ap*q2 - bp*q1, q1*q2
g2 = gcd(p, g)
p, q = (p // g2), q * (g // g2)
elif isinstance(other, int):
p = self.numerator - self.denominator*other
q = self.denominator
else:
return NotImplemented
return self._new(p, q)
def __rsub__(self, other):
"""z1 - q2"""
if isinstance(other, int):
p = self.denominator * other - self.numerator
q = self.denominator
return self._new(p, q)
else:
return NotImplemented
def __mul__(self, other):
"""q1 * q2"""
if isinstance(other, PythonMPQ):
ap, aq = self.numerator, self.denominator
bp, bq = other.numerator, other.denominator
x1 = gcd(ap, bq)
x2 = gcd(bp, aq)
p, q = ((ap//x1)*(bp//x2), (aq//x2)*(bq//x1))
elif isinstance(other, int):
x = gcd(other, self.denominator)
p = self.numerator*(other//x)
q = self.denominator//x
else:
return NotImplemented
return self._new(p, q)
def __rmul__(self, other):
"""z1 * q2"""
if isinstance(other, int):
x = gcd(self.denominator, other)
p = self.numerator*(other//x)
q = self.denominator//x
return self._new(p, q)
else:
return NotImplemented
def __pow__(self, exp):
"""q ** z"""
p, q = self.numerator, self.denominator
if exp < 0:
p, q, exp = q, p, -exp
return self._new_check(p**exp, q**exp)
def __truediv__(self, other):
"""q1 / q2"""
if isinstance(other, PythonMPQ):
ap, aq = self.numerator, self.denominator
bp, bq = other.numerator, other.denominator
x1 = gcd(ap, bp)
x2 = gcd(bq, aq)
p, q = ((ap//x1)*(bq//x2), (aq//x2)*(bp//x1))
elif isinstance(other, int):
x = gcd(other, self.numerator)
p = self.numerator//x
q = self.denominator*(other//x)
else:
return NotImplemented
return self._new_check(p, q)
def __rtruediv__(self, other):
"""z / q"""
if isinstance(other, int):
x = gcd(self.numerator, other)
p = self.denominator*(other//x)
q = self.numerator//x
return self._new_check(p, q)
else:
return NotImplemented
_compatible_types: tTuple[Type, ...] = ()
#
# These are the types that PythonMPQ will interoperate with for operations
# and comparisons such as ==, + etc. We define this down here so that we can
# include PythonMPQ in the list as well.
#
PythonMPQ._compatible_types = (PythonMPQ, int, Decimal, Fraction)
|