Spaces:
Sleeping
Sleeping
File size: 7,987 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
"""Tests for Gosper's algorithm for hypergeometric summation. """
from sympy.core.numbers import (Rational, pi)
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.combinatorial.factorials import (binomial, factorial)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.special.gamma_functions import gamma
from sympy.polys.polytools import Poly
from sympy.simplify.simplify import simplify
from sympy.concrete.gosper import gosper_normal, gosper_sum, gosper_term
from sympy.abc import a, b, j, k, m, n, r, x
def test_gosper_normal():
eq = 4*n + 5, 2*(4*n + 1)*(2*n + 3), n
assert gosper_normal(*eq) == \
(Poly(Rational(1, 4), n), Poly(n + Rational(3, 2)), Poly(n + Rational(1, 4)))
assert gosper_normal(*eq, polys=False) == \
(Rational(1, 4), n + Rational(3, 2), n + Rational(1, 4))
def test_gosper_term():
assert gosper_term((4*k + 1)*factorial(
k)/factorial(2*k + 1), k) == (-k - S.Half)/(k + Rational(1, 4))
def test_gosper_sum():
assert gosper_sum(1, (k, 0, n)) == 1 + n
assert gosper_sum(k, (k, 0, n)) == n*(1 + n)/2
assert gosper_sum(k**2, (k, 0, n)) == n*(1 + n)*(1 + 2*n)/6
assert gosper_sum(k**3, (k, 0, n)) == n**2*(1 + n)**2/4
assert gosper_sum(2**k, (k, 0, n)) == 2*2**n - 1
assert gosper_sum(factorial(k), (k, 0, n)) is None
assert gosper_sum(binomial(n, k), (k, 0, n)) is None
assert gosper_sum(factorial(k)/k**2, (k, 0, n)) is None
assert gosper_sum((k - 3)*factorial(k), (k, 0, n)) is None
assert gosper_sum(k*factorial(k), k) == factorial(k)
assert gosper_sum(
k*factorial(k), (k, 0, n)) == n*factorial(n) + factorial(n) - 1
assert gosper_sum((-1)**k*binomial(n, k), (k, 0, n)) == 0
assert gosper_sum((
-1)**k*binomial(n, k), (k, 0, m)) == -(-1)**m*(m - n)*binomial(n, m)/n
assert gosper_sum((4*k + 1)*factorial(k)/factorial(2*k + 1), (k, 0, n)) == \
(2*factorial(2*n + 1) - factorial(n))/factorial(2*n + 1)
# issue 6033:
assert gosper_sum(
n*(n + a + b)*a**n*b**n/(factorial(n + a)*factorial(n + b)), \
(n, 0, m)).simplify() == -exp(m*log(a) + m*log(b))*gamma(a + 1) \
*gamma(b + 1)/(gamma(a)*gamma(b)*gamma(a + m + 1)*gamma(b + m + 1)) \
+ 1/(gamma(a)*gamma(b))
def test_gosper_sum_indefinite():
assert gosper_sum(k, k) == k*(k - 1)/2
assert gosper_sum(k**2, k) == k*(k - 1)*(2*k - 1)/6
assert gosper_sum(1/(k*(k + 1)), k) == -1/k
assert gosper_sum(-(27*k**4 + 158*k**3 + 430*k**2 + 678*k + 445)*gamma(2*k
+ 4)/(3*(3*k + 7)*gamma(3*k + 6)), k) == \
(3*k + 5)*(k**2 + 2*k + 5)*gamma(2*k + 4)/gamma(3*k + 6)
def test_gosper_sum_parametric():
assert gosper_sum(binomial(S.Half, m - j + 1)*binomial(S.Half, m + j), (j, 1, n)) == \
n*(1 + m - n)*(-1 + 2*m + 2*n)*binomial(S.Half, 1 + m - n)* \
binomial(S.Half, m + n)/(m*(1 + 2*m))
def test_gosper_sum_algebraic():
assert gosper_sum(
n**2 + sqrt(2), (n, 0, m)) == (m + 1)*(2*m**2 + m + 6*sqrt(2))/6
def test_gosper_sum_iterated():
f1 = binomial(2*k, k)/4**k
f2 = (1 + 2*n)*binomial(2*n, n)/4**n
f3 = (1 + 2*n)*(3 + 2*n)*binomial(2*n, n)/(3*4**n)
f4 = (1 + 2*n)*(3 + 2*n)*(5 + 2*n)*binomial(2*n, n)/(15*4**n)
f5 = (1 + 2*n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n)*binomial(2*n, n)/(105*4**n)
assert gosper_sum(f1, (k, 0, n)) == f2
assert gosper_sum(f2, (n, 0, n)) == f3
assert gosper_sum(f3, (n, 0, n)) == f4
assert gosper_sum(f4, (n, 0, n)) == f5
# the AeqB tests test expressions given in
# www.math.upenn.edu/~wilf/AeqB.pdf
def test_gosper_sum_AeqB_part1():
f1a = n**4
f1b = n**3*2**n
f1c = 1/(n**2 + sqrt(5)*n - 1)
f1d = n**4*4**n/binomial(2*n, n)
f1e = factorial(3*n)/(factorial(n)*factorial(n + 1)*factorial(n + 2)*27**n)
f1f = binomial(2*n, n)**2/((n + 1)*4**(2*n))
f1g = (4*n - 1)*binomial(2*n, n)**2/((2*n - 1)**2*4**(2*n))
f1h = n*factorial(n - S.Half)**2/factorial(n + 1)**2
g1a = m*(m + 1)*(2*m + 1)*(3*m**2 + 3*m - 1)/30
g1b = 26 + 2**(m + 1)*(m**3 - 3*m**2 + 9*m - 13)
g1c = (m + 1)*(m*(m**2 - 7*m + 3)*sqrt(5) - (
3*m**3 - 7*m**2 + 19*m - 6))/(2*m**3*sqrt(5) + m**4 + 5*m**2 - 1)/6
g1d = Rational(-2, 231) + 2*4**m*(m + 1)*(63*m**4 + 112*m**3 + 18*m**2 -
22*m + 3)/(693*binomial(2*m, m))
g1e = Rational(-9, 2) + (81*m**2 + 261*m + 200)*factorial(
3*m + 2)/(40*27**m*factorial(m)*factorial(m + 1)*factorial(m + 2))
g1f = (2*m + 1)**2*binomial(2*m, m)**2/(4**(2*m)*(m + 1))
g1g = -binomial(2*m, m)**2/4**(2*m)
g1h = 4*pi -(2*m + 1)**2*(3*m + 4)*factorial(m - S.Half)**2/factorial(m + 1)**2
g = gosper_sum(f1a, (n, 0, m))
assert g is not None and simplify(g - g1a) == 0
g = gosper_sum(f1b, (n, 0, m))
assert g is not None and simplify(g - g1b) == 0
g = gosper_sum(f1c, (n, 0, m))
assert g is not None and simplify(g - g1c) == 0
g = gosper_sum(f1d, (n, 0, m))
assert g is not None and simplify(g - g1d) == 0
g = gosper_sum(f1e, (n, 0, m))
assert g is not None and simplify(g - g1e) == 0
g = gosper_sum(f1f, (n, 0, m))
assert g is not None and simplify(g - g1f) == 0
g = gosper_sum(f1g, (n, 0, m))
assert g is not None and simplify(g - g1g) == 0
g = gosper_sum(f1h, (n, 0, m))
# need to call rewrite(gamma) here because we have terms involving
# factorial(1/2)
assert g is not None and simplify(g - g1h).rewrite(gamma) == 0
def test_gosper_sum_AeqB_part2():
f2a = n**2*a**n
f2b = (n - r/2)*binomial(r, n)
f2c = factorial(n - 1)**2/(factorial(n - x)*factorial(n + x))
g2a = -a*(a + 1)/(a - 1)**3 + a**(
m + 1)*(a**2*m**2 - 2*a*m**2 + m**2 - 2*a*m + 2*m + a + 1)/(a - 1)**3
g2b = (m - r)*binomial(r, m)/2
ff = factorial(1 - x)*factorial(1 + x)
g2c = 1/ff*(
1 - 1/x**2) + factorial(m)**2/(x**2*factorial(m - x)*factorial(m + x))
g = gosper_sum(f2a, (n, 0, m))
assert g is not None and simplify(g - g2a) == 0
g = gosper_sum(f2b, (n, 0, m))
assert g is not None and simplify(g - g2b) == 0
g = gosper_sum(f2c, (n, 1, m))
assert g is not None and simplify(g - g2c) == 0
def test_gosper_nan():
a = Symbol('a', positive=True)
b = Symbol('b', positive=True)
n = Symbol('n', integer=True)
m = Symbol('m', integer=True)
f2d = n*(n + a + b)*a**n*b**n/(factorial(n + a)*factorial(n + b))
g2d = 1/(factorial(a - 1)*factorial(
b - 1)) - a**(m + 1)*b**(m + 1)/(factorial(a + m)*factorial(b + m))
g = gosper_sum(f2d, (n, 0, m))
assert simplify(g - g2d) == 0
def test_gosper_sum_AeqB_part3():
f3a = 1/n**4
f3b = (6*n + 3)/(4*n**4 + 8*n**3 + 8*n**2 + 4*n + 3)
f3c = 2**n*(n**2 - 2*n - 1)/(n**2*(n + 1)**2)
f3d = n**2*4**n/((n + 1)*(n + 2))
f3e = 2**n/(n + 1)
f3f = 4*(n - 1)*(n**2 - 2*n - 1)/(n**2*(n + 1)**2*(n - 2)**2*(n - 3)**2)
f3g = (n**4 - 14*n**2 - 24*n - 9)*2**n/(n**2*(n + 1)**2*(n + 2)**2*
(n + 3)**2)
# g3a -> no closed form
g3b = m*(m + 2)/(2*m**2 + 4*m + 3)
g3c = 2**m/m**2 - 2
g3d = Rational(2, 3) + 4**(m + 1)*(m - 1)/(m + 2)/3
# g3e -> no closed form
g3f = -(Rational(-1, 16) + 1/((m - 2)**2*(m + 1)**2)) # the AeqB key is wrong
g3g = Rational(-2, 9) + 2**(m + 1)/((m + 1)**2*(m + 3)**2)
g = gosper_sum(f3a, (n, 1, m))
assert g is None
g = gosper_sum(f3b, (n, 1, m))
assert g is not None and simplify(g - g3b) == 0
g = gosper_sum(f3c, (n, 1, m - 1))
assert g is not None and simplify(g - g3c) == 0
g = gosper_sum(f3d, (n, 1, m))
assert g is not None and simplify(g - g3d) == 0
g = gosper_sum(f3e, (n, 0, m - 1))
assert g is None
g = gosper_sum(f3f, (n, 4, m))
assert g is not None and simplify(g - g3f) == 0
g = gosper_sum(f3g, (n, 1, m))
assert g is not None and simplify(g - g3g) == 0
|