File size: 7,987 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
"""Tests for Gosper's algorithm for hypergeometric summation. """

from sympy.core.numbers import (Rational, pi)
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.combinatorial.factorials import (binomial, factorial)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.special.gamma_functions import gamma
from sympy.polys.polytools import Poly
from sympy.simplify.simplify import simplify
from sympy.concrete.gosper import gosper_normal, gosper_sum, gosper_term
from sympy.abc import a, b, j, k, m, n, r, x


def test_gosper_normal():
    eq = 4*n + 5, 2*(4*n + 1)*(2*n + 3), n
    assert gosper_normal(*eq) == \
        (Poly(Rational(1, 4), n), Poly(n + Rational(3, 2)), Poly(n + Rational(1, 4)))
    assert gosper_normal(*eq, polys=False) == \
        (Rational(1, 4), n + Rational(3, 2), n + Rational(1, 4))


def test_gosper_term():
    assert gosper_term((4*k + 1)*factorial(
        k)/factorial(2*k + 1), k) == (-k - S.Half)/(k + Rational(1, 4))


def test_gosper_sum():
    assert gosper_sum(1, (k, 0, n)) == 1 + n
    assert gosper_sum(k, (k, 0, n)) == n*(1 + n)/2
    assert gosper_sum(k**2, (k, 0, n)) == n*(1 + n)*(1 + 2*n)/6
    assert gosper_sum(k**3, (k, 0, n)) == n**2*(1 + n)**2/4

    assert gosper_sum(2**k, (k, 0, n)) == 2*2**n - 1

    assert gosper_sum(factorial(k), (k, 0, n)) is None
    assert gosper_sum(binomial(n, k), (k, 0, n)) is None

    assert gosper_sum(factorial(k)/k**2, (k, 0, n)) is None
    assert gosper_sum((k - 3)*factorial(k), (k, 0, n)) is None

    assert gosper_sum(k*factorial(k), k) == factorial(k)
    assert gosper_sum(
        k*factorial(k), (k, 0, n)) == n*factorial(n) + factorial(n) - 1

    assert gosper_sum((-1)**k*binomial(n, k), (k, 0, n)) == 0
    assert gosper_sum((
        -1)**k*binomial(n, k), (k, 0, m)) == -(-1)**m*(m - n)*binomial(n, m)/n

    assert gosper_sum((4*k + 1)*factorial(k)/factorial(2*k + 1), (k, 0, n)) == \
        (2*factorial(2*n + 1) - factorial(n))/factorial(2*n + 1)

    # issue 6033:
    assert gosper_sum(
        n*(n + a + b)*a**n*b**n/(factorial(n + a)*factorial(n + b)), \
        (n, 0, m)).simplify() == -exp(m*log(a) + m*log(b))*gamma(a + 1) \
        *gamma(b + 1)/(gamma(a)*gamma(b)*gamma(a + m + 1)*gamma(b + m + 1)) \
        + 1/(gamma(a)*gamma(b))


def test_gosper_sum_indefinite():
    assert gosper_sum(k, k) == k*(k - 1)/2
    assert gosper_sum(k**2, k) == k*(k - 1)*(2*k - 1)/6

    assert gosper_sum(1/(k*(k + 1)), k) == -1/k
    assert gosper_sum(-(27*k**4 + 158*k**3 + 430*k**2 + 678*k + 445)*gamma(2*k
                      + 4)/(3*(3*k + 7)*gamma(3*k + 6)), k) == \
        (3*k + 5)*(k**2 + 2*k + 5)*gamma(2*k + 4)/gamma(3*k + 6)


def test_gosper_sum_parametric():
    assert gosper_sum(binomial(S.Half, m - j + 1)*binomial(S.Half, m + j), (j, 1, n)) == \
        n*(1 + m - n)*(-1 + 2*m + 2*n)*binomial(S.Half, 1 + m - n)* \
        binomial(S.Half, m + n)/(m*(1 + 2*m))


def test_gosper_sum_algebraic():
    assert gosper_sum(
        n**2 + sqrt(2), (n, 0, m)) == (m + 1)*(2*m**2 + m + 6*sqrt(2))/6


def test_gosper_sum_iterated():
    f1 = binomial(2*k, k)/4**k
    f2 = (1 + 2*n)*binomial(2*n, n)/4**n
    f3 = (1 + 2*n)*(3 + 2*n)*binomial(2*n, n)/(3*4**n)
    f4 = (1 + 2*n)*(3 + 2*n)*(5 + 2*n)*binomial(2*n, n)/(15*4**n)
    f5 = (1 + 2*n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n)*binomial(2*n, n)/(105*4**n)

    assert gosper_sum(f1, (k, 0, n)) == f2
    assert gosper_sum(f2, (n, 0, n)) == f3
    assert gosper_sum(f3, (n, 0, n)) == f4
    assert gosper_sum(f4, (n, 0, n)) == f5

# the AeqB tests test expressions given in
# www.math.upenn.edu/~wilf/AeqB.pdf


def test_gosper_sum_AeqB_part1():
    f1a = n**4
    f1b = n**3*2**n
    f1c = 1/(n**2 + sqrt(5)*n - 1)
    f1d = n**4*4**n/binomial(2*n, n)
    f1e = factorial(3*n)/(factorial(n)*factorial(n + 1)*factorial(n + 2)*27**n)
    f1f = binomial(2*n, n)**2/((n + 1)*4**(2*n))
    f1g = (4*n - 1)*binomial(2*n, n)**2/((2*n - 1)**2*4**(2*n))
    f1h = n*factorial(n - S.Half)**2/factorial(n + 1)**2

    g1a = m*(m + 1)*(2*m + 1)*(3*m**2 + 3*m - 1)/30
    g1b = 26 + 2**(m + 1)*(m**3 - 3*m**2 + 9*m - 13)
    g1c = (m + 1)*(m*(m**2 - 7*m + 3)*sqrt(5) - (
        3*m**3 - 7*m**2 + 19*m - 6))/(2*m**3*sqrt(5) + m**4 + 5*m**2 - 1)/6
    g1d = Rational(-2, 231) + 2*4**m*(m + 1)*(63*m**4 + 112*m**3 + 18*m**2 -
             22*m + 3)/(693*binomial(2*m, m))
    g1e = Rational(-9, 2) + (81*m**2 + 261*m + 200)*factorial(
        3*m + 2)/(40*27**m*factorial(m)*factorial(m + 1)*factorial(m + 2))
    g1f = (2*m + 1)**2*binomial(2*m, m)**2/(4**(2*m)*(m + 1))
    g1g = -binomial(2*m, m)**2/4**(2*m)
    g1h = 4*pi -(2*m + 1)**2*(3*m + 4)*factorial(m - S.Half)**2/factorial(m + 1)**2

    g = gosper_sum(f1a, (n, 0, m))
    assert g is not None and simplify(g - g1a) == 0
    g = gosper_sum(f1b, (n, 0, m))
    assert g is not None and simplify(g - g1b) == 0
    g = gosper_sum(f1c, (n, 0, m))
    assert g is not None and simplify(g - g1c) == 0
    g = gosper_sum(f1d, (n, 0, m))
    assert g is not None and simplify(g - g1d) == 0
    g = gosper_sum(f1e, (n, 0, m))
    assert g is not None and simplify(g - g1e) == 0
    g = gosper_sum(f1f, (n, 0, m))
    assert g is not None and simplify(g - g1f) == 0
    g = gosper_sum(f1g, (n, 0, m))
    assert g is not None and simplify(g - g1g) == 0
    g = gosper_sum(f1h, (n, 0, m))
    # need to call rewrite(gamma) here because we have terms involving
    # factorial(1/2)
    assert g is not None and simplify(g - g1h).rewrite(gamma) == 0


def test_gosper_sum_AeqB_part2():
    f2a = n**2*a**n
    f2b = (n - r/2)*binomial(r, n)
    f2c = factorial(n - 1)**2/(factorial(n - x)*factorial(n + x))

    g2a = -a*(a + 1)/(a - 1)**3 + a**(
        m + 1)*(a**2*m**2 - 2*a*m**2 + m**2 - 2*a*m + 2*m + a + 1)/(a - 1)**3
    g2b = (m - r)*binomial(r, m)/2
    ff = factorial(1 - x)*factorial(1 + x)
    g2c = 1/ff*(
        1 - 1/x**2) + factorial(m)**2/(x**2*factorial(m - x)*factorial(m + x))

    g = gosper_sum(f2a, (n, 0, m))
    assert g is not None and simplify(g - g2a) == 0
    g = gosper_sum(f2b, (n, 0, m))
    assert g is not None and simplify(g - g2b) == 0
    g = gosper_sum(f2c, (n, 1, m))
    assert g is not None and simplify(g - g2c) == 0


def test_gosper_nan():
    a = Symbol('a', positive=True)
    b = Symbol('b', positive=True)
    n = Symbol('n', integer=True)
    m = Symbol('m', integer=True)
    f2d = n*(n + a + b)*a**n*b**n/(factorial(n + a)*factorial(n + b))
    g2d = 1/(factorial(a - 1)*factorial(
        b - 1)) - a**(m + 1)*b**(m + 1)/(factorial(a + m)*factorial(b + m))
    g = gosper_sum(f2d, (n, 0, m))
    assert simplify(g - g2d) == 0


def test_gosper_sum_AeqB_part3():
    f3a = 1/n**4
    f3b = (6*n + 3)/(4*n**4 + 8*n**3 + 8*n**2 + 4*n + 3)
    f3c = 2**n*(n**2 - 2*n - 1)/(n**2*(n + 1)**2)
    f3d = n**2*4**n/((n + 1)*(n + 2))
    f3e = 2**n/(n + 1)
    f3f = 4*(n - 1)*(n**2 - 2*n - 1)/(n**2*(n + 1)**2*(n - 2)**2*(n - 3)**2)
    f3g = (n**4 - 14*n**2 - 24*n - 9)*2**n/(n**2*(n + 1)**2*(n + 2)**2*
           (n + 3)**2)

    # g3a -> no closed form
    g3b = m*(m + 2)/(2*m**2 + 4*m + 3)
    g3c = 2**m/m**2 - 2
    g3d = Rational(2, 3) + 4**(m + 1)*(m - 1)/(m + 2)/3
    # g3e -> no closed form
    g3f = -(Rational(-1, 16) + 1/((m - 2)**2*(m + 1)**2))  # the AeqB key is wrong
    g3g = Rational(-2, 9) + 2**(m + 1)/((m + 1)**2*(m + 3)**2)

    g = gosper_sum(f3a, (n, 1, m))
    assert g is None
    g = gosper_sum(f3b, (n, 1, m))
    assert g is not None and simplify(g - g3b) == 0
    g = gosper_sum(f3c, (n, 1, m - 1))
    assert g is not None and simplify(g - g3c) == 0
    g = gosper_sum(f3d, (n, 1, m))
    assert g is not None and simplify(g - g3d) == 0
    g = gosper_sum(f3e, (n, 0, m - 1))
    assert g is None
    g = gosper_sum(f3f, (n, 4, m))
    assert g is not None and simplify(g - g3f) == 0
    g = gosper_sum(f3g, (n, 1, m))
    assert g is not None and simplify(g - g3g) == 0