Spaces:
Sleeping
Sleeping
File size: 16,296 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
from sympy.combinatorics.permutations import Permutation, _af_invert, _af_rmul
from sympy.ntheory import isprime
rmul = Permutation.rmul
_af_new = Permutation._af_new
############################################
#
# Utilities for computational group theory
#
############################################
def _base_ordering(base, degree):
r"""
Order `\{0, 1, \dots, n-1\}` so that base points come first and in order.
Parameters
==========
base : the base
degree : the degree of the associated permutation group
Returns
=======
A list ``base_ordering`` such that ``base_ordering[point]`` is the
number of ``point`` in the ordering.
Examples
========
>>> from sympy.combinatorics import SymmetricGroup
>>> from sympy.combinatorics.util import _base_ordering
>>> S = SymmetricGroup(4)
>>> S.schreier_sims()
>>> _base_ordering(S.base, S.degree)
[0, 1, 2, 3]
Notes
=====
This is used in backtrack searches, when we define a relation `\ll` on
the underlying set for a permutation group of degree `n`,
`\{0, 1, \dots, n-1\}`, so that if `(b_1, b_2, \dots, b_k)` is a base we
have `b_i \ll b_j` whenever `i<j` and `b_i \ll a` for all
`i\in\{1,2, \dots, k\}` and `a` is not in the base. The idea is developed
and applied to backtracking algorithms in [1], pp.108-132. The points
that are not in the base are taken in increasing order.
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
"""
base_len = len(base)
ordering = [0]*degree
for i in range(base_len):
ordering[base[i]] = i
current = base_len
for i in range(degree):
if i not in base:
ordering[i] = current
current += 1
return ordering
def _check_cycles_alt_sym(perm):
"""
Checks for cycles of prime length p with n/2 < p < n-2.
Explanation
===========
Here `n` is the degree of the permutation. This is a helper function for
the function is_alt_sym from sympy.combinatorics.perm_groups.
Examples
========
>>> from sympy.combinatorics.util import _check_cycles_alt_sym
>>> from sympy.combinatorics import Permutation
>>> a = Permutation([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11, 12]])
>>> _check_cycles_alt_sym(a)
False
>>> b = Permutation([[0, 1, 2, 3, 4, 5, 6], [7, 8, 9, 10]])
>>> _check_cycles_alt_sym(b)
True
See Also
========
sympy.combinatorics.perm_groups.PermutationGroup.is_alt_sym
"""
n = perm.size
af = perm.array_form
current_len = 0
total_len = 0
used = set()
for i in range(n//2):
if i not in used and i < n//2 - total_len:
current_len = 1
used.add(i)
j = i
while af[j] != i:
current_len += 1
j = af[j]
used.add(j)
total_len += current_len
if current_len > n//2 and current_len < n - 2 and isprime(current_len):
return True
return False
def _distribute_gens_by_base(base, gens):
r"""
Distribute the group elements ``gens`` by membership in basic stabilizers.
Explanation
===========
Notice that for a base `(b_1, b_2, \dots, b_k)`, the basic stabilizers
are defined as `G^{(i)} = G_{b_1, \dots, b_{i-1}}` for
`i \in\{1, 2, \dots, k\}`.
Parameters
==========
base : a sequence of points in `\{0, 1, \dots, n-1\}`
gens : a list of elements of a permutation group of degree `n`.
Returns
=======
list
List of length `k`, where `k` is the length of *base*. The `i`-th entry
contains those elements in *gens* which fix the first `i` elements of
*base* (so that the `0`-th entry is equal to *gens* itself). If no
element fixes the first `i` elements of *base*, the `i`-th element is
set to a list containing the identity element.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.util import _distribute_gens_by_base
>>> D = DihedralGroup(3)
>>> D.schreier_sims()
>>> D.strong_gens
[(0 1 2), (0 2), (1 2)]
>>> D.base
[0, 1]
>>> _distribute_gens_by_base(D.base, D.strong_gens)
[[(0 1 2), (0 2), (1 2)],
[(1 2)]]
See Also
========
_strong_gens_from_distr, _orbits_transversals_from_bsgs,
_handle_precomputed_bsgs
"""
base_len = len(base)
degree = gens[0].size
stabs = [[] for _ in range(base_len)]
max_stab_index = 0
for gen in gens:
j = 0
while j < base_len - 1 and gen._array_form[base[j]] == base[j]:
j += 1
if j > max_stab_index:
max_stab_index = j
for k in range(j + 1):
stabs[k].append(gen)
for i in range(max_stab_index + 1, base_len):
stabs[i].append(_af_new(list(range(degree))))
return stabs
def _handle_precomputed_bsgs(base, strong_gens, transversals=None,
basic_orbits=None, strong_gens_distr=None):
"""
Calculate BSGS-related structures from those present.
Explanation
===========
The base and strong generating set must be provided; if any of the
transversals, basic orbits or distributed strong generators are not
provided, they will be calculated from the base and strong generating set.
Parameters
==========
base : the base
strong_gens : the strong generators
transversals : basic transversals
basic_orbits : basic orbits
strong_gens_distr : strong generators distributed by membership in basic stabilizers
Returns
=======
(transversals, basic_orbits, strong_gens_distr)
where *transversals* are the basic transversals, *basic_orbits* are the
basic orbits, and *strong_gens_distr* are the strong generators distributed
by membership in basic stabilizers.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.util import _handle_precomputed_bsgs
>>> D = DihedralGroup(3)
>>> D.schreier_sims()
>>> _handle_precomputed_bsgs(D.base, D.strong_gens,
... basic_orbits=D.basic_orbits)
([{0: (2), 1: (0 1 2), 2: (0 2)}, {1: (2), 2: (1 2)}], [[0, 1, 2], [1, 2]], [[(0 1 2), (0 2), (1 2)], [(1 2)]])
See Also
========
_orbits_transversals_from_bsgs, _distribute_gens_by_base
"""
if strong_gens_distr is None:
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
if transversals is None:
if basic_orbits is None:
basic_orbits, transversals = \
_orbits_transversals_from_bsgs(base, strong_gens_distr)
else:
transversals = \
_orbits_transversals_from_bsgs(base, strong_gens_distr,
transversals_only=True)
else:
if basic_orbits is None:
base_len = len(base)
basic_orbits = [None]*base_len
for i in range(base_len):
basic_orbits[i] = list(transversals[i].keys())
return transversals, basic_orbits, strong_gens_distr
def _orbits_transversals_from_bsgs(base, strong_gens_distr,
transversals_only=False, slp=False):
"""
Compute basic orbits and transversals from a base and strong generating set.
Explanation
===========
The generators are provided as distributed across the basic stabilizers.
If the optional argument ``transversals_only`` is set to True, only the
transversals are returned.
Parameters
==========
base : The base.
strong_gens_distr : Strong generators distributed by membership in basic stabilizers.
transversals_only : bool, default: False
A flag switching between returning only the
transversals and both orbits and transversals.
slp : bool, default: False
If ``True``, return a list of dictionaries containing the
generator presentations of the elements of the transversals,
i.e. the list of indices of generators from ``strong_gens_distr[i]``
such that their product is the relevant transversal element.
Examples
========
>>> from sympy.combinatorics import SymmetricGroup
>>> from sympy.combinatorics.util import _distribute_gens_by_base
>>> S = SymmetricGroup(3)
>>> S.schreier_sims()
>>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens)
>>> (S.base, strong_gens_distr)
([0, 1], [[(0 1 2), (2)(0 1), (1 2)], [(1 2)]])
See Also
========
_distribute_gens_by_base, _handle_precomputed_bsgs
"""
from sympy.combinatorics.perm_groups import _orbit_transversal
base_len = len(base)
degree = strong_gens_distr[0][0].size
transversals = [None]*base_len
slps = [None]*base_len
if transversals_only is False:
basic_orbits = [None]*base_len
for i in range(base_len):
transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i],
base[i], pairs=True, slp=True)
transversals[i] = dict(transversals[i])
if transversals_only is False:
basic_orbits[i] = list(transversals[i].keys())
if transversals_only:
return transversals
else:
if not slp:
return basic_orbits, transversals
return basic_orbits, transversals, slps
def _remove_gens(base, strong_gens, basic_orbits=None, strong_gens_distr=None):
"""
Remove redundant generators from a strong generating set.
Parameters
==========
base : a base
strong_gens : a strong generating set relative to *base*
basic_orbits : basic orbits
strong_gens_distr : strong generators distributed by membership in basic stabilizers
Returns
=======
A strong generating set with respect to ``base`` which is a subset of
``strong_gens``.
Examples
========
>>> from sympy.combinatorics import SymmetricGroup
>>> from sympy.combinatorics.util import _remove_gens
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> S = SymmetricGroup(15)
>>> base, strong_gens = S.schreier_sims_incremental()
>>> new_gens = _remove_gens(base, strong_gens)
>>> len(new_gens)
14
>>> _verify_bsgs(S, base, new_gens)
True
Notes
=====
This procedure is outlined in [1],p.95.
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
"""
from sympy.combinatorics.perm_groups import _orbit
base_len = len(base)
degree = strong_gens[0].size
if strong_gens_distr is None:
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
if basic_orbits is None:
basic_orbits = []
for i in range(base_len):
basic_orbit = _orbit(degree, strong_gens_distr[i], base[i])
basic_orbits.append(basic_orbit)
strong_gens_distr.append([])
res = strong_gens[:]
for i in range(base_len - 1, -1, -1):
gens_copy = strong_gens_distr[i][:]
for gen in strong_gens_distr[i]:
if gen not in strong_gens_distr[i + 1]:
temp_gens = gens_copy[:]
temp_gens.remove(gen)
if temp_gens == []:
continue
temp_orbit = _orbit(degree, temp_gens, base[i])
if temp_orbit == basic_orbits[i]:
gens_copy.remove(gen)
res.remove(gen)
return res
def _strip(g, base, orbits, transversals):
"""
Attempt to decompose a permutation using a (possibly partial) BSGS
structure.
Explanation
===========
This is done by treating the sequence ``base`` as an actual base, and
the orbits ``orbits`` and transversals ``transversals`` as basic orbits and
transversals relative to it.
This process is called "sifting". A sift is unsuccessful when a certain
orbit element is not found or when after the sift the decomposition
does not end with the identity element.
The argument ``transversals`` is a list of dictionaries that provides
transversal elements for the orbits ``orbits``.
Parameters
==========
g : permutation to be decomposed
base : sequence of points
orbits : list
A list in which the ``i``-th entry is an orbit of ``base[i]``
under some subgroup of the pointwise stabilizer of `
`base[0], base[1], ..., base[i - 1]``. The groups themselves are implicit
in this function since the only information we need is encoded in the orbits
and transversals
transversals : list
A list of orbit transversals associated with the orbits *orbits*.
Examples
========
>>> from sympy.combinatorics import Permutation, SymmetricGroup
>>> from sympy.combinatorics.util import _strip
>>> S = SymmetricGroup(5)
>>> S.schreier_sims()
>>> g = Permutation([0, 2, 3, 1, 4])
>>> _strip(g, S.base, S.basic_orbits, S.basic_transversals)
((4), 5)
Notes
=====
The algorithm is described in [1],pp.89-90. The reason for returning
both the current state of the element being decomposed and the level
at which the sifting ends is that they provide important information for
the randomized version of the Schreier-Sims algorithm.
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E."Handbook of computational group theory"
See Also
========
sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims
sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims_random
"""
h = g._array_form
base_len = len(base)
for i in range(base_len):
beta = h[base[i]]
if beta == base[i]:
continue
if beta not in orbits[i]:
return _af_new(h), i + 1
u = transversals[i][beta]._array_form
h = _af_rmul(_af_invert(u), h)
return _af_new(h), base_len + 1
def _strip_af(h, base, orbits, transversals, j, slp=[], slps={}):
"""
optimized _strip, with h, transversals and result in array form
if the stripped elements is the identity, it returns False, base_len + 1
j h[base[i]] == base[i] for i <= j
"""
base_len = len(base)
for i in range(j+1, base_len):
beta = h[base[i]]
if beta == base[i]:
continue
if beta not in orbits[i]:
if not slp:
return h, i + 1
return h, i + 1, slp
u = transversals[i][beta]
if h == u:
if not slp:
return False, base_len + 1
return False, base_len + 1, slp
h = _af_rmul(_af_invert(u), h)
if slp:
u_slp = slps[i][beta][:]
u_slp.reverse()
u_slp = [(i, (g,)) for g in u_slp]
slp = u_slp + slp
if not slp:
return h, base_len + 1
return h, base_len + 1, slp
def _strong_gens_from_distr(strong_gens_distr):
"""
Retrieve strong generating set from generators of basic stabilizers.
This is just the union of the generators of the first and second basic
stabilizers.
Parameters
==========
strong_gens_distr : strong generators distributed by membership in basic stabilizers
Examples
========
>>> from sympy.combinatorics import SymmetricGroup
>>> from sympy.combinatorics.util import (_strong_gens_from_distr,
... _distribute_gens_by_base)
>>> S = SymmetricGroup(3)
>>> S.schreier_sims()
>>> S.strong_gens
[(0 1 2), (2)(0 1), (1 2)]
>>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens)
>>> _strong_gens_from_distr(strong_gens_distr)
[(0 1 2), (2)(0 1), (1 2)]
See Also
========
_distribute_gens_by_base
"""
if len(strong_gens_distr) == 1:
return strong_gens_distr[0][:]
else:
result = strong_gens_distr[0]
for gen in strong_gens_distr[1]:
if gen not in result:
result.append(gen)
return result
|