File size: 16,296 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
from sympy.combinatorics.permutations import Permutation, _af_invert, _af_rmul
from sympy.ntheory import isprime

rmul = Permutation.rmul
_af_new = Permutation._af_new

############################################
#
# Utilities for computational group theory
#
############################################


def _base_ordering(base, degree):
    r"""
    Order `\{0, 1, \dots, n-1\}` so that base points come first and in order.

    Parameters
    ==========

    base : the base
    degree : the degree of the associated permutation group

    Returns
    =======

    A list ``base_ordering`` such that ``base_ordering[point]`` is the
    number of ``point`` in the ordering.

    Examples
    ========

    >>> from sympy.combinatorics import SymmetricGroup
    >>> from sympy.combinatorics.util import _base_ordering
    >>> S = SymmetricGroup(4)
    >>> S.schreier_sims()
    >>> _base_ordering(S.base, S.degree)
    [0, 1, 2, 3]

    Notes
    =====

    This is used in backtrack searches, when we define a relation `\ll` on
    the underlying set for a permutation group of degree `n`,
    `\{0, 1, \dots, n-1\}`, so that if `(b_1, b_2, \dots, b_k)` is a base we
    have `b_i \ll b_j` whenever `i<j` and `b_i \ll a` for all
    `i\in\{1,2, \dots, k\}` and `a` is not in the base. The idea is developed
    and applied to backtracking algorithms in [1], pp.108-132. The points
    that are not in the base are taken in increasing order.

    References
    ==========

    .. [1] Holt, D., Eick, B., O'Brien, E.
           "Handbook of computational group theory"

    """
    base_len = len(base)
    ordering = [0]*degree
    for i in range(base_len):
        ordering[base[i]] = i
    current = base_len
    for i in range(degree):
        if i not in base:
            ordering[i] = current
            current += 1
    return ordering


def _check_cycles_alt_sym(perm):
    """
    Checks for cycles of prime length p with n/2 < p < n-2.

    Explanation
    ===========

    Here `n` is the degree of the permutation. This is a helper function for
    the function is_alt_sym from sympy.combinatorics.perm_groups.

    Examples
    ========

    >>> from sympy.combinatorics.util import _check_cycles_alt_sym
    >>> from sympy.combinatorics import Permutation
    >>> a = Permutation([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11, 12]])
    >>> _check_cycles_alt_sym(a)
    False
    >>> b = Permutation([[0, 1, 2, 3, 4, 5, 6], [7, 8, 9, 10]])
    >>> _check_cycles_alt_sym(b)
    True

    See Also
    ========

    sympy.combinatorics.perm_groups.PermutationGroup.is_alt_sym

    """
    n = perm.size
    af = perm.array_form
    current_len = 0
    total_len = 0
    used = set()
    for i in range(n//2):
        if i not in used and i < n//2 - total_len:
            current_len = 1
            used.add(i)
            j = i
            while af[j] != i:
                current_len += 1
                j = af[j]
                used.add(j)
            total_len += current_len
            if current_len > n//2 and current_len < n - 2 and isprime(current_len):
                return True
    return False


def _distribute_gens_by_base(base, gens):
    r"""
    Distribute the group elements ``gens`` by membership in basic stabilizers.

    Explanation
    ===========

    Notice that for a base `(b_1, b_2, \dots, b_k)`, the basic stabilizers
    are defined as `G^{(i)} = G_{b_1, \dots, b_{i-1}}` for
    `i \in\{1, 2, \dots, k\}`.

    Parameters
    ==========

    base : a sequence of points in `\{0, 1, \dots, n-1\}`
    gens : a list of elements of a permutation group of degree `n`.

    Returns
    =======
    list
        List of length `k`, where `k` is the length of *base*. The `i`-th entry
        contains those elements in *gens* which fix the first `i` elements of
        *base* (so that the `0`-th entry is equal to *gens* itself). If no
        element fixes the first `i` elements of *base*, the `i`-th element is
        set to a list containing the identity element.

    Examples
    ========

    >>> from sympy.combinatorics.named_groups import DihedralGroup
    >>> from sympy.combinatorics.util import _distribute_gens_by_base
    >>> D = DihedralGroup(3)
    >>> D.schreier_sims()
    >>> D.strong_gens
    [(0 1 2), (0 2), (1 2)]
    >>> D.base
    [0, 1]
    >>> _distribute_gens_by_base(D.base, D.strong_gens)
    [[(0 1 2), (0 2), (1 2)],
     [(1 2)]]

    See Also
    ========

    _strong_gens_from_distr, _orbits_transversals_from_bsgs,
    _handle_precomputed_bsgs

    """
    base_len = len(base)
    degree = gens[0].size
    stabs = [[] for _ in range(base_len)]
    max_stab_index = 0
    for gen in gens:
        j = 0
        while j < base_len - 1 and gen._array_form[base[j]] == base[j]:
            j += 1
        if j > max_stab_index:
            max_stab_index = j
        for k in range(j + 1):
            stabs[k].append(gen)
    for i in range(max_stab_index + 1, base_len):
        stabs[i].append(_af_new(list(range(degree))))
    return stabs


def _handle_precomputed_bsgs(base, strong_gens, transversals=None,
                             basic_orbits=None, strong_gens_distr=None):
    """
    Calculate BSGS-related structures from those present.

    Explanation
    ===========

    The base and strong generating set must be provided; if any of the
    transversals, basic orbits or distributed strong generators are not
    provided, they will be calculated from the base and strong generating set.

    Parameters
    ==========

    base : the base
    strong_gens : the strong generators
    transversals : basic transversals
    basic_orbits : basic orbits
    strong_gens_distr : strong generators distributed by membership in basic stabilizers

    Returns
    =======

    (transversals, basic_orbits, strong_gens_distr)
        where *transversals* are the basic transversals, *basic_orbits* are the
        basic orbits, and *strong_gens_distr* are the strong generators distributed
        by membership in basic stabilizers.

    Examples
    ========

    >>> from sympy.combinatorics.named_groups import DihedralGroup
    >>> from sympy.combinatorics.util import _handle_precomputed_bsgs
    >>> D = DihedralGroup(3)
    >>> D.schreier_sims()
    >>> _handle_precomputed_bsgs(D.base, D.strong_gens,
    ... basic_orbits=D.basic_orbits)
    ([{0: (2), 1: (0 1 2), 2: (0 2)}, {1: (2), 2: (1 2)}], [[0, 1, 2], [1, 2]], [[(0 1 2), (0 2), (1 2)], [(1 2)]])

    See Also
    ========

    _orbits_transversals_from_bsgs, _distribute_gens_by_base

    """
    if strong_gens_distr is None:
        strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
    if transversals is None:
        if basic_orbits is None:
            basic_orbits, transversals = \
                _orbits_transversals_from_bsgs(base, strong_gens_distr)
        else:
            transversals = \
                _orbits_transversals_from_bsgs(base, strong_gens_distr,
                                           transversals_only=True)
    else:
        if basic_orbits is None:
            base_len = len(base)
            basic_orbits = [None]*base_len
            for i in range(base_len):
                basic_orbits[i] = list(transversals[i].keys())
    return transversals, basic_orbits, strong_gens_distr


def _orbits_transversals_from_bsgs(base, strong_gens_distr,
                                   transversals_only=False, slp=False):
    """
    Compute basic orbits and transversals from a base and strong generating set.

    Explanation
    ===========

    The generators are provided as distributed across the basic stabilizers.
    If the optional argument ``transversals_only`` is set to True, only the
    transversals are returned.

    Parameters
    ==========

    base : The base.
    strong_gens_distr : Strong generators distributed by membership in basic stabilizers.
    transversals_only : bool, default: False
        A flag switching between returning only the
        transversals and both orbits and transversals.
    slp : bool, default: False
        If ``True``, return a list of dictionaries containing the
        generator presentations of the elements of the transversals,
        i.e. the list of indices of generators from ``strong_gens_distr[i]``
        such that their product is the relevant transversal element.

    Examples
    ========

    >>> from sympy.combinatorics import SymmetricGroup
    >>> from sympy.combinatorics.util import _distribute_gens_by_base
    >>> S = SymmetricGroup(3)
    >>> S.schreier_sims()
    >>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens)
    >>> (S.base, strong_gens_distr)
    ([0, 1], [[(0 1 2), (2)(0 1), (1 2)], [(1 2)]])

    See Also
    ========

    _distribute_gens_by_base, _handle_precomputed_bsgs

    """
    from sympy.combinatorics.perm_groups import _orbit_transversal
    base_len = len(base)
    degree = strong_gens_distr[0][0].size
    transversals = [None]*base_len
    slps = [None]*base_len
    if transversals_only is False:
        basic_orbits = [None]*base_len
    for i in range(base_len):
        transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i],
                                 base[i], pairs=True, slp=True)
        transversals[i] = dict(transversals[i])
        if transversals_only is False:
            basic_orbits[i] = list(transversals[i].keys())
    if transversals_only:
        return transversals
    else:
        if not slp:
            return basic_orbits, transversals
        return basic_orbits, transversals, slps


def _remove_gens(base, strong_gens, basic_orbits=None, strong_gens_distr=None):
    """
    Remove redundant generators from a strong generating set.

    Parameters
    ==========

    base : a base
    strong_gens : a strong generating set relative to *base*
    basic_orbits : basic orbits
    strong_gens_distr : strong generators distributed by membership in basic stabilizers

    Returns
    =======

    A strong generating set with respect to ``base`` which is a subset of
    ``strong_gens``.

    Examples
    ========

    >>> from sympy.combinatorics import SymmetricGroup
    >>> from sympy.combinatorics.util import _remove_gens
    >>> from sympy.combinatorics.testutil import _verify_bsgs
    >>> S = SymmetricGroup(15)
    >>> base, strong_gens = S.schreier_sims_incremental()
    >>> new_gens = _remove_gens(base, strong_gens)
    >>> len(new_gens)
    14
    >>> _verify_bsgs(S, base, new_gens)
    True

    Notes
    =====

    This procedure is outlined in [1],p.95.

    References
    ==========

    .. [1] Holt, D., Eick, B., O'Brien, E.
           "Handbook of computational group theory"

    """
    from sympy.combinatorics.perm_groups import _orbit
    base_len = len(base)
    degree = strong_gens[0].size
    if strong_gens_distr is None:
        strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
    if basic_orbits is None:
        basic_orbits = []
        for i in range(base_len):
            basic_orbit = _orbit(degree, strong_gens_distr[i], base[i])
            basic_orbits.append(basic_orbit)
    strong_gens_distr.append([])
    res = strong_gens[:]
    for i in range(base_len - 1, -1, -1):
        gens_copy = strong_gens_distr[i][:]
        for gen in strong_gens_distr[i]:
            if gen not in strong_gens_distr[i + 1]:
                temp_gens = gens_copy[:]
                temp_gens.remove(gen)
                if temp_gens == []:
                    continue
                temp_orbit = _orbit(degree, temp_gens, base[i])
                if temp_orbit == basic_orbits[i]:
                    gens_copy.remove(gen)
                    res.remove(gen)
    return res


def _strip(g, base, orbits, transversals):
    """
    Attempt to decompose a permutation using a (possibly partial) BSGS
    structure.

    Explanation
    ===========

    This is done by treating the sequence ``base`` as an actual base, and
    the orbits ``orbits`` and transversals ``transversals`` as basic orbits and
    transversals relative to it.

    This process is called "sifting". A sift is unsuccessful when a certain
    orbit element is not found or when after the sift the decomposition
    does not end with the identity element.

    The argument ``transversals`` is a list of dictionaries that provides
    transversal elements for the orbits ``orbits``.

    Parameters
    ==========

    g : permutation to be decomposed
    base : sequence of points
    orbits : list
        A list in which the ``i``-th entry is an orbit of ``base[i]``
        under some subgroup of the pointwise stabilizer of `
        `base[0], base[1], ..., base[i - 1]``. The groups themselves are implicit
        in this function since the only information we need is encoded in the orbits
        and transversals
    transversals : list
        A list of orbit transversals associated with the orbits *orbits*.

    Examples
    ========

    >>> from sympy.combinatorics import Permutation, SymmetricGroup
    >>> from sympy.combinatorics.util import _strip
    >>> S = SymmetricGroup(5)
    >>> S.schreier_sims()
    >>> g = Permutation([0, 2, 3, 1, 4])
    >>> _strip(g, S.base, S.basic_orbits, S.basic_transversals)
    ((4), 5)

    Notes
    =====

    The algorithm is described in [1],pp.89-90. The reason for returning
    both the current state of the element being decomposed and the level
    at which the sifting ends is that they provide important information for
    the randomized version of the Schreier-Sims algorithm.

    References
    ==========

    .. [1] Holt, D., Eick, B., O'Brien, E."Handbook of computational group theory"

    See Also
    ========

    sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims
    sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims_random

    """
    h = g._array_form
    base_len = len(base)
    for i in range(base_len):
        beta = h[base[i]]
        if beta == base[i]:
            continue
        if beta not in orbits[i]:
            return _af_new(h), i + 1
        u = transversals[i][beta]._array_form
        h = _af_rmul(_af_invert(u), h)
    return _af_new(h), base_len + 1


def _strip_af(h, base, orbits, transversals, j, slp=[], slps={}):
    """
    optimized _strip, with h, transversals and result in array form
    if the stripped elements is the identity, it returns False, base_len + 1

    j    h[base[i]] == base[i] for i <= j

    """
    base_len = len(base)
    for i in range(j+1, base_len):
        beta = h[base[i]]
        if beta == base[i]:
            continue
        if beta not in orbits[i]:
            if not slp:
                return h, i + 1
            return h, i + 1, slp
        u = transversals[i][beta]
        if h == u:
            if not slp:
                return False, base_len + 1
            return False, base_len + 1, slp
        h = _af_rmul(_af_invert(u), h)
        if slp:
            u_slp = slps[i][beta][:]
            u_slp.reverse()
            u_slp = [(i, (g,)) for g in u_slp]
            slp = u_slp + slp
    if not slp:
        return h, base_len + 1
    return h, base_len + 1, slp


def _strong_gens_from_distr(strong_gens_distr):
    """
    Retrieve strong generating set from generators of basic stabilizers.

    This is just the union of the generators of the first and second basic
    stabilizers.

    Parameters
    ==========

    strong_gens_distr : strong generators distributed by membership in basic stabilizers

    Examples
    ========

    >>> from sympy.combinatorics import SymmetricGroup
    >>> from sympy.combinatorics.util import (_strong_gens_from_distr,
    ... _distribute_gens_by_base)
    >>> S = SymmetricGroup(3)
    >>> S.schreier_sims()
    >>> S.strong_gens
    [(0 1 2), (2)(0 1), (1 2)]
    >>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens)
    >>> _strong_gens_from_distr(strong_gens_distr)
    [(0 1 2), (2)(0 1), (1 2)]

    See Also
    ========

    _distribute_gens_by_base

    """
    if len(strong_gens_distr) == 1:
        return strong_gens_distr[0][:]
    else:
        result = strong_gens_distr[0]
        for gen in strong_gens_distr[1]:
            if gen not in result:
                result.append(gen)
        return result