File size: 4,437 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""
The Schur number S(k) is the largest integer n for which the interval [1,n]
can be partitioned into k sum-free sets.(https://mathworld.wolfram.com/SchurNumber.html)
"""
import math
from sympy.core import S
from sympy.core.basic import Basic
from sympy.core.function import Function
from sympy.core.numbers import Integer


class SchurNumber(Function):
    r"""
    This function creates a SchurNumber object
    which is evaluated for `k \le 5` otherwise only
    the lower bound information can be retrieved.

    Examples
    ========

    >>> from sympy.combinatorics.schur_number import SchurNumber

    Since S(3) = 13, hence the output is a number
    >>> SchurNumber(3)
    13

    We do not know the Schur number for values greater than 5, hence
    only the object is returned
    >>> SchurNumber(6)
    SchurNumber(6)

    Now, the lower bound information can be retrieved using lower_bound()
    method
    >>> SchurNumber(6).lower_bound()
    536

    """

    @classmethod
    def eval(cls, k):
        if k.is_Number:
            if k is S.Infinity:
                return S.Infinity
            if k.is_zero:
                return S.Zero
            if not k.is_integer or k.is_negative:
                raise ValueError("k should be a positive integer")
            first_known_schur_numbers = {1: 1, 2: 4, 3: 13, 4: 44, 5: 160}
            if k <= 5:
                return Integer(first_known_schur_numbers[k])

    def lower_bound(self):
        f_ = self.args[0]
        # Improved lower bounds known for S(6) and S(7)
        if f_ == 6:
            return Integer(536)
        if f_ == 7:
            return Integer(1680)
        # For other cases, use general expression
        if f_.is_Integer:
            return 3*self.func(f_ - 1).lower_bound() - 1
        return (3**f_ - 1)/2


def _schur_subsets_number(n):

    if n is S.Infinity:
        raise ValueError("Input must be finite")
    if n <= 0:
        raise ValueError("n must be a non-zero positive integer.")
    elif n <= 3:
        min_k = 1
    else:
        min_k = math.ceil(math.log(2*n + 1, 3))

    return Integer(min_k)


def schur_partition(n):
    """

    This function returns the partition in the minimum number of sum-free subsets
    according to the lower bound given by the Schur Number.

    Parameters
    ==========

    n: a number
        n is the upper limit of the range [1, n] for which we need to find and
        return the minimum number of free subsets according to the lower bound
        of schur number

    Returns
    =======

    List of lists
        List of the minimum number of sum-free subsets

    Notes
    =====

    It is possible for some n to make the partition into less
    subsets since the only known Schur numbers are:
    S(1) = 1, S(2) = 4, S(3) = 13, S(4) = 44.
    e.g for n = 44 the lower bound from the function above is 5 subsets but it has been proven
    that can be done with 4 subsets.

    Examples
    ========

    For n = 1, 2, 3 the answer is the set itself

    >>> from sympy.combinatorics.schur_number import schur_partition
    >>> schur_partition(2)
    [[1, 2]]

    For n > 3, the answer is the minimum number of sum-free subsets:

    >>> schur_partition(5)
    [[3, 2], [5], [1, 4]]

    >>> schur_partition(8)
    [[3, 2], [6, 5, 8], [1, 4, 7]]
    """

    if isinstance(n, Basic) and not n.is_Number:
        raise ValueError("Input value must be a number")

    number_of_subsets = _schur_subsets_number(n)
    if n == 1:
        sum_free_subsets = [[1]]
    elif n == 2:
        sum_free_subsets = [[1, 2]]
    elif n == 3:
        sum_free_subsets = [[1, 2, 3]]
    else:
        sum_free_subsets = [[1, 4], [2, 3]]

    while len(sum_free_subsets) < number_of_subsets:
        sum_free_subsets = _generate_next_list(sum_free_subsets, n)
        missed_elements = [3*k + 1 for k in range(len(sum_free_subsets), (n-1)//3 + 1)]
        sum_free_subsets[-1] += missed_elements

    return sum_free_subsets


def _generate_next_list(current_list, n):
    new_list = []

    for item in current_list:
        temp_1 = [number*3 for number in item if number*3 <= n]
        temp_2 = [number*3 - 1 for number in item if number*3 - 1 <= n]
        new_item = temp_1 + temp_2
        new_list.append(new_item)

    last_list = [3*k + 1 for k in range(len(current_list)+1) if 3*k + 1 <= n]
    new_list.append(last_list)
    current_list = new_list

    return current_list