File size: 17,095 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
from collections import deque
from sympy.combinatorics.rewritingsystem_fsm import StateMachine

class RewritingSystem:
    '''
    A class implementing rewriting systems for `FpGroup`s.

    References
    ==========
    .. [1] Epstein, D., Holt, D. and Rees, S. (1991).
           The use of Knuth-Bendix methods to solve the word problem in automatic groups.
           Journal of Symbolic Computation, 12(4-5), pp.397-414.

    .. [2] GAP's Manual on its KBMAG package
           https://www.gap-system.org/Manuals/pkg/kbmag-1.5.3/doc/manual.pdf

    '''
    def __init__(self, group):
        self.group = group
        self.alphabet = group.generators
        self._is_confluent = None

        # these values are taken from [2]
        self.maxeqns = 32767 # max rules
        self.tidyint = 100 # rules before tidying

        # _max_exceeded is True if maxeqns is exceeded
        # at any point
        self._max_exceeded = False

        # Reduction automaton
        self.reduction_automaton = None
        self._new_rules = {}

        # dictionary of reductions
        self.rules = {}
        self.rules_cache = deque([], 50)
        self._init_rules()


        # All the transition symbols in the automaton
        generators = list(self.alphabet)
        generators += [gen**-1 for gen in generators]
        # Create a finite state machine as an instance of the StateMachine object
        self.reduction_automaton = StateMachine('Reduction automaton for '+ repr(self.group), generators)
        self.construct_automaton()

    def set_max(self, n):
        '''
        Set the maximum number of rules that can be defined

        '''
        if n > self.maxeqns:
            self._max_exceeded = False
        self.maxeqns = n
        return

    @property
    def is_confluent(self):
        '''
        Return `True` if the system is confluent

        '''
        if self._is_confluent is None:
            self._is_confluent = self._check_confluence()
        return self._is_confluent

    def _init_rules(self):
        identity = self.group.free_group.identity
        for r in self.group.relators:
            self.add_rule(r, identity)
        self._remove_redundancies()
        return

    def _add_rule(self, r1, r2):
        '''
        Add the rule r1 -> r2 with no checking or further
        deductions

        '''
        if len(self.rules) + 1 > self.maxeqns:
            self._is_confluent = self._check_confluence()
            self._max_exceeded = True
            raise RuntimeError("Too many rules were defined.")
        self.rules[r1] = r2
        # Add the newly added rule to the `new_rules` dictionary.
        if self.reduction_automaton:
            self._new_rules[r1] = r2

    def add_rule(self, w1, w2, check=False):
        new_keys = set()

        if w1 == w2:
            return new_keys

        if w1 < w2:
            w1, w2 = w2, w1

        if (w1, w2) in self.rules_cache:
            return new_keys
        self.rules_cache.append((w1, w2))

        s1, s2 = w1, w2

        # The following is the equivalent of checking
        # s1 for overlaps with the implicit reductions
        # {g*g**-1 -> <identity>} and {g**-1*g -> <identity>}
        # for any generator g without installing the
        # redundant rules that would result from processing
        # the overlaps. See [1], Section 3 for details.

        if len(s1) - len(s2) < 3:
            if s1 not in self.rules:
                new_keys.add(s1)
                if not check:
                    self._add_rule(s1, s2)
            if s2**-1 > s1**-1 and s2**-1 not in self.rules:
                new_keys.add(s2**-1)
                if not check:
                    self._add_rule(s2**-1, s1**-1)

        # overlaps on the right
        while len(s1) - len(s2) > -1:
            g = s1[len(s1)-1]
            s1 = s1.subword(0, len(s1)-1)
            s2 = s2*g**-1
            if len(s1) - len(s2) < 0:
                if s2 not in self.rules:
                    if not check:
                        self._add_rule(s2, s1)
                    new_keys.add(s2)
            elif len(s1) - len(s2) < 3:
                new = self.add_rule(s1, s2, check)
                new_keys.update(new)

        # overlaps on the left
        while len(w1) - len(w2) > -1:
            g = w1[0]
            w1 = w1.subword(1, len(w1))
            w2 = g**-1*w2
            if len(w1) - len(w2) < 0:
                if w2 not in self.rules:
                    if not check:
                        self._add_rule(w2, w1)
                    new_keys.add(w2)
            elif len(w1) - len(w2) < 3:
                new = self.add_rule(w1, w2, check)
                new_keys.update(new)

        return new_keys

    def _remove_redundancies(self, changes=False):
        '''
        Reduce left- and right-hand sides of reduction rules
        and remove redundant equations (i.e. those for which
        lhs == rhs). If `changes` is `True`, return a set
        containing the removed keys and a set containing the
        added keys

        '''
        removed = set()
        added = set()
        rules = self.rules.copy()
        for r in rules:
            v = self.reduce(r, exclude=r)
            w = self.reduce(rules[r])
            if v != r:
                del self.rules[r]
                removed.add(r)
                if v > w:
                    added.add(v)
                    self.rules[v] = w
                elif v < w:
                    added.add(w)
                    self.rules[w] = v
            else:
                self.rules[v] = w
        if changes:
            return removed, added
        return

    def make_confluent(self, check=False):
        '''
        Try to make the system confluent using the Knuth-Bendix
        completion algorithm

        '''
        if self._max_exceeded:
            return self._is_confluent
        lhs = list(self.rules.keys())

        def _overlaps(r1, r2):
            len1 = len(r1)
            len2 = len(r2)
            result = []
            for j in range(1, len1 + len2):
                if (r1.subword(len1 - j, len1 + len2 - j, strict=False)
                       == r2.subword(j - len1, j, strict=False)):
                    a = r1.subword(0, len1-j, strict=False)
                    a = a*r2.subword(0, j-len1, strict=False)
                    b = r2.subword(j-len1, j, strict=False)
                    c = r2.subword(j, len2, strict=False)
                    c = c*r1.subword(len1 + len2 - j, len1, strict=False)
                    result.append(a*b*c)
            return result

        def _process_overlap(w, r1, r2, check):
                s = w.eliminate_word(r1, self.rules[r1])
                s = self.reduce(s)
                t = w.eliminate_word(r2, self.rules[r2])
                t = self.reduce(t)
                if s != t:
                    if check:
                        # system not confluent
                        return [0]
                    try:
                        new_keys = self.add_rule(t, s, check)
                        return new_keys
                    except RuntimeError:
                        return False
                return

        added = 0
        i = 0
        while i < len(lhs):
            r1 = lhs[i]
            i += 1
            # j could be i+1 to not
            # check each pair twice but lhs
            # is extended in the loop and the new
            # elements have to be checked with the
            # preceding ones. there is probably a better way
            # to handle this
            j = 0
            while j < len(lhs):
                r2 = lhs[j]
                j += 1
                if r1 == r2:
                    continue
                overlaps = _overlaps(r1, r2)
                overlaps.extend(_overlaps(r1**-1, r2))
                if not overlaps:
                    continue
                for w in overlaps:
                    new_keys = _process_overlap(w, r1, r2, check)
                    if new_keys:
                        if check:
                            return False
                        lhs.extend(new_keys)
                        added += len(new_keys)
                    elif new_keys == False:
                        # too many rules were added so the process
                        # couldn't complete
                        return self._is_confluent

                if added > self.tidyint and not check:
                    # tidy up
                    r, a = self._remove_redundancies(changes=True)
                    added = 0
                    if r:
                        # reset i since some elements were removed
                        i = min(lhs.index(s) for s in r)
                    lhs = [l for l in lhs if l not in r]
                    lhs.extend(a)
                    if r1 in r:
                        # r1 was removed as redundant
                        break

        self._is_confluent = True
        if not check:
            self._remove_redundancies()
        return True

    def _check_confluence(self):
        return self.make_confluent(check=True)

    def reduce(self, word, exclude=None):
        '''
        Apply reduction rules to `word` excluding the reduction rule
        for the lhs equal to `exclude`

        '''
        rules = {r: self.rules[r] for r in self.rules if r != exclude}
        # the following is essentially `eliminate_words()` code from the
        # `FreeGroupElement` class, the only difference being the first
        # "if" statement
        again = True
        new = word
        while again:
            again = False
            for r in rules:
                prev = new
                if rules[r]**-1 > r**-1:
                    new = new.eliminate_word(r, rules[r], _all=True, inverse=False)
                else:
                    new = new.eliminate_word(r, rules[r], _all=True)
                if new != prev:
                    again = True
        return new

    def _compute_inverse_rules(self, rules):
        '''
        Compute the inverse rules for a given set of rules.
        The inverse rules are used in the automaton for word reduction.

        Arguments:
            rules (dictionary): Rules for which the inverse rules are to computed.

        Returns:
            Dictionary of inverse_rules.

        '''
        inverse_rules = {}
        for r in rules:
            rule_key_inverse = r**-1
            rule_value_inverse = (rules[r])**-1
            if (rule_value_inverse < rule_key_inverse):
                inverse_rules[rule_key_inverse] = rule_value_inverse
            else:
                inverse_rules[rule_value_inverse] = rule_key_inverse
        return inverse_rules

    def construct_automaton(self):
        '''
        Construct the automaton based on the set of reduction rules of the system.

        Automata Design:
        The accept states of the automaton are the proper prefixes of the left hand side of the rules.
        The complete left hand side of the rules are the dead states of the automaton.

        '''
        self._add_to_automaton(self.rules)

    def _add_to_automaton(self, rules):
        '''
        Add new states and transitions to the automaton.

        Summary:
        States corresponding to the new rules added to the system are computed and added to the automaton.
        Transitions in the previously added states are also modified if necessary.

        Arguments:
            rules (dictionary) -- Dictionary of the newly added rules.

        '''
        # Automaton variables
        automaton_alphabet = []
        proper_prefixes = {}

        # compute the inverses of all the new rules added
        all_rules = rules
        inverse_rules = self._compute_inverse_rules(all_rules)
        all_rules.update(inverse_rules)

        # Keep track of the accept_states.
        accept_states = []

        for rule in all_rules:
            # The symbols present in the new rules are the symbols to be verified at each state.
            # computes the automaton_alphabet, as the transitions solely depend upon the new states.
            automaton_alphabet += rule.letter_form_elm
            # Compute the proper prefixes for every rule.
            proper_prefixes[rule] = []
            letter_word_array = list(rule.letter_form_elm)
            len_letter_word_array = len(letter_word_array)
            for i in range (1, len_letter_word_array):
                letter_word_array[i] = letter_word_array[i-1]*letter_word_array[i]
                # Add accept states.
                elem = letter_word_array[i-1]
                if elem not in self.reduction_automaton.states:
                    self.reduction_automaton.add_state(elem, state_type='a')
                    accept_states.append(elem)
            proper_prefixes[rule] = letter_word_array
            # Check for overlaps between dead and accept states.
            if rule in accept_states:
                self.reduction_automaton.states[rule].state_type = 'd'
                self.reduction_automaton.states[rule].rh_rule = all_rules[rule]
                accept_states.remove(rule)
            # Add dead states
            if rule not in self.reduction_automaton.states:
                self.reduction_automaton.add_state(rule, state_type='d', rh_rule=all_rules[rule])

        automaton_alphabet = set(automaton_alphabet)

        # Add new transitions for every state.
        for state in self.reduction_automaton.states:
            current_state_name = state
            current_state_type = self.reduction_automaton.states[state].state_type
            # Transitions will be modified only when suffixes of the current_state
            # belongs to the proper_prefixes of the new rules.
            # The rest are ignored if they cannot lead to a dead state after a finite number of transisitons.
            if current_state_type == 's':
                for letter in automaton_alphabet:
                    if letter in self.reduction_automaton.states:
                        self.reduction_automaton.states[state].add_transition(letter, letter)
                    else:
                        self.reduction_automaton.states[state].add_transition(letter, current_state_name)
            elif current_state_type == 'a':
                # Check if the transition to any new state in possible.
                for letter in automaton_alphabet:
                    _next = current_state_name*letter
                    while len(_next) and _next not in self.reduction_automaton.states:
                        _next = _next.subword(1, len(_next))
                    if not len(_next):
                        _next = 'start'
                    self.reduction_automaton.states[state].add_transition(letter, _next)

        # Add transitions for new states. All symbols used in the automaton are considered here.
        # Ignore this if `reduction_automaton.automaton_alphabet` = `automaton_alphabet`.
        if len(self.reduction_automaton.automaton_alphabet) != len(automaton_alphabet):
            for state in accept_states:
                current_state_name = state
                for letter in self.reduction_automaton.automaton_alphabet:
                    _next = current_state_name*letter
                    while len(_next) and _next not in self.reduction_automaton.states:
                        _next = _next.subword(1, len(_next))
                    if not len(_next):
                        _next = 'start'
                    self.reduction_automaton.states[state].add_transition(letter, _next)

    def reduce_using_automaton(self, word):
        '''
        Reduce a word using an automaton.

        Summary:
        All the symbols of the word are stored in an array and are given as the input to the automaton.
        If the automaton reaches a dead state that subword is replaced and the automaton is run from the beginning.
        The complete word has to be replaced when the word is read and the automaton reaches a dead state.
        So, this process is repeated until the word is read completely and the automaton reaches the accept state.

        Arguments:
            word (instance of FreeGroupElement) -- Word that needs to be reduced.

        '''
        # Modify the automaton if new rules are found.
        if self._new_rules:
            self._add_to_automaton(self._new_rules)
            self._new_rules = {}

        flag = 1
        while flag:
            flag = 0
            current_state = self.reduction_automaton.states['start']
            for i, s in enumerate(word.letter_form_elm):
                next_state_name = current_state.transitions[s]
                next_state = self.reduction_automaton.states[next_state_name]
                if next_state.state_type == 'd':
                    subst = next_state.rh_rule
                    word = word.substituted_word(i - len(next_state_name) + 1, i+1, subst)
                    flag = 1
                    break
                current_state = next_state
        return word