File size: 35,928 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
from sympy.combinatorics import Permutation as Perm
from sympy.combinatorics.perm_groups import PermutationGroup
from sympy.core import Basic, Tuple, default_sort_key
from sympy.sets import FiniteSet
from sympy.utilities.iterables import (minlex, unflatten, flatten)
from sympy.utilities.misc import as_int

rmul = Perm.rmul


class Polyhedron(Basic):
    """
    Represents the polyhedral symmetry group (PSG).

    Explanation
    ===========

    The PSG is one of the symmetry groups of the Platonic solids.
    There are three polyhedral groups: the tetrahedral group
    of order 12, the octahedral group of order 24, and the
    icosahedral group of order 60.

    All doctests have been given in the docstring of the
    constructor of the object.

    References
    ==========

    .. [1] https://mathworld.wolfram.com/PolyhedralGroup.html

    """
    _edges = None

    def __new__(cls, corners, faces=(), pgroup=()):
        """
        The constructor of the Polyhedron group object.

        Explanation
        ===========

        It takes up to three parameters: the corners, faces, and
        allowed transformations.

        The corners/vertices are entered as a list of arbitrary
        expressions that are used to identify each vertex.

        The faces are entered as a list of tuples of indices; a tuple
        of indices identifies the vertices which define the face. They
        should be entered in a cw or ccw order; they will be standardized
        by reversal and rotation to be give the lowest lexical ordering.
        If no faces are given then no edges will be computed.

            >>> from sympy.combinatorics.polyhedron import Polyhedron
            >>> Polyhedron(list('abc'), [(1, 2, 0)]).faces
            {(0, 1, 2)}
            >>> Polyhedron(list('abc'), [(1, 0, 2)]).faces
            {(0, 1, 2)}

        The allowed transformations are entered as allowable permutations
        of the vertices for the polyhedron. Instance of Permutations
        (as with faces) should refer to the supplied vertices by index.
        These permutation are stored as a PermutationGroup.

        Examples
        ========

        >>> from sympy.combinatorics.permutations import Permutation
        >>> from sympy import init_printing
        >>> from sympy.abc import w, x, y, z
        >>> init_printing(pretty_print=False, perm_cyclic=False)

        Here we construct the Polyhedron object for a tetrahedron.

        >>> corners = [w, x, y, z]
        >>> faces = [(0, 1, 2), (0, 2, 3), (0, 3, 1), (1, 2, 3)]

        Next, allowed transformations of the polyhedron must be given. This
        is given as permutations of vertices.

        Although the vertices of a tetrahedron can be numbered in 24 (4!)
        different ways, there are only 12 different orientations for a
        physical tetrahedron. The following permutations, applied once or
        twice, will generate all 12 of the orientations. (The identity
        permutation, Permutation(range(4)), is not included since it does
        not change the orientation of the vertices.)

        >>> pgroup = [Permutation([[0, 1, 2], [3]]), \
                      Permutation([[0, 1, 3], [2]]), \
                      Permutation([[0, 2, 3], [1]]), \
                      Permutation([[1, 2, 3], [0]]), \
                      Permutation([[0, 1], [2, 3]]), \
                      Permutation([[0, 2], [1, 3]]), \
                      Permutation([[0, 3], [1, 2]])]

        The Polyhedron is now constructed and demonstrated:

        >>> tetra = Polyhedron(corners, faces, pgroup)
        >>> tetra.size
        4
        >>> tetra.edges
        {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}
        >>> tetra.corners
        (w, x, y, z)

        It can be rotated with an arbitrary permutation of vertices, e.g.
        the following permutation is not in the pgroup:

        >>> tetra.rotate(Permutation([0, 1, 3, 2]))
        >>> tetra.corners
        (w, x, z, y)

        An allowed permutation of the vertices can be constructed by
        repeatedly applying permutations from the pgroup to the vertices.
        Here is a demonstration that applying p and p**2 for every p in
        pgroup generates all the orientations of a tetrahedron and no others:

        >>> all = ( (w, x, y, z), \
                    (x, y, w, z), \
                    (y, w, x, z), \
                    (w, z, x, y), \
                    (z, w, y, x), \
                    (w, y, z, x), \
                    (y, z, w, x), \
                    (x, z, y, w), \
                    (z, y, x, w), \
                    (y, x, z, w), \
                    (x, w, z, y), \
                    (z, x, w, y) )

        >>> got = []
        >>> for p in (pgroup + [p**2 for p in pgroup]):
        ...     h = Polyhedron(corners)
        ...     h.rotate(p)
        ...     got.append(h.corners)
        ...
        >>> set(got) == set(all)
        True

        The make_perm method of a PermutationGroup will randomly pick
        permutations, multiply them together, and return the permutation that
        can be applied to the polyhedron to give the orientation produced
        by those individual permutations.

        Here, 3 permutations are used:

        >>> tetra.pgroup.make_perm(3) # doctest: +SKIP
        Permutation([0, 3, 1, 2])

        To select the permutations that should be used, supply a list
        of indices to the permutations in pgroup in the order they should
        be applied:

        >>> use = [0, 0, 2]
        >>> p002 = tetra.pgroup.make_perm(3, use)
        >>> p002
        Permutation([1, 0, 3, 2])


        Apply them one at a time:

        >>> tetra.reset()
        >>> for i in use:
        ...     tetra.rotate(pgroup[i])
        ...
        >>> tetra.vertices
        (x, w, z, y)
        >>> sequentially = tetra.vertices

        Apply the composite permutation:

        >>> tetra.reset()
        >>> tetra.rotate(p002)
        >>> tetra.corners
        (x, w, z, y)
        >>> tetra.corners in all and tetra.corners == sequentially
        True

        Notes
        =====

        Defining permutation groups
        ---------------------------

        It is not necessary to enter any permutations, nor is necessary to
        enter a complete set of transformations. In fact, for a polyhedron,
        all configurations can be constructed from just two permutations.
        For example, the orientations of a tetrahedron can be generated from
        an axis passing through a vertex and face and another axis passing
        through a different vertex or from an axis passing through the
        midpoints of two edges opposite of each other.

        For simplicity of presentation, consider a square --
        not a cube -- with vertices 1, 2, 3, and 4:

        1-----2  We could think of axes of rotation being:
        |     |  1) through the face
        |     |  2) from midpoint 1-2 to 3-4 or 1-3 to 2-4
        3-----4  3) lines 1-4 or 2-3


        To determine how to write the permutations, imagine 4 cameras,
        one at each corner, labeled A-D:

        A       B          A       B
         1-----2            1-----3             vertex index:
         |     |            |     |                 1   0
         |     |            |     |                 2   1
         3-----4            2-----4                 3   2
        C       D          C       D                4   3

        original           after rotation
                           along 1-4

        A diagonal and a face axis will be chosen for the "permutation group"
        from which any orientation can be constructed.

        >>> pgroup = []

        Imagine a clockwise rotation when viewing 1-4 from camera A. The new
        orientation is (in camera-order): 1, 3, 2, 4 so the permutation is
        given using the *indices* of the vertices as:

        >>> pgroup.append(Permutation((0, 2, 1, 3)))

        Now imagine rotating clockwise when looking down an axis entering the
        center of the square as viewed. The new camera-order would be
        3, 1, 4, 2 so the permutation is (using indices):

        >>> pgroup.append(Permutation((2, 0, 3, 1)))

        The square can now be constructed:
            ** use real-world labels for the vertices, entering them in
               camera order
            ** for the faces we use zero-based indices of the vertices
               in *edge-order* as the face is traversed; neither the
               direction nor the starting point matter -- the faces are
               only used to define edges (if so desired).

        >>> square = Polyhedron((1, 2, 3, 4), [(0, 1, 3, 2)], pgroup)

        To rotate the square with a single permutation we can do:

        >>> square.rotate(square.pgroup[0])
        >>> square.corners
        (1, 3, 2, 4)

        To use more than one permutation (or to use one permutation more
        than once) it is more convenient to use the make_perm method:

        >>> p011 = square.pgroup.make_perm([0, 1, 1]) # diag flip + 2 rotations
        >>> square.reset() # return to initial orientation
        >>> square.rotate(p011)
        >>> square.corners
        (4, 2, 3, 1)

        Thinking outside the box
        ------------------------

        Although the Polyhedron object has a direct physical meaning, it
        actually has broader application. In the most general sense it is
        just a decorated PermutationGroup, allowing one to connect the
        permutations to something physical. For example, a Rubik's cube is
        not a proper polyhedron, but the Polyhedron class can be used to
        represent it in a way that helps to visualize the Rubik's cube.

        >>> from sympy import flatten, unflatten, symbols
        >>> from sympy.combinatorics import RubikGroup
        >>> facelets = flatten([symbols(s+'1:5') for s in 'UFRBLD'])
        >>> def show():
        ...     pairs = unflatten(r2.corners, 2)
        ...     print(pairs[::2])
        ...     print(pairs[1::2])
        ...
        >>> r2 = Polyhedron(facelets, pgroup=RubikGroup(2))
        >>> show()
        [(U1, U2), (F1, F2), (R1, R2), (B1, B2), (L1, L2), (D1, D2)]
        [(U3, U4), (F3, F4), (R3, R4), (B3, B4), (L3, L4), (D3, D4)]
        >>> r2.rotate(0) # cw rotation of F
        >>> show()
        [(U1, U2), (F3, F1), (U3, R2), (B1, B2), (L1, D1), (R3, R1)]
        [(L4, L2), (F4, F2), (U4, R4), (B3, B4), (L3, D2), (D3, D4)]

        Predefined Polyhedra
        ====================

        For convenience, the vertices and faces are defined for the following
        standard solids along with a permutation group for transformations.
        When the polyhedron is oriented as indicated below, the vertices in
        a given horizontal plane are numbered in ccw direction, starting from
        the vertex that will give the lowest indices in a given face. (In the
        net of the vertices, indices preceded by "-" indicate replication of
        the lhs index in the net.)

        tetrahedron, tetrahedron_faces
        ------------------------------

            4 vertices (vertex up) net:

                 0 0-0
                1 2 3-1

            4 faces:

            (0, 1, 2) (0, 2, 3) (0, 3, 1) (1, 2, 3)

        cube, cube_faces
        ----------------

            8 vertices (face up) net:

                0 1 2 3-0
                4 5 6 7-4

            6 faces:

            (0, 1, 2, 3)
            (0, 1, 5, 4) (1, 2, 6, 5) (2, 3, 7, 6) (0, 3, 7, 4)
            (4, 5, 6, 7)

        octahedron, octahedron_faces
        ----------------------------

            6 vertices (vertex up) net:

                 0 0 0-0
                1 2 3 4-1
                 5 5 5-5

            8 faces:

            (0, 1, 2) (0, 2, 3) (0, 3, 4) (0, 1, 4)
            (1, 2, 5) (2, 3, 5) (3, 4, 5) (1, 4, 5)

        dodecahedron, dodecahedron_faces
        --------------------------------

            20 vertices (vertex up) net:

                  0  1  2  3  4 -0
                  5  6  7  8  9 -5
                14 10 11 12 13-14
                15 16 17 18 19-15

            12 faces:

            (0, 1, 2, 3, 4) (0, 1, 6, 10, 5) (1, 2, 7, 11, 6)
            (2, 3, 8, 12, 7) (3, 4, 9, 13, 8) (0, 4, 9, 14, 5)
            (5, 10, 16, 15, 14) (6, 10, 16, 17, 11) (7, 11, 17, 18, 12)
            (8, 12, 18, 19, 13) (9, 13, 19, 15, 14)(15, 16, 17, 18, 19)

        icosahedron, icosahedron_faces
        ------------------------------

            12 vertices (face up) net:

                 0  0  0  0 -0
                1  2  3  4  5 -1
                 6  7  8  9  10 -6
                  11 11 11 11 -11

            20 faces:

            (0, 1, 2) (0, 2, 3) (0, 3, 4)
            (0, 4, 5) (0, 1, 5) (1, 2, 6)
            (2, 3, 7) (3, 4, 8) (4, 5, 9)
            (1, 5, 10) (2, 6, 7) (3, 7, 8)
            (4, 8, 9) (5, 9, 10) (1, 6, 10)
            (6, 7, 11) (7, 8, 11) (8, 9, 11)
            (9, 10, 11) (6, 10, 11)

        >>> from sympy.combinatorics.polyhedron import cube
        >>> cube.edges
        {(0, 1), (0, 3), (0, 4), (1, 2), (1, 5), (2, 3), (2, 6), (3, 7), (4, 5), (4, 7), (5, 6), (6, 7)}

        If you want to use letters or other names for the corners you
        can still use the pre-calculated faces:

        >>> corners = list('abcdefgh')
        >>> Polyhedron(corners, cube.faces).corners
        (a, b, c, d, e, f, g, h)

        References
        ==========

        .. [1] www.ocf.berkeley.edu/~wwu/articles/platonicsolids.pdf

        """
        faces = [minlex(f, directed=False, key=default_sort_key) for f in faces]
        corners, faces, pgroup = args = \
            [Tuple(*a) for a in (corners, faces, pgroup)]
        obj = Basic.__new__(cls, *args)
        obj._corners = tuple(corners)  # in order given
        obj._faces = FiniteSet(*faces)
        if pgroup and pgroup[0].size != len(corners):
            raise ValueError("Permutation size unequal to number of corners.")
        # use the identity permutation if none are given
        obj._pgroup = PermutationGroup(
            pgroup or [Perm(range(len(corners)))] )
        return obj

    @property
    def corners(self):
        """
        Get the corners of the Polyhedron.

        The method ``vertices`` is an alias for ``corners``.

        Examples
        ========

        >>> from sympy.combinatorics import Polyhedron
        >>> from sympy.abc import a, b, c, d
        >>> p = Polyhedron(list('abcd'))
        >>> p.corners == p.vertices == (a, b, c, d)
        True

        See Also
        ========

        array_form, cyclic_form
        """
        return self._corners
    vertices = corners

    @property
    def array_form(self):
        """Return the indices of the corners.

        The indices are given relative to the original position of corners.

        Examples
        ========

        >>> from sympy.combinatorics.polyhedron import tetrahedron
        >>> tetrahedron = tetrahedron.copy()
        >>> tetrahedron.array_form
        [0, 1, 2, 3]

        >>> tetrahedron.rotate(0)
        >>> tetrahedron.array_form
        [0, 2, 3, 1]
        >>> tetrahedron.pgroup[0].array_form
        [0, 2, 3, 1]

        See Also
        ========

        corners, cyclic_form
        """
        corners = list(self.args[0])
        return [corners.index(c) for c in self.corners]

    @property
    def cyclic_form(self):
        """Return the indices of the corners in cyclic notation.

        The indices are given relative to the original position of corners.

        See Also
        ========

        corners, array_form
        """
        return Perm._af_new(self.array_form).cyclic_form

    @property
    def size(self):
        """
        Get the number of corners of the Polyhedron.
        """
        return len(self._corners)

    @property
    def faces(self):
        """
        Get the faces of the Polyhedron.
        """
        return self._faces

    @property
    def pgroup(self):
        """
        Get the permutations of the Polyhedron.
        """
        return self._pgroup

    @property
    def edges(self):
        """
        Given the faces of the polyhedra we can get the edges.

        Examples
        ========

        >>> from sympy.combinatorics import Polyhedron
        >>> from sympy.abc import a, b, c
        >>> corners = (a, b, c)
        >>> faces = [(0, 1, 2)]
        >>> Polyhedron(corners, faces).edges
        {(0, 1), (0, 2), (1, 2)}

        """
        if self._edges is None:
            output = set()
            for face in self.faces:
                for i in range(len(face)):
                    edge = tuple(sorted([face[i], face[i - 1]]))
                    output.add(edge)
            self._edges = FiniteSet(*output)
        return self._edges

    def rotate(self, perm):
        """
        Apply a permutation to the polyhedron *in place*. The permutation
        may be given as a Permutation instance or an integer indicating
        which permutation from pgroup of the Polyhedron should be
        applied.

        This is an operation that is analogous to rotation about
        an axis by a fixed increment.

        Notes
        =====

        When a Permutation is applied, no check is done to see if that
        is a valid permutation for the Polyhedron. For example, a cube
        could be given a permutation which effectively swaps only 2
        vertices. A valid permutation (that rotates the object in a
        physical way) will be obtained if one only uses
        permutations from the ``pgroup`` of the Polyhedron. On the other
        hand, allowing arbitrary rotations (applications of permutations)
        gives a way to follow named elements rather than indices since
        Polyhedron allows vertices to be named while Permutation works
        only with indices.

        Examples
        ========

        >>> from sympy.combinatorics import Polyhedron, Permutation
        >>> from sympy.combinatorics.polyhedron import cube
        >>> cube = cube.copy()
        >>> cube.corners
        (0, 1, 2, 3, 4, 5, 6, 7)
        >>> cube.rotate(0)
        >>> cube.corners
        (1, 2, 3, 0, 5, 6, 7, 4)

        A non-physical "rotation" that is not prohibited by this method:

        >>> cube.reset()
        >>> cube.rotate(Permutation([[1, 2]], size=8))
        >>> cube.corners
        (0, 2, 1, 3, 4, 5, 6, 7)

        Polyhedron can be used to follow elements of set that are
        identified by letters instead of integers:

        >>> shadow = h5 = Polyhedron(list('abcde'))
        >>> p = Permutation([3, 0, 1, 2, 4])
        >>> h5.rotate(p)
        >>> h5.corners
        (d, a, b, c, e)
        >>> _ == shadow.corners
        True
        >>> copy = h5.copy()
        >>> h5.rotate(p)
        >>> h5.corners == copy.corners
        False
        """
        if not isinstance(perm, Perm):
            perm = self.pgroup[perm]
            # and we know it's valid
        else:
            if perm.size != self.size:
                raise ValueError('Polyhedron and Permutation sizes differ.')
        a = perm.array_form
        corners = [self.corners[a[i]] for i in range(len(self.corners))]
        self._corners = tuple(corners)

    def reset(self):
        """Return corners to their original positions.

        Examples
        ========

        >>> from sympy.combinatorics.polyhedron import tetrahedron as T
        >>> T = T.copy()
        >>> T.corners
        (0, 1, 2, 3)
        >>> T.rotate(0)
        >>> T.corners
        (0, 2, 3, 1)
        >>> T.reset()
        >>> T.corners
        (0, 1, 2, 3)
        """
        self._corners = self.args[0]


def _pgroup_calcs():
    """Return the permutation groups for each of the polyhedra and the face
    definitions: tetrahedron, cube, octahedron, dodecahedron, icosahedron,
    tetrahedron_faces, cube_faces, octahedron_faces, dodecahedron_faces,
    icosahedron_faces

    Explanation
    ===========

    (This author did not find and did not know of a better way to do it though
    there likely is such a way.)

    Although only 2 permutations are needed for a polyhedron in order to
    generate all the possible orientations, a group of permutations is
    provided instead. A set of permutations is called a "group" if::

    a*b = c (for any pair of permutations in the group, a and b, their
    product, c, is in the group)

    a*(b*c) = (a*b)*c (for any 3 permutations in the group associativity holds)

    there is an identity permutation, I, such that I*a = a*I for all elements
    in the group

    a*b = I (the inverse of each permutation is also in the group)

    None of the polyhedron groups defined follow these definitions of a group.
    Instead, they are selected to contain those permutations whose powers
    alone will construct all orientations of the polyhedron, i.e. for
    permutations ``a``, ``b``, etc... in the group, ``a, a**2, ..., a**o_a``,
    ``b, b**2, ..., b**o_b``, etc... (where ``o_i`` is the order of
    permutation ``i``) generate all permutations of the polyhedron instead of
    mixed products like ``a*b``, ``a*b**2``, etc....

    Note that for a polyhedron with n vertices, the valid permutations of the
    vertices exclude those that do not maintain its faces. e.g. the
    permutation BCDE of a square's four corners, ABCD, is a valid
    permutation while CBDE is not (because this would twist the square).

    Examples
    ========

    The is_group checks for: closure, the presence of the Identity permutation,
    and the presence of the inverse for each of the elements in the group. This
    confirms that none of the polyhedra are true groups:

    >>> from sympy.combinatorics.polyhedron import (
    ... tetrahedron, cube, octahedron, dodecahedron, icosahedron)
    ...
    >>> polyhedra = (tetrahedron, cube, octahedron, dodecahedron, icosahedron)
    >>> [h.pgroup.is_group for h in polyhedra]
    ...
    [True, True, True, True, True]

    Although tests in polyhedron's test suite check that powers of the
    permutations in the groups generate all permutations of the vertices
    of the polyhedron, here we also demonstrate the powers of the given
    permutations create a complete group for the tetrahedron:

    >>> from sympy.combinatorics import Permutation, PermutationGroup
    >>> for h in polyhedra[:1]:
    ...     G = h.pgroup
    ...     perms = set()
    ...     for g in G:
    ...         for e in range(g.order()):
    ...             p = tuple((g**e).array_form)
    ...             perms.add(p)
    ...
    ...     perms = [Permutation(p) for p in perms]
    ...     assert PermutationGroup(perms).is_group

    In addition to doing the above, the tests in the suite confirm that the
    faces are all present after the application of each permutation.

    References
    ==========

    .. [1] https://dogschool.tripod.com/trianglegroup.html

    """
    def _pgroup_of_double(polyh, ordered_faces, pgroup):
        n = len(ordered_faces[0])
        # the vertices of the double which sits inside a give polyhedron
        # can be found by tracking the faces of the outer polyhedron.
        # A map between face and the vertex of the double is made so that
        # after rotation the position of the vertices can be located
        fmap = dict(zip(ordered_faces,
                        range(len(ordered_faces))))
        flat_faces = flatten(ordered_faces)
        new_pgroup = []
        for p in pgroup:
            h = polyh.copy()
            h.rotate(p)
            c = h.corners
            # reorder corners in the order they should appear when
            # enumerating the faces
            reorder = unflatten([c[j] for j in flat_faces], n)
            # make them canonical
            reorder = [tuple(map(as_int,
                       minlex(f, directed=False)))
                       for f in reorder]
            # map face to vertex: the resulting list of vertices are the
            # permutation that we seek for the double
            new_pgroup.append(Perm([fmap[f] for f in reorder]))
        return new_pgroup

    tetrahedron_faces = [
        (0, 1, 2), (0, 2, 3), (0, 3, 1),  # upper 3
        (1, 2, 3),  # bottom
    ]

    # cw from top
    #
    _t_pgroup = [
        Perm([[1, 2, 3], [0]]),  # cw from top
        Perm([[0, 1, 2], [3]]),  # cw from front face
        Perm([[0, 3, 2], [1]]),  # cw from back right face
        Perm([[0, 3, 1], [2]]),  # cw from back left face
        Perm([[0, 1], [2, 3]]),  # through front left edge
        Perm([[0, 2], [1, 3]]),  # through front right edge
        Perm([[0, 3], [1, 2]]),  # through back edge
    ]

    tetrahedron = Polyhedron(
        range(4),
        tetrahedron_faces,
        _t_pgroup)

    cube_faces = [
        (0, 1, 2, 3),  # upper
        (0, 1, 5, 4), (1, 2, 6, 5), (2, 3, 7, 6), (0, 3, 7, 4),  # middle 4
        (4, 5, 6, 7),  # lower
    ]

    # U, D, F, B, L, R = up, down, front, back, left, right
    _c_pgroup = [Perm(p) for p in
        [
        [1, 2, 3, 0, 5, 6, 7, 4],  # cw from top, U
        [4, 0, 3, 7, 5, 1, 2, 6],  # cw from F face
        [4, 5, 1, 0, 7, 6, 2, 3],  # cw from R face

        [1, 0, 4, 5, 2, 3, 7, 6],  # cw through UF edge
        [6, 2, 1, 5, 7, 3, 0, 4],  # cw through UR edge
        [6, 7, 3, 2, 5, 4, 0, 1],  # cw through UB edge
        [3, 7, 4, 0, 2, 6, 5, 1],  # cw through UL edge
        [4, 7, 6, 5, 0, 3, 2, 1],  # cw through FL edge
        [6, 5, 4, 7, 2, 1, 0, 3],  # cw through FR edge

        [0, 3, 7, 4, 1, 2, 6, 5],  # cw through UFL vertex
        [5, 1, 0, 4, 6, 2, 3, 7],  # cw through UFR vertex
        [5, 6, 2, 1, 4, 7, 3, 0],  # cw through UBR vertex
        [7, 4, 0, 3, 6, 5, 1, 2],  # cw through UBL
        ]]

    cube = Polyhedron(
        range(8),
        cube_faces,
        _c_pgroup)

    octahedron_faces = [
        (0, 1, 2), (0, 2, 3), (0, 3, 4), (0, 1, 4),  # top 4
        (1, 2, 5), (2, 3, 5), (3, 4, 5), (1, 4, 5),  # bottom 4
    ]

    octahedron = Polyhedron(
        range(6),
        octahedron_faces,
        _pgroup_of_double(cube, cube_faces, _c_pgroup))

    dodecahedron_faces = [
        (0, 1, 2, 3, 4),  # top
        (0, 1, 6, 10, 5), (1, 2, 7, 11, 6), (2, 3, 8, 12, 7),  # upper 5
        (3, 4, 9, 13, 8), (0, 4, 9, 14, 5),
        (5, 10, 16, 15, 14), (6, 10, 16, 17, 11), (7, 11, 17, 18,
          12),  # lower 5
        (8, 12, 18, 19, 13), (9, 13, 19, 15, 14),
        (15, 16, 17, 18, 19)  # bottom
    ]

    def _string_to_perm(s):
        rv = [Perm(range(20))]
        p = None
        for si in s:
            if si not in '01':
                count = int(si) - 1
            else:
                count = 1
                if si == '0':
                    p = _f0
                elif si == '1':
                    p = _f1
            rv.extend([p]*count)
        return Perm.rmul(*rv)

    # top face cw
    _f0 = Perm([
        1, 2, 3, 4, 0, 6, 7, 8, 9, 5, 11,
        12, 13, 14, 10, 16, 17, 18, 19, 15])
    # front face cw
    _f1 = Perm([
        5, 0, 4, 9, 14, 10, 1, 3, 13, 15,
        6, 2, 8, 19, 16, 17, 11, 7, 12, 18])
    # the strings below, like 0104 are shorthand for F0*F1*F0**4 and are
    # the remaining 4 face rotations, 15 edge permutations, and the
    # 10 vertex rotations.
    _dodeca_pgroup = [_f0, _f1] + [_string_to_perm(s) for s in '''
    0104 140 014 0410
    010 1403 03104 04103 102
    120 1304 01303 021302 03130
    0412041 041204103 04120410 041204104 041204102
    10 01 1402 0140 04102 0412 1204 1302 0130 03120'''.strip().split()]

    dodecahedron = Polyhedron(
        range(20),
        dodecahedron_faces,
        _dodeca_pgroup)

    icosahedron_faces = [
        (0, 1, 2), (0, 2, 3), (0, 3, 4), (0, 4, 5), (0, 1, 5),
        (1, 6, 7), (1, 2, 7), (2, 7, 8), (2, 3, 8), (3, 8, 9),
        (3, 4, 9), (4, 9, 10), (4, 5, 10), (5, 6, 10), (1, 5, 6),
        (6, 7, 11), (7, 8, 11), (8, 9, 11), (9, 10, 11), (6, 10, 11)]

    icosahedron = Polyhedron(
        range(12),
        icosahedron_faces,
        _pgroup_of_double(
            dodecahedron, dodecahedron_faces, _dodeca_pgroup))

    return (tetrahedron, cube, octahedron, dodecahedron, icosahedron,
        tetrahedron_faces, cube_faces, octahedron_faces,
        dodecahedron_faces, icosahedron_faces)

# -----------------------------------------------------------------------
#   Standard Polyhedron groups
#
#   These are generated using _pgroup_calcs() above. However to save
#   import time we encode them explicitly here.
# -----------------------------------------------------------------------

tetrahedron = Polyhedron(
    Tuple(0, 1, 2, 3),
    Tuple(
        Tuple(0, 1, 2),
        Tuple(0, 2, 3),
        Tuple(0, 1, 3),
        Tuple(1, 2, 3)),
    Tuple(
        Perm(1, 2, 3),
        Perm(3)(0, 1, 2),
        Perm(0, 3, 2),
        Perm(0, 3, 1),
        Perm(0, 1)(2, 3),
        Perm(0, 2)(1, 3),
        Perm(0, 3)(1, 2)
    ))

cube = Polyhedron(
    Tuple(0, 1, 2, 3, 4, 5, 6, 7),
    Tuple(
        Tuple(0, 1, 2, 3),
        Tuple(0, 1, 5, 4),
        Tuple(1, 2, 6, 5),
        Tuple(2, 3, 7, 6),
        Tuple(0, 3, 7, 4),
        Tuple(4, 5, 6, 7)),
    Tuple(
        Perm(0, 1, 2, 3)(4, 5, 6, 7),
        Perm(0, 4, 5, 1)(2, 3, 7, 6),
        Perm(0, 4, 7, 3)(1, 5, 6, 2),
        Perm(0, 1)(2, 4)(3, 5)(6, 7),
        Perm(0, 6)(1, 2)(3, 5)(4, 7),
        Perm(0, 6)(1, 7)(2, 3)(4, 5),
        Perm(0, 3)(1, 7)(2, 4)(5, 6),
        Perm(0, 4)(1, 7)(2, 6)(3, 5),
        Perm(0, 6)(1, 5)(2, 4)(3, 7),
        Perm(1, 3, 4)(2, 7, 5),
        Perm(7)(0, 5, 2)(3, 4, 6),
        Perm(0, 5, 7)(1, 6, 3),
        Perm(0, 7, 2)(1, 4, 6)))

octahedron = Polyhedron(
    Tuple(0, 1, 2, 3, 4, 5),
    Tuple(
        Tuple(0, 1, 2),
        Tuple(0, 2, 3),
        Tuple(0, 3, 4),
        Tuple(0, 1, 4),
        Tuple(1, 2, 5),
        Tuple(2, 3, 5),
        Tuple(3, 4, 5),
        Tuple(1, 4, 5)),
    Tuple(
        Perm(5)(1, 2, 3, 4),
        Perm(0, 4, 5, 2),
        Perm(0, 1, 5, 3),
        Perm(0, 1)(2, 4)(3, 5),
        Perm(0, 2)(1, 3)(4, 5),
        Perm(0, 3)(1, 5)(2, 4),
        Perm(0, 4)(1, 3)(2, 5),
        Perm(0, 5)(1, 4)(2, 3),
        Perm(0, 5)(1, 2)(3, 4),
        Perm(0, 4, 1)(2, 3, 5),
        Perm(0, 1, 2)(3, 4, 5),
        Perm(0, 2, 3)(1, 5, 4),
        Perm(0, 4, 3)(1, 5, 2)))

dodecahedron = Polyhedron(
    Tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19),
    Tuple(
        Tuple(0, 1, 2, 3, 4),
        Tuple(0, 1, 6, 10, 5),
        Tuple(1, 2, 7, 11, 6),
        Tuple(2, 3, 8, 12, 7),
        Tuple(3, 4, 9, 13, 8),
        Tuple(0, 4, 9, 14, 5),
        Tuple(5, 10, 16, 15, 14),
        Tuple(6, 10, 16, 17, 11),
        Tuple(7, 11, 17, 18, 12),
        Tuple(8, 12, 18, 19, 13),
        Tuple(9, 13, 19, 15, 14),
        Tuple(15, 16, 17, 18, 19)),
    Tuple(
        Perm(0, 1, 2, 3, 4)(5, 6, 7, 8, 9)(10, 11, 12, 13, 14)(15, 16, 17, 18, 19),
        Perm(0, 5, 10, 6, 1)(2, 4, 14, 16, 11)(3, 9, 15, 17, 7)(8, 13, 19, 18, 12),
        Perm(0, 10, 17, 12, 3)(1, 6, 11, 7, 2)(4, 5, 16, 18, 8)(9, 14, 15, 19, 13),
        Perm(0, 6, 17, 19, 9)(1, 11, 18, 13, 4)(2, 7, 12, 8, 3)(5, 10, 16, 15, 14),
        Perm(0, 2, 12, 19, 14)(1, 7, 18, 15, 5)(3, 8, 13, 9, 4)(6, 11, 17, 16, 10),
        Perm(0, 4, 9, 14, 5)(1, 3, 13, 15, 10)(2, 8, 19, 16, 6)(7, 12, 18, 17, 11),
        Perm(0, 1)(2, 5)(3, 10)(4, 6)(7, 14)(8, 16)(9, 11)(12, 15)(13, 17)(18, 19),
        Perm(0, 7)(1, 2)(3, 6)(4, 11)(5, 12)(8, 10)(9, 17)(13, 16)(14, 18)(15, 19),
        Perm(0, 12)(1, 8)(2, 3)(4, 7)(5, 18)(6, 13)(9, 11)(10, 19)(14, 17)(15, 16),
        Perm(0, 8)(1, 13)(2, 9)(3, 4)(5, 12)(6, 19)(7, 14)(10, 18)(11, 15)(16, 17),
        Perm(0, 4)(1, 9)(2, 14)(3, 5)(6, 13)(7, 15)(8, 10)(11, 19)(12, 16)(17, 18),
        Perm(0, 5)(1, 14)(2, 15)(3, 16)(4, 10)(6, 9)(7, 19)(8, 17)(11, 13)(12, 18),
        Perm(0, 11)(1, 6)(2, 10)(3, 16)(4, 17)(5, 7)(8, 15)(9, 18)(12, 14)(13, 19),
        Perm(0, 18)(1, 12)(2, 7)(3, 11)(4, 17)(5, 19)(6, 8)(9, 16)(10, 13)(14, 15),
        Perm(0, 18)(1, 19)(2, 13)(3, 8)(4, 12)(5, 17)(6, 15)(7, 9)(10, 16)(11, 14),
        Perm(0, 13)(1, 19)(2, 15)(3, 14)(4, 9)(5, 8)(6, 18)(7, 16)(10, 12)(11, 17),
        Perm(0, 16)(1, 15)(2, 19)(3, 18)(4, 17)(5, 10)(6, 14)(7, 13)(8, 12)(9, 11),
        Perm(0, 18)(1, 17)(2, 16)(3, 15)(4, 19)(5, 12)(6, 11)(7, 10)(8, 14)(9, 13),
        Perm(0, 15)(1, 19)(2, 18)(3, 17)(4, 16)(5, 14)(6, 13)(7, 12)(8, 11)(9, 10),
        Perm(0, 17)(1, 16)(2, 15)(3, 19)(4, 18)(5, 11)(6, 10)(7, 14)(8, 13)(9, 12),
        Perm(0, 19)(1, 18)(2, 17)(3, 16)(4, 15)(5, 13)(6, 12)(7, 11)(8, 10)(9, 14),
        Perm(1, 4, 5)(2, 9, 10)(3, 14, 6)(7, 13, 16)(8, 15, 11)(12, 19, 17),
        Perm(19)(0, 6, 2)(3, 5, 11)(4, 10, 7)(8, 14, 17)(9, 16, 12)(13, 15, 18),
        Perm(0, 11, 8)(1, 7, 3)(4, 6, 12)(5, 17, 13)(9, 10, 18)(14, 16, 19),
        Perm(0, 7, 13)(1, 12, 9)(2, 8, 4)(5, 11, 19)(6, 18, 14)(10, 17, 15),
        Perm(0, 3, 9)(1, 8, 14)(2, 13, 5)(6, 12, 15)(7, 19, 10)(11, 18, 16),
        Perm(0, 14, 10)(1, 9, 16)(2, 13, 17)(3, 19, 11)(4, 15, 6)(7, 8, 18),
        Perm(0, 16, 7)(1, 10, 11)(2, 5, 17)(3, 14, 18)(4, 15, 12)(8, 9, 19),
        Perm(0, 16, 13)(1, 17, 8)(2, 11, 12)(3, 6, 18)(4, 10, 19)(5, 15, 9),
        Perm(0, 11, 15)(1, 17, 14)(2, 18, 9)(3, 12, 13)(4, 7, 19)(5, 6, 16),
        Perm(0, 8, 15)(1, 12, 16)(2, 18, 10)(3, 19, 5)(4, 13, 14)(6, 7, 17)))

icosahedron = Polyhedron(
    Tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),
    Tuple(
        Tuple(0, 1, 2),
        Tuple(0, 2, 3),
        Tuple(0, 3, 4),
        Tuple(0, 4, 5),
        Tuple(0, 1, 5),
        Tuple(1, 6, 7),
        Tuple(1, 2, 7),
        Tuple(2, 7, 8),
        Tuple(2, 3, 8),
        Tuple(3, 8, 9),
        Tuple(3, 4, 9),
        Tuple(4, 9, 10),
        Tuple(4, 5, 10),
        Tuple(5, 6, 10),
        Tuple(1, 5, 6),
        Tuple(6, 7, 11),
        Tuple(7, 8, 11),
        Tuple(8, 9, 11),
        Tuple(9, 10, 11),
        Tuple(6, 10, 11)),
    Tuple(
        Perm(11)(1, 2, 3, 4, 5)(6, 7, 8, 9, 10),
        Perm(0, 5, 6, 7, 2)(3, 4, 10, 11, 8),
        Perm(0, 1, 7, 8, 3)(4, 5, 6, 11, 9),
        Perm(0, 2, 8, 9, 4)(1, 7, 11, 10, 5),
        Perm(0, 3, 9, 10, 5)(1, 2, 8, 11, 6),
        Perm(0, 4, 10, 6, 1)(2, 3, 9, 11, 7),
        Perm(0, 1)(2, 5)(3, 6)(4, 7)(8, 10)(9, 11),
        Perm(0, 2)(1, 3)(4, 7)(5, 8)(6, 9)(10, 11),
        Perm(0, 3)(1, 9)(2, 4)(5, 8)(6, 11)(7, 10),
        Perm(0, 4)(1, 9)(2, 10)(3, 5)(6, 8)(7, 11),
        Perm(0, 5)(1, 4)(2, 10)(3, 6)(7, 9)(8, 11),
        Perm(0, 6)(1, 5)(2, 10)(3, 11)(4, 7)(8, 9),
        Perm(0, 7)(1, 2)(3, 6)(4, 11)(5, 8)(9, 10),
        Perm(0, 8)(1, 9)(2, 3)(4, 7)(5, 11)(6, 10),
        Perm(0, 9)(1, 11)(2, 10)(3, 4)(5, 8)(6, 7),
        Perm(0, 10)(1, 9)(2, 11)(3, 6)(4, 5)(7, 8),
        Perm(0, 11)(1, 6)(2, 10)(3, 9)(4, 8)(5, 7),
        Perm(0, 11)(1, 8)(2, 7)(3, 6)(4, 10)(5, 9),
        Perm(0, 11)(1, 10)(2, 9)(3, 8)(4, 7)(5, 6),
        Perm(0, 11)(1, 7)(2, 6)(3, 10)(4, 9)(5, 8),
        Perm(0, 11)(1, 9)(2, 8)(3, 7)(4, 6)(5, 10),
        Perm(0, 5, 1)(2, 4, 6)(3, 10, 7)(8, 9, 11),
        Perm(0, 1, 2)(3, 5, 7)(4, 6, 8)(9, 10, 11),
        Perm(0, 2, 3)(1, 8, 4)(5, 7, 9)(6, 11, 10),
        Perm(0, 3, 4)(1, 8, 10)(2, 9, 5)(6, 7, 11),
        Perm(0, 4, 5)(1, 3, 10)(2, 9, 6)(7, 8, 11),
        Perm(0, 10, 7)(1, 5, 6)(2, 4, 11)(3, 9, 8),
        Perm(0, 6, 8)(1, 7, 2)(3, 5, 11)(4, 10, 9),
        Perm(0, 7, 9)(1, 11, 4)(2, 8, 3)(5, 6, 10),
        Perm(0, 8, 10)(1, 7, 6)(2, 11, 5)(3, 9, 4),
        Perm(0, 9, 6)(1, 3, 11)(2, 8, 7)(4, 10, 5)))

tetrahedron_faces = [tuple(arg) for arg in tetrahedron.faces]

cube_faces = [tuple(arg) for arg in cube.faces]

octahedron_faces = [tuple(arg) for arg in octahedron.faces]

dodecahedron_faces = [tuple(arg) for arg in dodecahedron.faces]

icosahedron_faces = [tuple(arg) for arg in icosahedron.faces]