File size: 20,841 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
from sympy.core import Basic, Dict, sympify, Tuple
from sympy.core.numbers import Integer
from sympy.core.sorting import default_sort_key
from sympy.core.sympify import _sympify
from sympy.functions.combinatorial.numbers import bell
from sympy.matrices import zeros
from sympy.sets.sets import FiniteSet, Union
from sympy.utilities.iterables import flatten, group
from sympy.utilities.misc import as_int


from collections import defaultdict


class Partition(FiniteSet):
    """
    This class represents an abstract partition.

    A partition is a set of disjoint sets whose union equals a given set.

    See Also
    ========

    sympy.utilities.iterables.partitions,
    sympy.utilities.iterables.multiset_partitions
    """

    _rank = None
    _partition = None

    def __new__(cls, *partition):
        """
        Generates a new partition object.

        This method also verifies if the arguments passed are
        valid and raises a ValueError if they are not.

        Examples
        ========

        Creating Partition from Python lists:

        >>> from sympy.combinatorics import Partition
        >>> a = Partition([1, 2], [3])
        >>> a
        Partition({3}, {1, 2})
        >>> a.partition
        [[1, 2], [3]]
        >>> len(a)
        2
        >>> a.members
        (1, 2, 3)

        Creating Partition from Python sets:

        >>> Partition({1, 2, 3}, {4, 5})
        Partition({4, 5}, {1, 2, 3})

        Creating Partition from SymPy finite sets:

        >>> from sympy import FiniteSet
        >>> a = FiniteSet(1, 2, 3)
        >>> b = FiniteSet(4, 5)
        >>> Partition(a, b)
        Partition({4, 5}, {1, 2, 3})
        """
        args = []
        dups = False
        for arg in partition:
            if isinstance(arg, list):
                as_set = set(arg)
                if len(as_set) < len(arg):
                    dups = True
                    break  # error below
                arg = as_set
            args.append(_sympify(arg))

        if not all(isinstance(part, FiniteSet) for part in args):
            raise ValueError(
                "Each argument to Partition should be " \
                "a list, set, or a FiniteSet")

        # sort so we have a canonical reference for RGS
        U = Union(*args)
        if dups or len(U) < sum(len(arg) for arg in args):
            raise ValueError("Partition contained duplicate elements.")

        obj = FiniteSet.__new__(cls, *args)
        obj.members = tuple(U)
        obj.size = len(U)
        return obj

    def sort_key(self, order=None):
        """Return a canonical key that can be used for sorting.

        Ordering is based on the size and sorted elements of the partition
        and ties are broken with the rank.

        Examples
        ========

        >>> from sympy import default_sort_key
        >>> from sympy.combinatorics import Partition
        >>> from sympy.abc import x
        >>> a = Partition([1, 2])
        >>> b = Partition([3, 4])
        >>> c = Partition([1, x])
        >>> d = Partition(list(range(4)))
        >>> l = [d, b, a + 1, a, c]
        >>> l.sort(key=default_sort_key); l
        [Partition({1, 2}), Partition({1}, {2}), Partition({1, x}), Partition({3, 4}), Partition({0, 1, 2, 3})]
        """
        if order is None:
            members = self.members
        else:
            members = tuple(sorted(self.members,
                             key=lambda w: default_sort_key(w, order)))
        return tuple(map(default_sort_key, (self.size, members, self.rank)))

    @property
    def partition(self):
        """Return partition as a sorted list of lists.

        Examples
        ========

        >>> from sympy.combinatorics import Partition
        >>> Partition([1], [2, 3]).partition
        [[1], [2, 3]]
        """
        if self._partition is None:
            self._partition = sorted([sorted(p, key=default_sort_key)
                                      for p in self.args])
        return self._partition

    def __add__(self, other):
        """
        Return permutation whose rank is ``other`` greater than current rank,
        (mod the maximum rank for the set).

        Examples
        ========

        >>> from sympy.combinatorics import Partition
        >>> a = Partition([1, 2], [3])
        >>> a.rank
        1
        >>> (a + 1).rank
        2
        >>> (a + 100).rank
        1
        """
        other = as_int(other)
        offset = self.rank + other
        result = RGS_unrank((offset) %
                            RGS_enum(self.size),
                            self.size)
        return Partition.from_rgs(result, self.members)

    def __sub__(self, other):
        """
        Return permutation whose rank is ``other`` less than current rank,
        (mod the maximum rank for the set).

        Examples
        ========

        >>> from sympy.combinatorics import Partition
        >>> a = Partition([1, 2], [3])
        >>> a.rank
        1
        >>> (a - 1).rank
        0
        >>> (a - 100).rank
        1
        """
        return self.__add__(-other)

    def __le__(self, other):
        """
        Checks if a partition is less than or equal to
        the other based on rank.

        Examples
        ========

        >>> from sympy.combinatorics import Partition
        >>> a = Partition([1, 2], [3, 4, 5])
        >>> b = Partition([1], [2, 3], [4], [5])
        >>> a.rank, b.rank
        (9, 34)
        >>> a <= a
        True
        >>> a <= b
        True
        """
        return self.sort_key() <= sympify(other).sort_key()

    def __lt__(self, other):
        """
        Checks if a partition is less than the other.

        Examples
        ========

        >>> from sympy.combinatorics import Partition
        >>> a = Partition([1, 2], [3, 4, 5])
        >>> b = Partition([1], [2, 3], [4], [5])
        >>> a.rank, b.rank
        (9, 34)
        >>> a < b
        True
        """
        return self.sort_key() < sympify(other).sort_key()

    @property
    def rank(self):
        """
        Gets the rank of a partition.

        Examples
        ========

        >>> from sympy.combinatorics import Partition
        >>> a = Partition([1, 2], [3], [4, 5])
        >>> a.rank
        13
        """
        if self._rank is not None:
            return self._rank
        self._rank = RGS_rank(self.RGS)
        return self._rank

    @property
    def RGS(self):
        """
        Returns the "restricted growth string" of the partition.

        Explanation
        ===========

        The RGS is returned as a list of indices, L, where L[i] indicates
        the block in which element i appears. For example, in a partition
        of 3 elements (a, b, c) into 2 blocks ([c], [a, b]) the RGS is
        [1, 1, 0]: "a" is in block 1, "b" is in block 1 and "c" is in block 0.

        Examples
        ========

        >>> from sympy.combinatorics import Partition
        >>> a = Partition([1, 2], [3], [4, 5])
        >>> a.members
        (1, 2, 3, 4, 5)
        >>> a.RGS
        (0, 0, 1, 2, 2)
        >>> a + 1
        Partition({3}, {4}, {5}, {1, 2})
        >>> _.RGS
        (0, 0, 1, 2, 3)
        """
        rgs = {}
        partition = self.partition
        for i, part in enumerate(partition):
            for j in part:
                rgs[j] = i
        return tuple([rgs[i] for i in sorted(
            [i for p in partition for i in p], key=default_sort_key)])

    @classmethod
    def from_rgs(self, rgs, elements):
        """
        Creates a set partition from a restricted growth string.

        Explanation
        ===========

        The indices given in rgs are assumed to be the index
        of the element as given in elements *as provided* (the
        elements are not sorted by this routine). Block numbering
        starts from 0. If any block was not referenced in ``rgs``
        an error will be raised.

        Examples
        ========

        >>> from sympy.combinatorics import Partition
        >>> Partition.from_rgs([0, 1, 2, 0, 1], list('abcde'))
        Partition({c}, {a, d}, {b, e})
        >>> Partition.from_rgs([0, 1, 2, 0, 1], list('cbead'))
        Partition({e}, {a, c}, {b, d})
        >>> a = Partition([1, 4], [2], [3, 5])
        >>> Partition.from_rgs(a.RGS, a.members)
        Partition({2}, {1, 4}, {3, 5})
        """
        if len(rgs) != len(elements):
            raise ValueError('mismatch in rgs and element lengths')
        max_elem = max(rgs) + 1
        partition = [[] for i in range(max_elem)]
        j = 0
        for i in rgs:
            partition[i].append(elements[j])
            j += 1
        if not all(p for p in partition):
            raise ValueError('some blocks of the partition were empty.')
        return Partition(*partition)


class IntegerPartition(Basic):
    """
    This class represents an integer partition.

    Explanation
    ===========

    In number theory and combinatorics, a partition of a positive integer,
    ``n``, also called an integer partition, is a way of writing ``n`` as a
    list of positive integers that sum to n. Two partitions that differ only
    in the order of summands are considered to be the same partition; if order
    matters then the partitions are referred to as compositions. For example,
    4 has five partitions: [4], [3, 1], [2, 2], [2, 1, 1], and [1, 1, 1, 1];
    the compositions [1, 2, 1] and [1, 1, 2] are the same as partition
    [2, 1, 1].

    See Also
    ========

    sympy.utilities.iterables.partitions,
    sympy.utilities.iterables.multiset_partitions

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Partition_%28number_theory%29
    """

    _dict = None
    _keys = None

    def __new__(cls, partition, integer=None):
        """
        Generates a new IntegerPartition object from a list or dictionary.

        Explanation
        ===========

        The partition can be given as a list of positive integers or a
        dictionary of (integer, multiplicity) items. If the partition is
        preceded by an integer an error will be raised if the partition
        does not sum to that given integer.

        Examples
        ========

        >>> from sympy.combinatorics.partitions import IntegerPartition
        >>> a = IntegerPartition([5, 4, 3, 1, 1])
        >>> a
        IntegerPartition(14, (5, 4, 3, 1, 1))
        >>> print(a)
        [5, 4, 3, 1, 1]
        >>> IntegerPartition({1:3, 2:1})
        IntegerPartition(5, (2, 1, 1, 1))

        If the value that the partition should sum to is given first, a check
        will be made to see n error will be raised if there is a discrepancy:

        >>> IntegerPartition(10, [5, 4, 3, 1])
        Traceback (most recent call last):
        ...
        ValueError: The partition is not valid

        """
        if integer is not None:
            integer, partition = partition, integer
        if isinstance(partition, (dict, Dict)):
            _ = []
            for k, v in sorted(partition.items(), reverse=True):
                if not v:
                    continue
                k, v = as_int(k), as_int(v)
                _.extend([k]*v)
            partition = tuple(_)
        else:
            partition = tuple(sorted(map(as_int, partition), reverse=True))
        sum_ok = False
        if integer is None:
            integer = sum(partition)
            sum_ok = True
        else:
            integer = as_int(integer)

        if not sum_ok and sum(partition) != integer:
            raise ValueError("Partition did not add to %s" % integer)
        if any(i < 1 for i in partition):
            raise ValueError("All integer summands must be greater than one")

        obj = Basic.__new__(cls, Integer(integer), Tuple(*partition))
        obj.partition = list(partition)
        obj.integer = integer
        return obj

    def prev_lex(self):
        """Return the previous partition of the integer, n, in lexical order,
        wrapping around to [1, ..., 1] if the partition is [n].

        Examples
        ========

        >>> from sympy.combinatorics.partitions import IntegerPartition
        >>> p = IntegerPartition([4])
        >>> print(p.prev_lex())
        [3, 1]
        >>> p.partition > p.prev_lex().partition
        True
        """
        d = defaultdict(int)
        d.update(self.as_dict())
        keys = self._keys
        if keys == [1]:
            return IntegerPartition({self.integer: 1})
        if keys[-1] != 1:
            d[keys[-1]] -= 1
            if keys[-1] == 2:
                d[1] = 2
            else:
                d[keys[-1] - 1] = d[1] = 1
        else:
            d[keys[-2]] -= 1
            left = d[1] + keys[-2]
            new = keys[-2]
            d[1] = 0
            while left:
                new -= 1
                if left - new >= 0:
                    d[new] += left//new
                    left -= d[new]*new
        return IntegerPartition(self.integer, d)

    def next_lex(self):
        """Return the next partition of the integer, n, in lexical order,
        wrapping around to [n] if the partition is [1, ..., 1].

        Examples
        ========

        >>> from sympy.combinatorics.partitions import IntegerPartition
        >>> p = IntegerPartition([3, 1])
        >>> print(p.next_lex())
        [4]
        >>> p.partition < p.next_lex().partition
        True
        """
        d = defaultdict(int)
        d.update(self.as_dict())
        key = self._keys
        a = key[-1]
        if a == self.integer:
            d.clear()
            d[1] = self.integer
        elif a == 1:
            if d[a] > 1:
                d[a + 1] += 1
                d[a] -= 2
            else:
                b = key[-2]
                d[b + 1] += 1
                d[1] = (d[b] - 1)*b
                d[b] = 0
        else:
            if d[a] > 1:
                if len(key) == 1:
                    d.clear()
                    d[a + 1] = 1
                    d[1] = self.integer - a - 1
                else:
                    a1 = a + 1
                    d[a1] += 1
                    d[1] = d[a]*a - a1
                    d[a] = 0
            else:
                b = key[-2]
                b1 = b + 1
                d[b1] += 1
                need = d[b]*b + d[a]*a - b1
                d[a] = d[b] = 0
                d[1] = need
        return IntegerPartition(self.integer, d)

    def as_dict(self):
        """Return the partition as a dictionary whose keys are the
        partition integers and the values are the multiplicity of that
        integer.

        Examples
        ========

        >>> from sympy.combinatorics.partitions import IntegerPartition
        >>> IntegerPartition([1]*3 + [2] + [3]*4).as_dict()
        {1: 3, 2: 1, 3: 4}
        """
        if self._dict is None:
            groups = group(self.partition, multiple=False)
            self._keys = [g[0] for g in groups]
            self._dict = dict(groups)
        return self._dict

    @property
    def conjugate(self):
        """
        Computes the conjugate partition of itself.

        Examples
        ========

        >>> from sympy.combinatorics.partitions import IntegerPartition
        >>> a = IntegerPartition([6, 3, 3, 2, 1])
        >>> a.conjugate
        [5, 4, 3, 1, 1, 1]
        """
        j = 1
        temp_arr = list(self.partition) + [0]
        k = temp_arr[0]
        b = [0]*k
        while k > 0:
            while k > temp_arr[j]:
                b[k - 1] = j
                k -= 1
            j += 1
        return b

    def __lt__(self, other):
        """Return True if self is less than other when the partition
        is listed from smallest to biggest.

        Examples
        ========

        >>> from sympy.combinatorics.partitions import IntegerPartition
        >>> a = IntegerPartition([3, 1])
        >>> a < a
        False
        >>> b = a.next_lex()
        >>> a < b
        True
        >>> a == b
        False
        """
        return list(reversed(self.partition)) < list(reversed(other.partition))

    def __le__(self, other):
        """Return True if self is less than other when the partition
        is listed from smallest to biggest.

        Examples
        ========

        >>> from sympy.combinatorics.partitions import IntegerPartition
        >>> a = IntegerPartition([4])
        >>> a <= a
        True
        """
        return list(reversed(self.partition)) <= list(reversed(other.partition))

    def as_ferrers(self, char='#'):
        """
        Prints the ferrer diagram of a partition.

        Examples
        ========

        >>> from sympy.combinatorics.partitions import IntegerPartition
        >>> print(IntegerPartition([1, 1, 5]).as_ferrers())
        #####
        #
        #
        """
        return "\n".join([char*i for i in self.partition])

    def __str__(self):
        return str(list(self.partition))


def random_integer_partition(n, seed=None):
    """
    Generates a random integer partition summing to ``n`` as a list
    of reverse-sorted integers.

    Examples
    ========

    >>> from sympy.combinatorics.partitions import random_integer_partition

    For the following, a seed is given so a known value can be shown; in
    practice, the seed would not be given.

    >>> random_integer_partition(100, seed=[1, 1, 12, 1, 2, 1, 85, 1])
    [85, 12, 2, 1]
    >>> random_integer_partition(10, seed=[1, 2, 3, 1, 5, 1])
    [5, 3, 1, 1]
    >>> random_integer_partition(1)
    [1]
    """
    from sympy.core.random import _randint

    n = as_int(n)
    if n < 1:
        raise ValueError('n must be a positive integer')

    randint = _randint(seed)

    partition = []
    while (n > 0):
        k = randint(1, n)
        mult = randint(1, n//k)
        partition.append((k, mult))
        n -= k*mult
    partition.sort(reverse=True)
    partition = flatten([[k]*m for k, m in partition])
    return partition


def RGS_generalized(m):
    """
    Computes the m + 1 generalized unrestricted growth strings
    and returns them as rows in matrix.

    Examples
    ========

    >>> from sympy.combinatorics.partitions import RGS_generalized
    >>> RGS_generalized(6)
    Matrix([
    [  1,   1,   1,  1,  1, 1, 1],
    [  1,   2,   3,  4,  5, 6, 0],
    [  2,   5,  10, 17, 26, 0, 0],
    [  5,  15,  37, 77,  0, 0, 0],
    [ 15,  52, 151,  0,  0, 0, 0],
    [ 52, 203,   0,  0,  0, 0, 0],
    [203,   0,   0,  0,  0, 0, 0]])
    """
    d = zeros(m + 1)
    for i in range(m + 1):
        d[0, i] = 1

    for i in range(1, m + 1):
        for j in range(m):
            if j <= m - i:
                d[i, j] = j * d[i - 1, j] + d[i - 1, j + 1]
            else:
                d[i, j] = 0
    return d


def RGS_enum(m):
    """
    RGS_enum computes the total number of restricted growth strings
    possible for a superset of size m.

    Examples
    ========

    >>> from sympy.combinatorics.partitions import RGS_enum
    >>> from sympy.combinatorics import Partition
    >>> RGS_enum(4)
    15
    >>> RGS_enum(5)
    52
    >>> RGS_enum(6)
    203

    We can check that the enumeration is correct by actually generating
    the partitions. Here, the 15 partitions of 4 items are generated:

    >>> a = Partition(list(range(4)))
    >>> s = set()
    >>> for i in range(20):
    ...     s.add(a)
    ...     a += 1
    ...
    >>> assert len(s) == 15

    """
    if (m < 1):
        return 0
    elif (m == 1):
        return 1
    else:
        return bell(m)


def RGS_unrank(rank, m):
    """
    Gives the unranked restricted growth string for a given
    superset size.

    Examples
    ========

    >>> from sympy.combinatorics.partitions import RGS_unrank
    >>> RGS_unrank(14, 4)
    [0, 1, 2, 3]
    >>> RGS_unrank(0, 4)
    [0, 0, 0, 0]
    """
    if m < 1:
        raise ValueError("The superset size must be >= 1")
    if rank < 0 or RGS_enum(m) <= rank:
        raise ValueError("Invalid arguments")

    L = [1] * (m + 1)
    j = 1
    D = RGS_generalized(m)
    for i in range(2, m + 1):
        v = D[m - i, j]
        cr = j*v
        if cr <= rank:
            L[i] = j + 1
            rank -= cr
            j += 1
        else:
            L[i] = int(rank / v + 1)
            rank %= v
    return [x - 1 for x in L[1:]]


def RGS_rank(rgs):
    """
    Computes the rank of a restricted growth string.

    Examples
    ========

    >>> from sympy.combinatorics.partitions import RGS_rank, RGS_unrank
    >>> RGS_rank([0, 1, 2, 1, 3])
    42
    >>> RGS_rank(RGS_unrank(4, 7))
    4
    """
    rgs_size = len(rgs)
    rank = 0
    D = RGS_generalized(rgs_size)
    for i in range(1, rgs_size):
        n = len(rgs[(i + 1):])
        m = max(rgs[0:i])
        rank += D[n, m + 1] * rgs[i]
    return rank