File size: 8,378 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
from sympy.combinatorics.group_constructs import DirectProduct
from sympy.combinatorics.perm_groups import PermutationGroup
from sympy.combinatorics.permutations import Permutation

_af_new = Permutation._af_new


def AbelianGroup(*cyclic_orders):
    """
    Returns the direct product of cyclic groups with the given orders.

    Explanation
    ===========

    According to the structure theorem for finite abelian groups ([1]),
    every finite abelian group can be written as the direct product of
    finitely many cyclic groups.

    Examples
    ========

    >>> from sympy.combinatorics.named_groups import AbelianGroup
    >>> AbelianGroup(3, 4)
    PermutationGroup([
            (6)(0 1 2),
            (3 4 5 6)])
    >>> _.is_group
    True

    See Also
    ========

    DirectProduct

    References
    ==========

    .. [1] https://groupprops.subwiki.org/wiki/Structure_theorem_for_finitely_generated_abelian_groups

    """
    groups = []
    degree = 0
    order = 1
    for size in cyclic_orders:
        degree += size
        order *= size
        groups.append(CyclicGroup(size))
    G = DirectProduct(*groups)
    G._is_abelian = True
    G._degree = degree
    G._order = order

    return G


def AlternatingGroup(n):
    """
    Generates the alternating group on ``n`` elements as a permutation group.

    Explanation
    ===========

    For ``n > 2``, the generators taken are ``(0 1 2), (0 1 2 ... n-1)`` for
    ``n`` odd
    and ``(0 1 2), (1 2 ... n-1)`` for ``n`` even (See [1], p.31, ex.6.9.).
    After the group is generated, some of its basic properties are set.
    The cases ``n = 1, 2`` are handled separately.

    Examples
    ========

    >>> from sympy.combinatorics.named_groups import AlternatingGroup
    >>> G = AlternatingGroup(4)
    >>> G.is_group
    True
    >>> a = list(G.generate_dimino())
    >>> len(a)
    12
    >>> all(perm.is_even for perm in a)
    True

    See Also
    ========

    SymmetricGroup, CyclicGroup, DihedralGroup

    References
    ==========

    .. [1] Armstrong, M. "Groups and Symmetry"

    """
    # small cases are special
    if n in (1, 2):
        return PermutationGroup([Permutation([0])])

    a = list(range(n))
    a[0], a[1], a[2] = a[1], a[2], a[0]
    gen1 = a
    if n % 2:
        a = list(range(1, n))
        a.append(0)
        gen2 = a
    else:
        a = list(range(2, n))
        a.append(1)
        a.insert(0, 0)
        gen2 = a
    gens = [gen1, gen2]
    if gen1 == gen2:
        gens = gens[:1]
    G = PermutationGroup([_af_new(a) for a in gens], dups=False)

    set_alternating_group_properties(G, n, n)
    G._is_alt = True
    return G


def set_alternating_group_properties(G, n, degree):
    """Set known properties of an alternating group. """
    if n < 4:
        G._is_abelian = True
        G._is_nilpotent = True
    else:
        G._is_abelian = False
        G._is_nilpotent = False
    if n < 5:
        G._is_solvable = True
    else:
        G._is_solvable = False
    G._degree = degree
    G._is_transitive = True
    G._is_dihedral = False


def CyclicGroup(n):
    """
    Generates the cyclic group of order ``n`` as a permutation group.

    Explanation
    ===========

    The generator taken is the ``n``-cycle ``(0 1 2 ... n-1)``
    (in cycle notation). After the group is generated, some of its basic
    properties are set.

    Examples
    ========

    >>> from sympy.combinatorics.named_groups import CyclicGroup
    >>> G = CyclicGroup(6)
    >>> G.is_group
    True
    >>> G.order()
    6
    >>> list(G.generate_schreier_sims(af=True))
    [[0, 1, 2, 3, 4, 5], [1, 2, 3, 4, 5, 0], [2, 3, 4, 5, 0, 1],
    [3, 4, 5, 0, 1, 2], [4, 5, 0, 1, 2, 3], [5, 0, 1, 2, 3, 4]]

    See Also
    ========

    SymmetricGroup, DihedralGroup, AlternatingGroup

    """
    a = list(range(1, n))
    a.append(0)
    gen = _af_new(a)
    G = PermutationGroup([gen])

    G._is_abelian = True
    G._is_nilpotent = True
    G._is_solvable = True
    G._degree = n
    G._is_transitive = True
    G._order = n
    G._is_dihedral = (n == 2)
    return G


def DihedralGroup(n):
    r"""
    Generates the dihedral group `D_n` as a permutation group.

    Explanation
    ===========

    The dihedral group `D_n` is the group of symmetries of the regular
    ``n``-gon. The generators taken are the ``n``-cycle ``a = (0 1 2 ... n-1)``
    (a rotation of the ``n``-gon) and ``b = (0 n-1)(1 n-2)...``
    (a reflection of the ``n``-gon) in cycle rotation. It is easy to see that
    these satisfy ``a**n = b**2 = 1`` and ``bab = ~a`` so they indeed generate
    `D_n` (See [1]). After the group is generated, some of its basic properties
    are set.

    Examples
    ========

    >>> from sympy.combinatorics.named_groups import DihedralGroup
    >>> G = DihedralGroup(5)
    >>> G.is_group
    True
    >>> a = list(G.generate_dimino())
    >>> [perm.cyclic_form for perm in a]
    [[], [[0, 1, 2, 3, 4]], [[0, 2, 4, 1, 3]],
    [[0, 3, 1, 4, 2]], [[0, 4, 3, 2, 1]], [[0, 4], [1, 3]],
    [[1, 4], [2, 3]], [[0, 1], [2, 4]], [[0, 2], [3, 4]],
    [[0, 3], [1, 2]]]

    See Also
    ========

    SymmetricGroup, CyclicGroup, AlternatingGroup

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Dihedral_group

    """
    # small cases are special
    if n == 1:
        return PermutationGroup([Permutation([1, 0])])
    if n == 2:
        return PermutationGroup([Permutation([1, 0, 3, 2]),
               Permutation([2, 3, 0, 1]), Permutation([3, 2, 1, 0])])

    a = list(range(1, n))
    a.append(0)
    gen1 = _af_new(a)
    a = list(range(n))
    a.reverse()
    gen2 = _af_new(a)
    G = PermutationGroup([gen1, gen2])
    # if n is a power of 2, group is nilpotent
    if n & (n-1) == 0:
        G._is_nilpotent = True
    else:
        G._is_nilpotent = False
    G._is_dihedral = True
    G._is_abelian = False
    G._is_solvable = True
    G._degree = n
    G._is_transitive = True
    G._order = 2*n
    return G


def SymmetricGroup(n):
    """
    Generates the symmetric group on ``n`` elements as a permutation group.

    Explanation
    ===========

    The generators taken are the ``n``-cycle
    ``(0 1 2 ... n-1)`` and the transposition ``(0 1)`` (in cycle notation).
    (See [1]). After the group is generated, some of its basic properties
    are set.

    Examples
    ========

    >>> from sympy.combinatorics.named_groups import SymmetricGroup
    >>> G = SymmetricGroup(4)
    >>> G.is_group
    True
    >>> G.order()
    24
    >>> list(G.generate_schreier_sims(af=True))
    [[0, 1, 2, 3], [1, 2, 3, 0], [2, 3, 0, 1], [3, 1, 2, 0], [0, 2, 3, 1],
    [1, 3, 0, 2], [2, 0, 1, 3], [3, 2, 0, 1], [0, 3, 1, 2], [1, 0, 2, 3],
    [2, 1, 3, 0], [3, 0, 1, 2], [0, 1, 3, 2], [1, 2, 0, 3], [2, 3, 1, 0],
    [3, 1, 0, 2], [0, 2, 1, 3], [1, 3, 2, 0], [2, 0, 3, 1], [3, 2, 1, 0],
    [0, 3, 2, 1], [1, 0, 3, 2], [2, 1, 0, 3], [3, 0, 2, 1]]

    See Also
    ========

    CyclicGroup, DihedralGroup, AlternatingGroup

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Symmetric_group#Generators_and_relations

    """
    if n == 1:
        G = PermutationGroup([Permutation([0])])
    elif n == 2:
        G = PermutationGroup([Permutation([1, 0])])
    else:
        a = list(range(1, n))
        a.append(0)
        gen1 = _af_new(a)
        a = list(range(n))
        a[0], a[1] = a[1], a[0]
        gen2 = _af_new(a)
        G = PermutationGroup([gen1, gen2])
    set_symmetric_group_properties(G, n, n)
    G._is_sym = True
    return G


def set_symmetric_group_properties(G, n, degree):
    """Set known properties of a symmetric group. """
    if n < 3:
        G._is_abelian = True
        G._is_nilpotent = True
    else:
        G._is_abelian = False
        G._is_nilpotent = False
    if n < 5:
        G._is_solvable = True
    else:
        G._is_solvable = False
    G._degree = degree
    G._is_transitive = True
    G._is_dihedral = (n in [2, 3])  # cf Landau's func and Stirling's approx


def RubikGroup(n):
    """Return a group of Rubik's cube generators

    >>> from sympy.combinatorics.named_groups import RubikGroup
    >>> RubikGroup(2).is_group
    True
    """
    from sympy.combinatorics.generators import rubik
    if n <= 1:
        raise ValueError("Invalid cube. n has to be greater than 1")
    return PermutationGroup(rubik(n))