Spaces:
Sleeping
Sleeping
File size: 18,844 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
import itertools
from sympy.combinatorics.fp_groups import FpGroup, FpSubgroup, simplify_presentation
from sympy.combinatorics.free_groups import FreeGroup
from sympy.combinatorics.perm_groups import PermutationGroup
from sympy.core.intfunc import igcd
from sympy.functions.combinatorial.numbers import totient
from sympy.core.singleton import S
class GroupHomomorphism:
'''
A class representing group homomorphisms. Instantiate using `homomorphism()`.
References
==========
.. [1] Holt, D., Eick, B. and O'Brien, E. (2005). Handbook of computational group theory.
'''
def __init__(self, domain, codomain, images):
self.domain = domain
self.codomain = codomain
self.images = images
self._inverses = None
self._kernel = None
self._image = None
def _invs(self):
'''
Return a dictionary with `{gen: inverse}` where `gen` is a rewriting
generator of `codomain` (e.g. strong generator for permutation groups)
and `inverse` is an element of its preimage
'''
image = self.image()
inverses = {}
for k in list(self.images.keys()):
v = self.images[k]
if not (v in inverses
or v.is_identity):
inverses[v] = k
if isinstance(self.codomain, PermutationGroup):
gens = image.strong_gens
else:
gens = image.generators
for g in gens:
if g in inverses or g.is_identity:
continue
w = self.domain.identity
if isinstance(self.codomain, PermutationGroup):
parts = image._strong_gens_slp[g][::-1]
else:
parts = g
for s in parts:
if s in inverses:
w = w*inverses[s]
else:
w = w*inverses[s**-1]**-1
inverses[g] = w
return inverses
def invert(self, g):
'''
Return an element of the preimage of ``g`` or of each element
of ``g`` if ``g`` is a list.
Explanation
===========
If the codomain is an FpGroup, the inverse for equal
elements might not always be the same unless the FpGroup's
rewriting system is confluent. However, making a system
confluent can be time-consuming. If it's important, try
`self.codomain.make_confluent()` first.
'''
from sympy.combinatorics import Permutation
from sympy.combinatorics.free_groups import FreeGroupElement
if isinstance(g, (Permutation, FreeGroupElement)):
if isinstance(self.codomain, FpGroup):
g = self.codomain.reduce(g)
if self._inverses is None:
self._inverses = self._invs()
image = self.image()
w = self.domain.identity
if isinstance(self.codomain, PermutationGroup):
gens = image.generator_product(g)[::-1]
else:
gens = g
# the following can't be "for s in gens:"
# because that would be equivalent to
# "for s in gens.array_form:" when g is
# a FreeGroupElement. On the other hand,
# when you call gens by index, the generator
# (or inverse) at position i is returned.
for i in range(len(gens)):
s = gens[i]
if s.is_identity:
continue
if s in self._inverses:
w = w*self._inverses[s]
else:
w = w*self._inverses[s**-1]**-1
return w
elif isinstance(g, list):
return [self.invert(e) for e in g]
def kernel(self):
'''
Compute the kernel of `self`.
'''
if self._kernel is None:
self._kernel = self._compute_kernel()
return self._kernel
def _compute_kernel(self):
G = self.domain
G_order = G.order()
if G_order is S.Infinity:
raise NotImplementedError(
"Kernel computation is not implemented for infinite groups")
gens = []
if isinstance(G, PermutationGroup):
K = PermutationGroup(G.identity)
else:
K = FpSubgroup(G, gens, normal=True)
i = self.image().order()
while K.order()*i != G_order:
r = G.random()
k = r*self.invert(self(r))**-1
if k not in K:
gens.append(k)
if isinstance(G, PermutationGroup):
K = PermutationGroup(gens)
else:
K = FpSubgroup(G, gens, normal=True)
return K
def image(self):
'''
Compute the image of `self`.
'''
if self._image is None:
values = list(set(self.images.values()))
if isinstance(self.codomain, PermutationGroup):
self._image = self.codomain.subgroup(values)
else:
self._image = FpSubgroup(self.codomain, values)
return self._image
def _apply(self, elem):
'''
Apply `self` to `elem`.
'''
if elem not in self.domain:
if isinstance(elem, (list, tuple)):
return [self._apply(e) for e in elem]
raise ValueError("The supplied element does not belong to the domain")
if elem.is_identity:
return self.codomain.identity
else:
images = self.images
value = self.codomain.identity
if isinstance(self.domain, PermutationGroup):
gens = self.domain.generator_product(elem, original=True)
for g in gens:
if g in self.images:
value = images[g]*value
else:
value = images[g**-1]**-1*value
else:
i = 0
for _, p in elem.array_form:
if p < 0:
g = elem[i]**-1
else:
g = elem[i]
value = value*images[g]**p
i += abs(p)
return value
def __call__(self, elem):
return self._apply(elem)
def is_injective(self):
'''
Check if the homomorphism is injective
'''
return self.kernel().order() == 1
def is_surjective(self):
'''
Check if the homomorphism is surjective
'''
im = self.image().order()
oth = self.codomain.order()
if im is S.Infinity and oth is S.Infinity:
return None
else:
return im == oth
def is_isomorphism(self):
'''
Check if `self` is an isomorphism.
'''
return self.is_injective() and self.is_surjective()
def is_trivial(self):
'''
Check is `self` is a trivial homomorphism, i.e. all elements
are mapped to the identity.
'''
return self.image().order() == 1
def compose(self, other):
'''
Return the composition of `self` and `other`, i.e.
the homomorphism phi such that for all g in the domain
of `other`, phi(g) = self(other(g))
'''
if not other.image().is_subgroup(self.domain):
raise ValueError("The image of `other` must be a subgroup of "
"the domain of `self`")
images = {g: self(other(g)) for g in other.images}
return GroupHomomorphism(other.domain, self.codomain, images)
def restrict_to(self, H):
'''
Return the restriction of the homomorphism to the subgroup `H`
of the domain.
'''
if not isinstance(H, PermutationGroup) or not H.is_subgroup(self.domain):
raise ValueError("Given H is not a subgroup of the domain")
domain = H
images = {g: self(g) for g in H.generators}
return GroupHomomorphism(domain, self.codomain, images)
def invert_subgroup(self, H):
'''
Return the subgroup of the domain that is the inverse image
of the subgroup ``H`` of the homomorphism image
'''
if not H.is_subgroup(self.image()):
raise ValueError("Given H is not a subgroup of the image")
gens = []
P = PermutationGroup(self.image().identity)
for h in H.generators:
h_i = self.invert(h)
if h_i not in P:
gens.append(h_i)
P = PermutationGroup(gens)
for k in self.kernel().generators:
if k*h_i not in P:
gens.append(k*h_i)
P = PermutationGroup(gens)
return P
def homomorphism(domain, codomain, gens, images=(), check=True):
'''
Create (if possible) a group homomorphism from the group ``domain``
to the group ``codomain`` defined by the images of the domain's
generators ``gens``. ``gens`` and ``images`` can be either lists or tuples
of equal sizes. If ``gens`` is a proper subset of the group's generators,
the unspecified generators will be mapped to the identity. If the
images are not specified, a trivial homomorphism will be created.
If the given images of the generators do not define a homomorphism,
an exception is raised.
If ``check`` is ``False``, do not check whether the given images actually
define a homomorphism.
'''
if not isinstance(domain, (PermutationGroup, FpGroup, FreeGroup)):
raise TypeError("The domain must be a group")
if not isinstance(codomain, (PermutationGroup, FpGroup, FreeGroup)):
raise TypeError("The codomain must be a group")
generators = domain.generators
if not all(g in generators for g in gens):
raise ValueError("The supplied generators must be a subset of the domain's generators")
if not all(g in codomain for g in images):
raise ValueError("The images must be elements of the codomain")
if images and len(images) != len(gens):
raise ValueError("The number of images must be equal to the number of generators")
gens = list(gens)
images = list(images)
images.extend([codomain.identity]*(len(generators)-len(images)))
gens.extend([g for g in generators if g not in gens])
images = dict(zip(gens,images))
if check and not _check_homomorphism(domain, codomain, images):
raise ValueError("The given images do not define a homomorphism")
return GroupHomomorphism(domain, codomain, images)
def _check_homomorphism(domain, codomain, images):
"""
Check that a given mapping of generators to images defines a homomorphism.
Parameters
==========
domain : PermutationGroup, FpGroup, FreeGroup
codomain : PermutationGroup, FpGroup, FreeGroup
images : dict
The set of keys must be equal to domain.generators.
The values must be elements of the codomain.
"""
pres = domain if hasattr(domain, 'relators') else domain.presentation()
rels = pres.relators
gens = pres.generators
symbols = [g.ext_rep[0] for g in gens]
symbols_to_domain_generators = dict(zip(symbols, domain.generators))
identity = codomain.identity
def _image(r):
w = identity
for symbol, power in r.array_form:
g = symbols_to_domain_generators[symbol]
w *= images[g]**power
return w
for r in rels:
if isinstance(codomain, FpGroup):
s = codomain.equals(_image(r), identity)
if s is None:
# only try to make the rewriting system
# confluent when it can't determine the
# truth of equality otherwise
success = codomain.make_confluent()
s = codomain.equals(_image(r), identity)
if s is None and not success:
raise RuntimeError("Can't determine if the images "
"define a homomorphism. Try increasing "
"the maximum number of rewriting rules "
"(group._rewriting_system.set_max(new_value); "
"the current value is stored in group._rewriting"
"_system.maxeqns)")
else:
s = _image(r).is_identity
if not s:
return False
return True
def orbit_homomorphism(group, omega):
'''
Return the homomorphism induced by the action of the permutation
group ``group`` on the set ``omega`` that is closed under the action.
'''
from sympy.combinatorics import Permutation
from sympy.combinatorics.named_groups import SymmetricGroup
codomain = SymmetricGroup(len(omega))
identity = codomain.identity
omega = list(omega)
images = {g: identity*Permutation([omega.index(o^g) for o in omega]) for g in group.generators}
group._schreier_sims(base=omega)
H = GroupHomomorphism(group, codomain, images)
if len(group.basic_stabilizers) > len(omega):
H._kernel = group.basic_stabilizers[len(omega)]
else:
H._kernel = PermutationGroup([group.identity])
return H
def block_homomorphism(group, blocks):
'''
Return the homomorphism induced by the action of the permutation
group ``group`` on the block system ``blocks``. The latter should be
of the same form as returned by the ``minimal_block`` method for
permutation groups, namely a list of length ``group.degree`` where
the i-th entry is a representative of the block i belongs to.
'''
from sympy.combinatorics import Permutation
from sympy.combinatorics.named_groups import SymmetricGroup
n = len(blocks)
# number the blocks; m is the total number,
# b is such that b[i] is the number of the block i belongs to,
# p is the list of length m such that p[i] is the representative
# of the i-th block
m = 0
p = []
b = [None]*n
for i in range(n):
if blocks[i] == i:
p.append(i)
b[i] = m
m += 1
for i in range(n):
b[i] = b[blocks[i]]
codomain = SymmetricGroup(m)
# the list corresponding to the identity permutation in codomain
identity = range(m)
images = {g: Permutation([b[p[i]^g] for i in identity]) for g in group.generators}
H = GroupHomomorphism(group, codomain, images)
return H
def group_isomorphism(G, H, isomorphism=True):
'''
Compute an isomorphism between 2 given groups.
Parameters
==========
G : A finite ``FpGroup`` or a ``PermutationGroup``.
First group.
H : A finite ``FpGroup`` or a ``PermutationGroup``
Second group.
isomorphism : bool
This is used to avoid the computation of homomorphism
when the user only wants to check if there exists
an isomorphism between the groups.
Returns
=======
If isomorphism = False -- Returns a boolean.
If isomorphism = True -- Returns a boolean and an isomorphism between `G` and `H`.
Examples
========
>>> from sympy.combinatorics import free_group, Permutation
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics.fp_groups import FpGroup
>>> from sympy.combinatorics.homomorphisms import group_isomorphism
>>> from sympy.combinatorics.named_groups import DihedralGroup, AlternatingGroup
>>> D = DihedralGroup(8)
>>> p = Permutation(0, 1, 2, 3, 4, 5, 6, 7)
>>> P = PermutationGroup(p)
>>> group_isomorphism(D, P)
(False, None)
>>> F, a, b = free_group("a, b")
>>> G = FpGroup(F, [a**3, b**3, (a*b)**2])
>>> H = AlternatingGroup(4)
>>> (check, T) = group_isomorphism(G, H)
>>> check
True
>>> T(b*a*b**-1*a**-1*b**-1)
(0 2 3)
Notes
=====
Uses the approach suggested by Robert Tarjan to compute the isomorphism between two groups.
First, the generators of ``G`` are mapped to the elements of ``H`` and
we check if the mapping induces an isomorphism.
'''
if not isinstance(G, (PermutationGroup, FpGroup)):
raise TypeError("The group must be a PermutationGroup or an FpGroup")
if not isinstance(H, (PermutationGroup, FpGroup)):
raise TypeError("The group must be a PermutationGroup or an FpGroup")
if isinstance(G, FpGroup) and isinstance(H, FpGroup):
G = simplify_presentation(G)
H = simplify_presentation(H)
# Two infinite FpGroups with the same generators are isomorphic
# when the relators are same but are ordered differently.
if G.generators == H.generators and (G.relators).sort() == (H.relators).sort():
if not isomorphism:
return True
return (True, homomorphism(G, H, G.generators, H.generators))
# `_H` is the permutation group isomorphic to `H`.
_H = H
g_order = G.order()
h_order = H.order()
if g_order is S.Infinity:
raise NotImplementedError("Isomorphism methods are not implemented for infinite groups.")
if isinstance(H, FpGroup):
if h_order is S.Infinity:
raise NotImplementedError("Isomorphism methods are not implemented for infinite groups.")
_H, h_isomorphism = H._to_perm_group()
if (g_order != h_order) or (G.is_abelian != H.is_abelian):
if not isomorphism:
return False
return (False, None)
if not isomorphism:
# Two groups of the same cyclic numbered order
# are isomorphic to each other.
n = g_order
if (igcd(n, totient(n))) == 1:
return True
# Match the generators of `G` with subsets of `_H`
gens = list(G.generators)
for subset in itertools.permutations(_H, len(gens)):
images = list(subset)
images.extend([_H.identity]*(len(G.generators)-len(images)))
_images = dict(zip(gens,images))
if _check_homomorphism(G, _H, _images):
if isinstance(H, FpGroup):
images = h_isomorphism.invert(images)
T = homomorphism(G, H, G.generators, images, check=False)
if T.is_isomorphism():
# It is a valid isomorphism
if not isomorphism:
return True
return (True, T)
if not isomorphism:
return False
return (False, None)
def is_isomorphic(G, H):
'''
Check if the groups are isomorphic to each other
Parameters
==========
G : A finite ``FpGroup`` or a ``PermutationGroup``
First group.
H : A finite ``FpGroup`` or a ``PermutationGroup``
Second group.
Returns
=======
boolean
'''
return group_isomorphism(G, H, isomorphism=False)
|