File size: 11,207 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
from sympy.core import Basic, Integer

import random


class GrayCode(Basic):
    """
    A Gray code is essentially a Hamiltonian walk on
    a n-dimensional cube with edge length of one.
    The vertices of the cube are represented by vectors
    whose values are binary. The Hamilton walk visits
    each vertex exactly once. The Gray code for a 3d
    cube is ['000','100','110','010','011','111','101',
    '001'].

    A Gray code solves the problem of sequentially
    generating all possible subsets of n objects in such
    a way that each subset is obtained from the previous
    one by either deleting or adding a single object.
    In the above example, 1 indicates that the object is
    present, and 0 indicates that its absent.

    Gray codes have applications in statistics as well when
    we want to compute various statistics related to subsets
    in an efficient manner.

    Examples
    ========

    >>> from sympy.combinatorics import GrayCode
    >>> a = GrayCode(3)
    >>> list(a.generate_gray())
    ['000', '001', '011', '010', '110', '111', '101', '100']
    >>> a = GrayCode(4)
    >>> list(a.generate_gray())
    ['0000', '0001', '0011', '0010', '0110', '0111', '0101', '0100', \
    '1100', '1101', '1111', '1110', '1010', '1011', '1001', '1000']

    References
    ==========

    .. [1] Nijenhuis,A. and Wilf,H.S.(1978).
           Combinatorial Algorithms. Academic Press.
    .. [2] Knuth, D. (2011). The Art of Computer Programming, Vol 4
           Addison Wesley


    """

    _skip = False
    _current = 0
    _rank = None

    def __new__(cls, n, *args, **kw_args):
        """
        Default constructor.

        It takes a single argument ``n`` which gives the dimension of the Gray
        code. The starting Gray code string (``start``) or the starting ``rank``
        may also be given; the default is to start at rank = 0 ('0...0').

        Examples
        ========

        >>> from sympy.combinatorics import GrayCode
        >>> a = GrayCode(3)
        >>> a
        GrayCode(3)
        >>> a.n
        3

        >>> a = GrayCode(3, start='100')
        >>> a.current
        '100'

        >>> a = GrayCode(4, rank=4)
        >>> a.current
        '0110'
        >>> a.rank
        4

        """
        if n < 1 or int(n) != n:
            raise ValueError(
                'Gray code dimension must be a positive integer, not %i' % n)
        n = Integer(n)
        args = (n,) + args
        obj = Basic.__new__(cls, *args)
        if 'start' in kw_args:
            obj._current = kw_args["start"]
            if len(obj._current) > n:
                raise ValueError('Gray code start has length %i but '
                'should not be greater than %i' % (len(obj._current), n))
        elif 'rank' in kw_args:
            if int(kw_args["rank"]) != kw_args["rank"]:
                raise ValueError('Gray code rank must be a positive integer, '
                'not %i' % kw_args["rank"])
            obj._rank = int(kw_args["rank"]) % obj.selections
            obj._current = obj.unrank(n, obj._rank)
        return obj

    def next(self, delta=1):
        """
        Returns the Gray code a distance ``delta`` (default = 1) from the
        current value in canonical order.


        Examples
        ========

        >>> from sympy.combinatorics import GrayCode
        >>> a = GrayCode(3, start='110')
        >>> a.next().current
        '111'
        >>> a.next(-1).current
        '010'
        """
        return GrayCode(self.n, rank=(self.rank + delta) % self.selections)

    @property
    def selections(self):
        """
        Returns the number of bit vectors in the Gray code.

        Examples
        ========

        >>> from sympy.combinatorics import GrayCode
        >>> a = GrayCode(3)
        >>> a.selections
        8
        """
        return 2**self.n

    @property
    def n(self):
        """
        Returns the dimension of the Gray code.

        Examples
        ========

        >>> from sympy.combinatorics import GrayCode
        >>> a = GrayCode(5)
        >>> a.n
        5
        """
        return self.args[0]

    def generate_gray(self, **hints):
        """
        Generates the sequence of bit vectors of a Gray Code.

        Examples
        ========

        >>> from sympy.combinatorics import GrayCode
        >>> a = GrayCode(3)
        >>> list(a.generate_gray())
        ['000', '001', '011', '010', '110', '111', '101', '100']
        >>> list(a.generate_gray(start='011'))
        ['011', '010', '110', '111', '101', '100']
        >>> list(a.generate_gray(rank=4))
        ['110', '111', '101', '100']

        See Also
        ========

        skip

        References
        ==========

        .. [1] Knuth, D. (2011). The Art of Computer Programming,
               Vol 4, Addison Wesley

        """
        bits = self.n
        start = None
        if "start" in hints:
            start = hints["start"]
        elif "rank" in hints:
            start = GrayCode.unrank(self.n, hints["rank"])
        if start is not None:
            self._current = start
        current = self.current
        graycode_bin = gray_to_bin(current)
        if len(graycode_bin) > self.n:
            raise ValueError('Gray code start has length %i but should '
            'not be greater than %i' % (len(graycode_bin), bits))
        self._current = int(current, 2)
        graycode_int = int(''.join(graycode_bin), 2)
        for i in range(graycode_int, 1 << bits):
            if self._skip:
                self._skip = False
            else:
                yield self.current
            bbtc = (i ^ (i + 1))
            gbtc = (bbtc ^ (bbtc >> 1))
            self._current = (self._current ^ gbtc)
        self._current = 0

    def skip(self):
        """
        Skips the bit generation.

        Examples
        ========

        >>> from sympy.combinatorics import GrayCode
        >>> a = GrayCode(3)
        >>> for i in a.generate_gray():
        ...     if i == '010':
        ...         a.skip()
        ...     print(i)
        ...
        000
        001
        011
        010
        111
        101
        100

        See Also
        ========

        generate_gray
        """
        self._skip = True

    @property
    def rank(self):
        """
        Ranks the Gray code.

        A ranking algorithm determines the position (or rank)
        of a combinatorial object among all the objects w.r.t.
        a given order. For example, the 4 bit binary reflected
        Gray code (BRGC) '0101' has a rank of 6 as it appears in
        the 6th position in the canonical ordering of the family
        of 4 bit Gray codes.

        Examples
        ========

        >>> from sympy.combinatorics import GrayCode
        >>> a = GrayCode(3)
        >>> list(a.generate_gray())
        ['000', '001', '011', '010', '110', '111', '101', '100']
        >>> GrayCode(3, start='100').rank
        7
        >>> GrayCode(3, rank=7).current
        '100'

        See Also
        ========

        unrank

        References
        ==========

        .. [1] https://web.archive.org/web/20200224064753/http://statweb.stanford.edu/~susan/courses/s208/node12.html

        """
        if self._rank is None:
            self._rank = int(gray_to_bin(self.current), 2)
        return self._rank

    @property
    def current(self):
        """
        Returns the currently referenced Gray code as a bit string.

        Examples
        ========

        >>> from sympy.combinatorics import GrayCode
        >>> GrayCode(3, start='100').current
        '100'
        """
        rv = self._current or '0'
        if not isinstance(rv, str):
            rv = bin(rv)[2:]
        return rv.rjust(self.n, '0')

    @classmethod
    def unrank(self, n, rank):
        """
        Unranks an n-bit sized Gray code of rank k. This method exists
        so that a derivative GrayCode class can define its own code of
        a given rank.

        The string here is generated in reverse order to allow for tail-call
        optimization.

        Examples
        ========

        >>> from sympy.combinatorics import GrayCode
        >>> GrayCode(5, rank=3).current
        '00010'
        >>> GrayCode.unrank(5, 3)
        '00010'

        See Also
        ========

        rank
        """
        def _unrank(k, n):
            if n == 1:
                return str(k % 2)
            m = 2**(n - 1)
            if k < m:
                return '0' + _unrank(k, n - 1)
            return '1' + _unrank(m - (k % m) - 1, n - 1)
        return _unrank(rank, n)


def random_bitstring(n):
    """
    Generates a random bitlist of length n.

    Examples
    ========

    >>> from sympy.combinatorics.graycode import random_bitstring
    >>> random_bitstring(3) # doctest: +SKIP
    100
    """
    return ''.join([random.choice('01') for i in range(n)])


def gray_to_bin(bin_list):
    """
    Convert from Gray coding to binary coding.

    We assume big endian encoding.

    Examples
    ========

    >>> from sympy.combinatorics.graycode import gray_to_bin
    >>> gray_to_bin('100')
    '111'

    See Also
    ========

    bin_to_gray
    """
    b = [bin_list[0]]
    for i in range(1, len(bin_list)):
        b += str(int(b[i - 1] != bin_list[i]))
    return ''.join(b)


def bin_to_gray(bin_list):
    """
    Convert from binary coding to gray coding.

    We assume big endian encoding.

    Examples
    ========

    >>> from sympy.combinatorics.graycode import bin_to_gray
    >>> bin_to_gray('111')
    '100'

    See Also
    ========

    gray_to_bin
    """
    b = [bin_list[0]]
    for i in range(1, len(bin_list)):
        b += str(int(bin_list[i]) ^ int(bin_list[i - 1]))
    return ''.join(b)


def get_subset_from_bitstring(super_set, bitstring):
    """
    Gets the subset defined by the bitstring.

    Examples
    ========

    >>> from sympy.combinatorics.graycode import get_subset_from_bitstring
    >>> get_subset_from_bitstring(['a', 'b', 'c', 'd'], '0011')
    ['c', 'd']
    >>> get_subset_from_bitstring(['c', 'a', 'c', 'c'], '1100')
    ['c', 'a']

    See Also
    ========

    graycode_subsets
    """
    if len(super_set) != len(bitstring):
        raise ValueError("The sizes of the lists are not equal")
    return [super_set[i] for i, j in enumerate(bitstring)
            if bitstring[i] == '1']


def graycode_subsets(gray_code_set):
    """
    Generates the subsets as enumerated by a Gray code.

    Examples
    ========

    >>> from sympy.combinatorics.graycode import graycode_subsets
    >>> list(graycode_subsets(['a', 'b', 'c']))
    [[], ['c'], ['b', 'c'], ['b'], ['a', 'b'], ['a', 'b', 'c'], \
    ['a', 'c'], ['a']]
    >>> list(graycode_subsets(['a', 'b', 'c', 'c']))
    [[], ['c'], ['c', 'c'], ['c'], ['b', 'c'], ['b', 'c', 'c'], \
    ['b', 'c'], ['b'], ['a', 'b'], ['a', 'b', 'c'], ['a', 'b', 'c', 'c'], \
    ['a', 'b', 'c'], ['a', 'c'], ['a', 'c', 'c'], ['a', 'c'], ['a']]

    See Also
    ========

    get_subset_from_bitstring
    """
    for bitstring in list(GrayCode(len(gray_code_set)).generate_gray()):
        yield get_subset_from_bitstring(gray_code_set, bitstring)