File size: 7,481 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
from sympy.combinatorics.permutations import Permutation
from sympy.core.symbol import symbols
from sympy.matrices import Matrix
from sympy.utilities.iterables import variations, rotate_left


def symmetric(n):
    """
    Generates the symmetric group of order n, Sn.

    Examples
    ========

    >>> from sympy.combinatorics.generators import symmetric
    >>> list(symmetric(3))
    [(2), (1 2), (2)(0 1), (0 1 2), (0 2 1), (0 2)]
    """
    for perm in variations(range(n), n):
        yield Permutation(perm)


def cyclic(n):
    """
    Generates the cyclic group of order n, Cn.

    Examples
    ========

    >>> from sympy.combinatorics.generators import cyclic
    >>> list(cyclic(5))
    [(4), (0 1 2 3 4), (0 2 4 1 3),
     (0 3 1 4 2), (0 4 3 2 1)]

    See Also
    ========

    dihedral
    """
    gen = list(range(n))
    for i in range(n):
        yield Permutation(gen)
        gen = rotate_left(gen, 1)


def alternating(n):
    """
    Generates the alternating group of order n, An.

    Examples
    ========

    >>> from sympy.combinatorics.generators import alternating
    >>> list(alternating(3))
    [(2), (0 1 2), (0 2 1)]
    """
    for perm in variations(range(n), n):
        p = Permutation(perm)
        if p.is_even:
            yield p


def dihedral(n):
    """
    Generates the dihedral group of order 2n, Dn.

    The result is given as a subgroup of Sn, except for the special cases n=1
    (the group S2) and n=2 (the Klein 4-group) where that's not possible
    and embeddings in S2 and S4 respectively are given.

    Examples
    ========

    >>> from sympy.combinatorics.generators import dihedral
    >>> list(dihedral(3))
    [(2), (0 2), (0 1 2), (1 2), (0 2 1), (2)(0 1)]

    See Also
    ========

    cyclic
    """
    if n == 1:
        yield Permutation([0, 1])
        yield Permutation([1, 0])
    elif n == 2:
        yield Permutation([0, 1, 2, 3])
        yield Permutation([1, 0, 3, 2])
        yield Permutation([2, 3, 0, 1])
        yield Permutation([3, 2, 1, 0])
    else:
        gen = list(range(n))
        for i in range(n):
            yield Permutation(gen)
            yield Permutation(gen[::-1])
            gen = rotate_left(gen, 1)


def rubik_cube_generators():
    """Return the permutations of the 3x3 Rubik's cube, see
    https://www.gap-system.org/Doc/Examples/rubik.html
    """
    a = [
        [(1, 3, 8, 6), (2, 5, 7, 4), (9, 33, 25, 17), (10, 34, 26, 18),
         (11, 35, 27, 19)],
        [(9, 11, 16, 14), (10, 13, 15, 12), (1, 17, 41, 40), (4, 20, 44, 37),
         (6, 22, 46, 35)],
        [(17, 19, 24, 22), (18, 21, 23, 20), (6, 25, 43, 16), (7, 28, 42, 13),
         (8, 30, 41, 11)],
        [(25, 27, 32, 30), (26, 29, 31, 28), (3, 38, 43, 19), (5, 36, 45, 21),
         (8, 33, 48, 24)],
        [(33, 35, 40, 38), (34, 37, 39, 36), (3, 9, 46, 32), (2, 12, 47, 29),
         (1, 14, 48, 27)],
        [(41, 43, 48, 46), (42, 45, 47, 44), (14, 22, 30, 38),
         (15, 23, 31, 39), (16, 24, 32, 40)]
    ]
    return [Permutation([[i - 1 for i in xi] for xi in x], size=48) for x in a]


def rubik(n):
    """Return permutations for an nxn Rubik's cube.

    Permutations returned are for rotation of each of the slice
    from the face up to the last face for each of the 3 sides (in this order):
    front, right and bottom. Hence, the first n - 1 permutations are for the
    slices from the front.
    """

    if n < 2:
        raise ValueError('dimension of cube must be > 1')

    # 1-based reference to rows and columns in Matrix
    def getr(f, i):
        return faces[f].col(n - i)

    def getl(f, i):
        return faces[f].col(i - 1)

    def getu(f, i):
        return faces[f].row(i - 1)

    def getd(f, i):
        return faces[f].row(n - i)

    def setr(f, i, s):
        faces[f][:, n - i] = Matrix(n, 1, s)

    def setl(f, i, s):
        faces[f][:, i - 1] = Matrix(n, 1, s)

    def setu(f, i, s):
        faces[f][i - 1, :] = Matrix(1, n, s)

    def setd(f, i, s):
        faces[f][n - i, :] = Matrix(1, n, s)

    # motion of a single face
    def cw(F, r=1):
        for _ in range(r):
            face = faces[F]
            rv = []
            for c in range(n):
                for r in range(n - 1, -1, -1):
                    rv.append(face[r, c])
            faces[F] = Matrix(n, n, rv)

    def ccw(F):
        cw(F, 3)

    # motion of plane i from the F side;
    # fcw(0) moves the F face, fcw(1) moves the plane
    # just behind the front face, etc...
    def fcw(i, r=1):
        for _ in range(r):
            if i == 0:
                cw(F)
            i += 1
            temp = getr(L, i)
            setr(L, i, list(getu(D, i)))
            setu(D, i, list(reversed(getl(R, i))))
            setl(R, i, list(getd(U, i)))
            setd(U, i, list(reversed(temp)))
            i -= 1

    def fccw(i):
        fcw(i, 3)

    # motion of the entire cube from the F side
    def FCW(r=1):
        for _ in range(r):
            cw(F)
            ccw(B)
            cw(U)
            t = faces[U]
            cw(L)
            faces[U] = faces[L]
            cw(D)
            faces[L] = faces[D]
            cw(R)
            faces[D] = faces[R]
            faces[R] = t

    def FCCW():
        FCW(3)

    # motion of the entire cube from the U side
    def UCW(r=1):
        for _ in range(r):
            cw(U)
            ccw(D)
            t = faces[F]
            faces[F] = faces[R]
            faces[R] = faces[B]
            faces[B] = faces[L]
            faces[L] = t

    def UCCW():
        UCW(3)

    # defining the permutations for the cube

    U, F, R, B, L, D = names = symbols('U, F, R, B, L, D')

    # the faces are represented by nxn matrices
    faces = {}
    count = 0
    for fi in range(6):
        f = []
        for a in range(n**2):
            f.append(count)
            count += 1
        faces[names[fi]] = Matrix(n, n, f)

    # this will either return the value of the current permutation
    # (show != 1) or else append the permutation to the group, g
    def perm(show=0):
        # add perm to the list of perms
        p = []
        for f in names:
            p.extend(faces[f])
        if show:
            return p
        g.append(Permutation(p))

    g = []  # container for the group's permutations
    I = list(range(6*n**2))  # the identity permutation used for checking

    # define permutations corresponding to cw rotations of the planes
    # up TO the last plane from that direction; by not including the
    # last plane, the orientation of the cube is maintained.

    # F slices
    for i in range(n - 1):
        fcw(i)
        perm()
        fccw(i)  # restore
    assert perm(1) == I

    # R slices
    # bring R to front
    UCW()
    for i in range(n - 1):
        fcw(i)
        # put it back in place
        UCCW()
        # record
        perm()
        # restore
        # bring face to front
        UCW()
        fccw(i)
    # restore
    UCCW()
    assert perm(1) == I

    # D slices
    # bring up bottom
    FCW()
    UCCW()
    FCCW()
    for i in range(n - 1):
        # turn strip
        fcw(i)
        # put bottom back on the bottom
        FCW()
        UCW()
        FCCW()
        # record
        perm()
        # restore
        # bring up bottom
        FCW()
        UCCW()
        FCCW()
        # turn strip
        fccw(i)
    # put bottom back on the bottom
    FCW()
    UCW()
    FCCW()
    assert perm(1) == I

    return g