File size: 17,867 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
r"""
Construct transitive subgroups of symmetric groups, useful in Galois theory.

Besides constructing instances of the :py:class:`~.PermutationGroup` class to
represent the transitive subgroups of $S_n$ for small $n$, this module provides
*names* for these groups.

In some applications, it may be preferable to know the name of a group,
rather than receive an instance of the :py:class:`~.PermutationGroup`
class, and then have to do extra work to determine which group it is, by
checking various properties.

Names are instances of ``Enum`` classes defined in this module. With a name in
hand, the name's ``get_perm_group`` method can then be used to retrieve a
:py:class:`~.PermutationGroup`.

The names used for groups in this module are taken from [1].

References
==========

.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory*.

"""

from collections import defaultdict
from enum import Enum
import itertools

from sympy.combinatorics.named_groups import (
    SymmetricGroup, AlternatingGroup, CyclicGroup, DihedralGroup,
    set_symmetric_group_properties, set_alternating_group_properties,
)
from sympy.combinatorics.perm_groups import PermutationGroup
from sympy.combinatorics.permutations import Permutation


class S1TransitiveSubgroups(Enum):
    """
    Names for the transitive subgroups of S1.
    """
    S1 = "S1"

    def get_perm_group(self):
        return SymmetricGroup(1)


class S2TransitiveSubgroups(Enum):
    """
    Names for the transitive subgroups of S2.
    """
    S2 = "S2"

    def get_perm_group(self):
        return SymmetricGroup(2)


class S3TransitiveSubgroups(Enum):
    """
    Names for the transitive subgroups of S3.
    """
    A3 = "A3"
    S3 = "S3"

    def get_perm_group(self):
        if self == S3TransitiveSubgroups.A3:
            return AlternatingGroup(3)
        elif self == S3TransitiveSubgroups.S3:
            return SymmetricGroup(3)


class S4TransitiveSubgroups(Enum):
    """
    Names for the transitive subgroups of S4.
    """
    C4 = "C4"
    V = "V"
    D4 = "D4"
    A4 = "A4"
    S4 = "S4"

    def get_perm_group(self):
        if self == S4TransitiveSubgroups.C4:
            return CyclicGroup(4)
        elif self == S4TransitiveSubgroups.V:
            return four_group()
        elif self == S4TransitiveSubgroups.D4:
            return DihedralGroup(4)
        elif self == S4TransitiveSubgroups.A4:
            return AlternatingGroup(4)
        elif self == S4TransitiveSubgroups.S4:
            return SymmetricGroup(4)


class S5TransitiveSubgroups(Enum):
    """
    Names for the transitive subgroups of S5.
    """
    C5 = "C5"
    D5 = "D5"
    M20 = "M20"
    A5 = "A5"
    S5 = "S5"

    def get_perm_group(self):
        if self == S5TransitiveSubgroups.C5:
            return CyclicGroup(5)
        elif self == S5TransitiveSubgroups.D5:
            return DihedralGroup(5)
        elif self == S5TransitiveSubgroups.M20:
            return M20()
        elif self == S5TransitiveSubgroups.A5:
            return AlternatingGroup(5)
        elif self == S5TransitiveSubgroups.S5:
            return SymmetricGroup(5)


class S6TransitiveSubgroups(Enum):
    """
    Names for the transitive subgroups of S6.
    """
    C6 = "C6"
    S3 = "S3"
    D6 = "D6"
    A4 = "A4"
    G18 = "G18"
    A4xC2 = "A4 x C2"
    S4m = "S4-"
    S4p = "S4+"
    G36m = "G36-"
    G36p = "G36+"
    S4xC2 = "S4 x C2"
    PSL2F5 = "PSL2(F5)"
    G72 = "G72"
    PGL2F5 = "PGL2(F5)"
    A6 = "A6"
    S6 = "S6"

    def get_perm_group(self):
        if self == S6TransitiveSubgroups.C6:
            return CyclicGroup(6)
        elif self == S6TransitiveSubgroups.S3:
            return S3_in_S6()
        elif self == S6TransitiveSubgroups.D6:
            return DihedralGroup(6)
        elif self == S6TransitiveSubgroups.A4:
            return A4_in_S6()
        elif self == S6TransitiveSubgroups.G18:
            return G18()
        elif self == S6TransitiveSubgroups.A4xC2:
            return A4xC2()
        elif self == S6TransitiveSubgroups.S4m:
            return S4m()
        elif self == S6TransitiveSubgroups.S4p:
            return S4p()
        elif self == S6TransitiveSubgroups.G36m:
            return G36m()
        elif self == S6TransitiveSubgroups.G36p:
            return G36p()
        elif self == S6TransitiveSubgroups.S4xC2:
            return S4xC2()
        elif self == S6TransitiveSubgroups.PSL2F5:
            return PSL2F5()
        elif self == S6TransitiveSubgroups.G72:
            return G72()
        elif self == S6TransitiveSubgroups.PGL2F5:
            return PGL2F5()
        elif self == S6TransitiveSubgroups.A6:
            return AlternatingGroup(6)
        elif self == S6TransitiveSubgroups.S6:
            return SymmetricGroup(6)


def four_group():
    """
    Return a representation of the Klein four-group as a transitive subgroup
    of S4.
    """
    return PermutationGroup(
        Permutation(0, 1)(2, 3),
        Permutation(0, 2)(1, 3)
    )


def M20():
    """
    Return a representation of the metacyclic group M20, a transitive subgroup
    of S5 that is one of the possible Galois groups for polys of degree 5.

    Notes
    =====

    See [1], Page 323.

    """
    G = PermutationGroup(Permutation(0, 1, 2, 3, 4), Permutation(1, 2, 4, 3))
    G._degree = 5
    G._order = 20
    G._is_transitive = True
    G._is_sym = False
    G._is_alt = False
    G._is_cyclic = False
    G._is_dihedral = False
    return G


def S3_in_S6():
    """
    Return a representation of S3 as a transitive subgroup of S6.

    Notes
    =====

    The representation is found by viewing the group as the symmetries of a
    triangular prism.

    """
    G = PermutationGroup(Permutation(0, 1, 2)(3, 4, 5), Permutation(0, 3)(2, 4)(1, 5))
    set_symmetric_group_properties(G, 3, 6)
    return G


def A4_in_S6():
    """
    Return a representation of A4 as a transitive subgroup of S6.

    Notes
    =====

    This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.

    """
    G = PermutationGroup(Permutation(0, 4, 5)(1, 3, 2), Permutation(0, 1, 2)(3, 5, 4))
    set_alternating_group_properties(G, 4, 6)
    return G


def S4m():
    """
    Return a representation of the S4- transitive subgroup of S6.

    Notes
    =====

    This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.

    """
    G = PermutationGroup(Permutation(1, 4, 5, 3), Permutation(0, 4)(1, 5)(2, 3))
    set_symmetric_group_properties(G, 4, 6)
    return G


def S4p():
    """
    Return a representation of the S4+ transitive subgroup of S6.

    Notes
    =====

    This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.

    """
    G = PermutationGroup(Permutation(0, 2, 4, 1)(3, 5), Permutation(0, 3)(4, 5))
    set_symmetric_group_properties(G, 4, 6)
    return G


def A4xC2():
    """
    Return a representation of the (A4 x C2) transitive subgroup of S6.

    Notes
    =====

    This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.

    """
    return PermutationGroup(
        Permutation(0, 4, 5)(1, 3, 2), Permutation(0, 1, 2)(3, 5, 4),
        Permutation(5)(2, 4))


def S4xC2():
    """
    Return a representation of the (S4 x C2) transitive subgroup of S6.

    Notes
    =====

    This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.

    """
    return PermutationGroup(
        Permutation(1, 4, 5, 3), Permutation(0, 4)(1, 5)(2, 3),
        Permutation(1, 4)(3, 5))


def G18():
    """
    Return a representation of the group G18, a transitive subgroup of S6
    isomorphic to the semidirect product of C3^2 with C2.

    Notes
    =====

    This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.

    """
    return PermutationGroup(
        Permutation(5)(0, 1, 2), Permutation(3, 4, 5),
        Permutation(0, 4)(1, 5)(2, 3))


def G36m():
    """
    Return a representation of the group G36-, a transitive subgroup of S6
    isomorphic to the semidirect product of C3^2 with C2^2.

    Notes
    =====

    This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.

    """
    return PermutationGroup(
        Permutation(5)(0, 1, 2), Permutation(3, 4, 5),
        Permutation(1, 2)(3, 5), Permutation(0, 4)(1, 5)(2, 3))


def G36p():
    """
    Return a representation of the group G36+, a transitive subgroup of S6
    isomorphic to the semidirect product of C3^2 with C4.

    Notes
    =====

    This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.

    """
    return PermutationGroup(
        Permutation(5)(0, 1, 2), Permutation(3, 4, 5),
        Permutation(0, 5, 2, 3)(1, 4))


def G72():
    """
    Return a representation of the group G72, a transitive subgroup of S6
    isomorphic to the semidirect product of C3^2 with D4.

    Notes
    =====

    See [1], Page 325.

    """
    return PermutationGroup(
        Permutation(5)(0, 1, 2),
        Permutation(0, 4, 1, 3)(2, 5), Permutation(0, 3)(1, 4)(2, 5))


def PSL2F5():
    r"""
    Return a representation of the group $PSL_2(\mathbb{F}_5)$, as a transitive
    subgroup of S6, isomorphic to $A_5$.

    Notes
    =====

    This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.

    """
    G = PermutationGroup(
        Permutation(0, 4, 5)(1, 3, 2), Permutation(0, 4, 3, 1, 5))
    set_alternating_group_properties(G, 5, 6)
    return G


def PGL2F5():
    r"""
    Return a representation of the group $PGL_2(\mathbb{F}_5)$, as a transitive
    subgroup of S6, isomorphic to $S_5$.

    Notes
    =====

    See [1], Page 325.

    """
    G = PermutationGroup(
        Permutation(0, 1, 2, 3, 4), Permutation(0, 5)(1, 2)(3, 4))
    set_symmetric_group_properties(G, 5, 6)
    return G


def find_transitive_subgroups_of_S6(*targets, print_report=False):
    r"""
    Search for certain transitive subgroups of $S_6$.

    The symmetric group $S_6$ has 16 different transitive subgroups, up to
    conjugacy. Some are more easily constructed than others. For example, the
    dihedral group $D_6$ is immediately found, but it is not at all obvious how
    to realize $S_4$ or $S_5$ *transitively* within $S_6$.

    In some cases there are well-known constructions that can be used. For
    example, $S_5$ is isomorphic to $PGL_2(\mathbb{F}_5)$, which acts in a
    natural way on the projective line $P^1(\mathbb{F}_5)$, a set of order 6.

    In absence of such special constructions however, we can simply search for
    generators. For example, transitive instances of $A_4$ and $S_4$ can be
    found within $S_6$ in this way.

    Once we are engaged in such searches, it may then be easier (if less
    elegant) to find even those groups like $S_5$ that do have special
    constructions, by mere search.

    This function locates generators for transitive instances in $S_6$ of the
    following subgroups:

    * $A_4$
    * $S_4^-$ ($S_4$ not contained within $A_6$)
    * $S_4^+$ ($S_4$ contained within $A_6$)
    * $A_4 \times C_2$
    * $S_4 \times C_2$
    * $G_{18}   = C_3^2 \rtimes C_2$
    * $G_{36}^- = C_3^2 \rtimes C_2^2$
    * $G_{36}^+ = C_3^2 \rtimes C_4$
    * $G_{72}   = C_3^2 \rtimes D_4$
    * $A_5$
    * $S_5$

    Note: Each of these groups also has a dedicated function in this module
    that returns the group immediately, using generators that were found by
    this search procedure.

    The search procedure serves as a record of how these generators were
    found. Also, due to randomness in the generation of the elements of
    permutation groups, it can be called again, in order to (probably) get
    different generators for the same groups.

    Parameters
    ==========

    targets : list of :py:class:`~.S6TransitiveSubgroups` values
        The groups you want to find.

    print_report : bool (default False)
        If True, print to stdout the generators found for each group.

    Returns
    =======

    dict
        mapping each name in *targets* to the :py:class:`~.PermutationGroup`
        that was found

    References
    ==========

    .. [2] https://en.wikipedia.org/wiki/Projective_linear_group#Exceptional_isomorphisms
    .. [3] https://en.wikipedia.org/wiki/Automorphisms_of_the_symmetric_and_alternating_groups#PGL%282,5%29

    """
    def elts_by_order(G):
        """Sort the elements of a group by their order. """
        elts = defaultdict(list)
        for g in G.elements:
            elts[g.order()].append(g)
        return elts

    def order_profile(G, name=None):
        """Determine how many elements a group has, of each order. """
        elts = elts_by_order(G)
        profile = {o:len(e) for o, e in elts.items()}
        if name:
            print(f'{name}: ' + ' '.join(f'{len(profile[r])}@{r}' for r in sorted(profile.keys())))
        return profile

    S6 = SymmetricGroup(6)
    A6 = AlternatingGroup(6)
    S6_by_order = elts_by_order(S6)

    def search(existing_gens, needed_gen_orders, order, alt=None, profile=None, anti_profile=None):
        """
        Find a transitive subgroup of S6.

        Parameters
        ==========

        existing_gens : list of Permutation
            Optionally empty list of generators that must be in the group.

        needed_gen_orders : list of positive int
            Nonempty list of the orders of the additional generators that are
            to be found.

        order: int
            The order of the group being sought.

        alt: bool, None
            If True, require the group to be contained in A6.
            If False, require the group not to be contained in A6.

        profile : dict
            If given, the group's order profile must equal this.

        anti_profile : dict
            If given, the group's order profile must *not* equal this.

        """
        for gens in itertools.product(*[S6_by_order[n] for n in needed_gen_orders]):
            if len(set(gens)) < len(gens):
                continue
            G = PermutationGroup(existing_gens + list(gens))
            if G.order() == order and G.is_transitive():
                if alt is not None and G.is_subgroup(A6) != alt:
                    continue
                if profile and order_profile(G) != profile:
                    continue
                if anti_profile and order_profile(G) == anti_profile:
                    continue
                return G

    def match_known_group(G, alt=None):
        needed = [g.order() for g in G.generators]
        return search([], needed, G.order(), alt=alt, profile=order_profile(G))

    found = {}

    def finish_up(name, G):
        found[name] = G
        if print_report:
            print("=" * 40)
            print(f"{name}:")
            print(G.generators)

    if S6TransitiveSubgroups.A4 in targets or S6TransitiveSubgroups.A4xC2 in targets:
        A4_in_S6 = match_known_group(AlternatingGroup(4))
        finish_up(S6TransitiveSubgroups.A4, A4_in_S6)

    if S6TransitiveSubgroups.S4m in targets or S6TransitiveSubgroups.S4xC2 in targets:
        S4m_in_S6 = match_known_group(SymmetricGroup(4), alt=False)
        finish_up(S6TransitiveSubgroups.S4m, S4m_in_S6)

    if S6TransitiveSubgroups.S4p in targets:
        S4p_in_S6 = match_known_group(SymmetricGroup(4), alt=True)
        finish_up(S6TransitiveSubgroups.S4p, S4p_in_S6)

    if S6TransitiveSubgroups.A4xC2 in targets:
        A4xC2_in_S6 = search(A4_in_S6.generators, [2], 24, anti_profile=order_profile(SymmetricGroup(4)))
        finish_up(S6TransitiveSubgroups.A4xC2, A4xC2_in_S6)

    if S6TransitiveSubgroups.S4xC2 in targets:
        S4xC2_in_S6 = search(S4m_in_S6.generators, [2], 48)
        finish_up(S6TransitiveSubgroups.S4xC2, S4xC2_in_S6)

    # For the normal factor N = C3^2 in any of the G_n subgroups, we take one
    # obvious instance of C3^2 in S6:
    N_gens = [Permutation(5)(0, 1, 2), Permutation(5)(3, 4, 5)]

    if S6TransitiveSubgroups.G18 in targets:
        G18_in_S6 = search(N_gens, [2], 18)
        finish_up(S6TransitiveSubgroups.G18, G18_in_S6)

    if S6TransitiveSubgroups.G36m in targets:
        G36m_in_S6 = search(N_gens, [2, 2], 36, alt=False)
        finish_up(S6TransitiveSubgroups.G36m, G36m_in_S6)

    if S6TransitiveSubgroups.G36p in targets:
        G36p_in_S6 = search(N_gens, [4], 36, alt=True)
        finish_up(S6TransitiveSubgroups.G36p, G36p_in_S6)

    if S6TransitiveSubgroups.G72 in targets:
        G72_in_S6 = search(N_gens, [4, 2], 72)
        finish_up(S6TransitiveSubgroups.G72, G72_in_S6)

    # The PSL2(F5) and PGL2(F5) subgroups are isomorphic to A5 and S5, resp.

    if S6TransitiveSubgroups.PSL2F5 in targets:
        PSL2F5_in_S6 = match_known_group(AlternatingGroup(5))
        finish_up(S6TransitiveSubgroups.PSL2F5, PSL2F5_in_S6)

    if S6TransitiveSubgroups.PGL2F5 in targets:
        PGL2F5_in_S6 = match_known_group(SymmetricGroup(5))
        finish_up(S6TransitiveSubgroups.PGL2F5, PGL2F5_in_S6)

    # There is little need to "search" for any of the groups C6, S3, D6, A6,
    # or S6, since they all have obvious realizations within S6. However, we
    # support them here just in case a random representation is desired.

    if S6TransitiveSubgroups.C6 in targets:
        C6 = match_known_group(CyclicGroup(6))
        finish_up(S6TransitiveSubgroups.C6, C6)

    if S6TransitiveSubgroups.S3 in targets:
        S3 = match_known_group(SymmetricGroup(3))
        finish_up(S6TransitiveSubgroups.S3, S3)

    if S6TransitiveSubgroups.D6 in targets:
        D6 = match_known_group(DihedralGroup(6))
        finish_up(S6TransitiveSubgroups.D6, D6)

    if S6TransitiveSubgroups.A6 in targets:
        A6 = match_known_group(A6)
        finish_up(S6TransitiveSubgroups.A6, A6)

    if S6TransitiveSubgroups.S6 in targets:
        S6 = match_known_group(S6)
        finish_up(S6TransitiveSubgroups.S6, S6)

    return found