File size: 39,479 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
from __future__ import annotations

from sympy.core import S
from sympy.core.expr import Expr
from sympy.core.symbol import Symbol, symbols as _symbols
from sympy.core.sympify import CantSympify
from sympy.printing.defaults import DefaultPrinting
from sympy.utilities import public
from sympy.utilities.iterables import flatten, is_sequence
from sympy.utilities.magic import pollute
from sympy.utilities.misc import as_int


@public
def free_group(symbols):
    """Construct a free group returning ``(FreeGroup, (f_0, f_1, ..., f_(n-1))``.

    Parameters
    ==========

    symbols : str, Symbol/Expr or sequence of str, Symbol/Expr (may be empty)

    Examples
    ========

    >>> from sympy.combinatorics import free_group
    >>> F, x, y, z = free_group("x, y, z")
    >>> F
    <free group on the generators (x, y, z)>
    >>> x**2*y**-1
    x**2*y**-1
    >>> type(_)
    <class 'sympy.combinatorics.free_groups.FreeGroupElement'>

    """
    _free_group = FreeGroup(symbols)
    return (_free_group,) + tuple(_free_group.generators)

@public
def xfree_group(symbols):
    """Construct a free group returning ``(FreeGroup, (f_0, f_1, ..., f_(n-1)))``.

    Parameters
    ==========

    symbols : str, Symbol/Expr or sequence of str, Symbol/Expr (may be empty)

    Examples
    ========

    >>> from sympy.combinatorics.free_groups import xfree_group
    >>> F, (x, y, z) = xfree_group("x, y, z")
    >>> F
    <free group on the generators (x, y, z)>
    >>> y**2*x**-2*z**-1
    y**2*x**-2*z**-1
    >>> type(_)
    <class 'sympy.combinatorics.free_groups.FreeGroupElement'>

    """
    _free_group = FreeGroup(symbols)
    return (_free_group, _free_group.generators)

@public
def vfree_group(symbols):
    """Construct a free group and inject ``f_0, f_1, ..., f_(n-1)`` as symbols
    into the global namespace.

    Parameters
    ==========

    symbols : str, Symbol/Expr or sequence of str, Symbol/Expr (may be empty)

    Examples
    ========

    >>> from sympy.combinatorics.free_groups import vfree_group
    >>> vfree_group("x, y, z")
    <free group on the generators (x, y, z)>
    >>> x**2*y**-2*z # noqa: F821
    x**2*y**-2*z
    >>> type(_)
    <class 'sympy.combinatorics.free_groups.FreeGroupElement'>

    """
    _free_group = FreeGroup(symbols)
    pollute([sym.name for sym in _free_group.symbols], _free_group.generators)
    return _free_group


def _parse_symbols(symbols):
    if not symbols:
        return ()
    if isinstance(symbols, str):
        return _symbols(symbols, seq=True)
    elif isinstance(symbols, (Expr, FreeGroupElement)):
        return (symbols,)
    elif is_sequence(symbols):
        if all(isinstance(s, str) for s in symbols):
            return _symbols(symbols)
        elif all(isinstance(s, Expr) for s in symbols):
            return symbols
    raise ValueError("The type of `symbols` must be one of the following: "
                     "a str, Symbol/Expr or a sequence of "
                     "one of these types")


##############################################################################
#                          FREE GROUP                                        #
##############################################################################

_free_group_cache: dict[int, FreeGroup] = {}

class FreeGroup(DefaultPrinting):
    """
    Free group with finite or infinite number of generators. Its input API
    is that of a str, Symbol/Expr or a sequence of one of
    these types (which may be empty)

    See Also
    ========

    sympy.polys.rings.PolyRing

    References
    ==========

    .. [1] https://www.gap-system.org/Manuals/doc/ref/chap37.html

    .. [2] https://en.wikipedia.org/wiki/Free_group

    """
    is_associative = True
    is_group = True
    is_FreeGroup = True
    is_PermutationGroup = False
    relators: list[Expr] = []

    def __new__(cls, symbols):
        symbols = tuple(_parse_symbols(symbols))
        rank = len(symbols)
        _hash = hash((cls.__name__, symbols, rank))
        obj = _free_group_cache.get(_hash)

        if obj is None:
            obj = object.__new__(cls)
            obj._hash = _hash
            obj._rank = rank
            # dtype method is used to create new instances of FreeGroupElement
            obj.dtype = type("FreeGroupElement", (FreeGroupElement,), {"group": obj})
            obj.symbols = symbols
            obj.generators = obj._generators()
            obj._gens_set = set(obj.generators)
            for symbol, generator in zip(obj.symbols, obj.generators):
                if isinstance(symbol, Symbol):
                    name = symbol.name
                    if hasattr(obj, name):
                        setattr(obj, name, generator)

            _free_group_cache[_hash] = obj

        return obj

    def _generators(group):
        """Returns the generators of the FreeGroup.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> F, x, y, z = free_group("x, y, z")
        >>> F.generators
        (x, y, z)

        """
        gens = []
        for sym in group.symbols:
            elm = ((sym, 1),)
            gens.append(group.dtype(elm))
        return tuple(gens)

    def clone(self, symbols=None):
        return self.__class__(symbols or self.symbols)

    def __contains__(self, i):
        """Return True if ``i`` is contained in FreeGroup."""
        if not isinstance(i, FreeGroupElement):
            return False
        group = i.group
        return self == group

    def __hash__(self):
        return self._hash

    def __len__(self):
        return self.rank

    def __str__(self):
        if self.rank > 30:
            str_form = "<free group with %s generators>" % self.rank
        else:
            str_form = "<free group on the generators "
            gens = self.generators
            str_form += str(gens) + ">"
        return str_form

    __repr__ = __str__

    def __getitem__(self, index):
        symbols = self.symbols[index]
        return self.clone(symbols=symbols)

    def __eq__(self, other):
        """No ``FreeGroup`` is equal to any "other" ``FreeGroup``.
        """
        return self is other

    def index(self, gen):
        """Return the index of the generator `gen` from ``(f_0, ..., f_(n-1))``.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> F, x, y = free_group("x, y")
        >>> F.index(y)
        1
        >>> F.index(x)
        0

        """
        if isinstance(gen, self.dtype):
            return self.generators.index(gen)
        else:
            raise ValueError("expected a generator of Free Group %s, got %s" % (self, gen))

    def order(self):
        """Return the order of the free group.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> F, x, y = free_group("x, y")
        >>> F.order()
        oo

        >>> free_group("")[0].order()
        1

        """
        if self.rank == 0:
            return S.One
        else:
            return S.Infinity

    @property
    def elements(self):
        """
        Return the elements of the free group.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> (z,) = free_group("")
        >>> z.elements
        {<identity>}

        """
        if self.rank == 0:
            # A set containing Identity element of `FreeGroup` self is returned
            return {self.identity}
        else:
            raise ValueError("Group contains infinitely many elements"
                            ", hence cannot be represented")

    @property
    def rank(self):
        r"""
        In group theory, the `rank` of a group `G`, denoted `G.rank`,
        can refer to the smallest cardinality of a generating set
        for G, that is

        \operatorname{rank}(G)=\min\{ |X|: X\subseteq G, \left\langle X\right\rangle =G\}.

        """
        return self._rank

    @property
    def is_abelian(self):
        """Returns if the group is Abelian.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, x, y, z = free_group("x y z")
        >>> f.is_abelian
        False

        """
        return self.rank in (0, 1)

    @property
    def identity(self):
        """Returns the identity element of free group."""
        return self.dtype()

    def contains(self, g):
        """Tests if Free Group element ``g`` belong to self, ``G``.

        In mathematical terms any linear combination of generators
        of a Free Group is contained in it.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, x, y, z = free_group("x y z")
        >>> f.contains(x**3*y**2)
        True

        """
        if not isinstance(g, FreeGroupElement):
            return False
        elif self != g.group:
            return False
        else:
            return True

    def center(self):
        """Returns the center of the free group `self`."""
        return {self.identity}


############################################################################
#                          FreeGroupElement                                #
############################################################################


class FreeGroupElement(CantSympify, DefaultPrinting, tuple):
    """Used to create elements of FreeGroup. It cannot be used directly to
    create a free group element. It is called by the `dtype` method of the
    `FreeGroup` class.

    """
    is_assoc_word = True

    def new(self, init):
        return self.__class__(init)

    _hash = None

    def __hash__(self):
        _hash = self._hash
        if _hash is None:
            self._hash = _hash = hash((self.group, frozenset(tuple(self))))
        return _hash

    def copy(self):
        return self.new(self)

    @property
    def is_identity(self):
        if self.array_form == ():
            return True
        else:
            return False

    @property
    def array_form(self):
        """
        SymPy provides two different internal kinds of representation
        of associative words. The first one is called the `array_form`
        which is a tuple containing `tuples` as its elements, where the
        size of each tuple is two. At the first position the tuple
        contains the `symbol-generator`, while at the second position
        of tuple contains the exponent of that generator at the position.
        Since elements (i.e. words) do not commute, the indexing of tuple
        makes that property to stay.

        The structure in ``array_form`` of ``FreeGroupElement`` is of form:

        ``( ( symbol_of_gen, exponent ), ( , ), ... ( , ) )``

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, x, y, z = free_group("x y z")
        >>> (x*z).array_form
        ((x, 1), (z, 1))
        >>> (x**2*z*y*x**2).array_form
        ((x, 2), (z, 1), (y, 1), (x, 2))

        See Also
        ========

        letter_repr

        """
        return tuple(self)

    @property
    def letter_form(self):
        """
        The letter representation of a ``FreeGroupElement`` is a tuple
        of generator symbols, with each entry corresponding to a group
        generator. Inverses of the generators are represented by
        negative generator symbols.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, a, b, c, d = free_group("a b c d")
        >>> (a**3).letter_form
        (a, a, a)
        >>> (a**2*d**-2*a*b**-4).letter_form
        (a, a, -d, -d, a, -b, -b, -b, -b)
        >>> (a**-2*b**3*d).letter_form
        (-a, -a, b, b, b, d)

        See Also
        ========

        array_form

        """
        return tuple(flatten([(i,)*j if j > 0 else (-i,)*(-j)
                    for i, j in self.array_form]))

    def __getitem__(self, i):
        group = self.group
        r = self.letter_form[i]
        if r.is_Symbol:
            return group.dtype(((r, 1),))
        else:
            return group.dtype(((-r, -1),))

    def index(self, gen):
        if len(gen) != 1:
            raise ValueError()
        return (self.letter_form).index(gen.letter_form[0])

    @property
    def letter_form_elm(self):
        """
        """
        group = self.group
        r = self.letter_form
        return [group.dtype(((elm,1),)) if elm.is_Symbol \
                else group.dtype(((-elm,-1),)) for elm in r]

    @property
    def ext_rep(self):
        """This is called the External Representation of ``FreeGroupElement``
        """
        return tuple(flatten(self.array_form))

    def __contains__(self, gen):
        return gen.array_form[0][0] in tuple([r[0] for r in self.array_form])

    def __str__(self):
        if self.is_identity:
            return "<identity>"

        str_form = ""
        array_form = self.array_form
        for i in range(len(array_form)):
            if i == len(array_form) - 1:
                if array_form[i][1] == 1:
                    str_form += str(array_form[i][0])
                else:
                    str_form += str(array_form[i][0]) + \
                                    "**" + str(array_form[i][1])
            else:
                if array_form[i][1] == 1:
                    str_form += str(array_form[i][0]) + "*"
                else:
                    str_form += str(array_form[i][0]) + \
                                    "**" + str(array_form[i][1]) + "*"
        return str_form

    __repr__ = __str__

    def __pow__(self, n):
        n = as_int(n)
        result = self.group.identity
        if n == 0:
            return result
        if n < 0:
            n = -n
            x = self.inverse()
        else:
            x = self
        while True:
            if n % 2:
                result *= x
            n >>= 1
            if not n:
                break
            x *= x
        return result

    def __mul__(self, other):
        """Returns the product of elements belonging to the same ``FreeGroup``.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, x, y, z = free_group("x y z")
        >>> x*y**2*y**-4
        x*y**-2
        >>> z*y**-2
        z*y**-2
        >>> x**2*y*y**-1*x**-2
        <identity>

        """
        group = self.group
        if not isinstance(other, group.dtype):
            raise TypeError("only FreeGroup elements of same FreeGroup can "
                    "be multiplied")
        if self.is_identity:
            return other
        if other.is_identity:
            return self
        r = list(self.array_form + other.array_form)
        zero_mul_simp(r, len(self.array_form) - 1)
        return group.dtype(tuple(r))

    def __truediv__(self, other):
        group = self.group
        if not isinstance(other, group.dtype):
            raise TypeError("only FreeGroup elements of same FreeGroup can "
                    "be multiplied")
        return self*(other.inverse())

    def __rtruediv__(self, other):
        group = self.group
        if not isinstance(other, group.dtype):
            raise TypeError("only FreeGroup elements of same FreeGroup can "
                    "be multiplied")
        return other*(self.inverse())

    def __add__(self, other):
        return NotImplemented

    def inverse(self):
        """
        Returns the inverse of a ``FreeGroupElement`` element

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, x, y, z = free_group("x y z")
        >>> x.inverse()
        x**-1
        >>> (x*y).inverse()
        y**-1*x**-1

        """
        group = self.group
        r = tuple([(i, -j) for i, j in self.array_form[::-1]])
        return group.dtype(r)

    def order(self):
        """Find the order of a ``FreeGroupElement``.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, x, y = free_group("x y")
        >>> (x**2*y*y**-1*x**-2).order()
        1

        """
        if self.is_identity:
            return S.One
        else:
            return S.Infinity

    def commutator(self, other):
        """
        Return the commutator of `self` and `x`: ``~x*~self*x*self``

        """
        group = self.group
        if not isinstance(other, group.dtype):
            raise ValueError("commutator of only FreeGroupElement of the same "
                    "FreeGroup exists")
        else:
            return self.inverse()*other.inverse()*self*other

    def eliminate_words(self, words, _all=False, inverse=True):
        '''
        Replace each subword from the dictionary `words` by words[subword].
        If words is a list, replace the words by the identity.

        '''
        again = True
        new = self
        if isinstance(words, dict):
            while again:
                again = False
                for sub in words:
                    prev = new
                    new = new.eliminate_word(sub, words[sub], _all=_all, inverse=inverse)
                    if new != prev:
                        again = True
        else:
            while again:
                again = False
                for sub in words:
                    prev = new
                    new = new.eliminate_word(sub, _all=_all, inverse=inverse)
                    if new != prev:
                        again = True
        return new

    def eliminate_word(self, gen, by=None, _all=False, inverse=True):
        """
        For an associative word `self`, a subword `gen`, and an associative
        word `by` (identity by default), return the associative word obtained by
        replacing each occurrence of `gen` in `self` by `by`. If `_all = True`,
        the occurrences of `gen` that may appear after the first substitution will
        also be replaced and so on until no occurrences are found. This might not
        always terminate (e.g. `(x).eliminate_word(x, x**2, _all=True)`).

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, x, y = free_group("x y")
        >>> w = x**5*y*x**2*y**-4*x
        >>> w.eliminate_word( x, x**2 )
        x**10*y*x**4*y**-4*x**2
        >>> w.eliminate_word( x, y**-1 )
        y**-11
        >>> w.eliminate_word(x**5)
        y*x**2*y**-4*x
        >>> w.eliminate_word(x*y, y)
        x**4*y*x**2*y**-4*x

        See Also
        ========
        substituted_word

        """
        if by is None:
            by = self.group.identity
        if self.is_independent(gen) or gen == by:
            return self
        if gen == self:
            return by
        if gen**-1 == by:
            _all = False
        word = self
        l = len(gen)

        try:
            i = word.subword_index(gen)
            k = 1
        except ValueError:
            if not inverse:
                return word
            try:
                i = word.subword_index(gen**-1)
                k = -1
            except ValueError:
                return word

        word = word.subword(0, i)*by**k*word.subword(i+l, len(word)).eliminate_word(gen, by)

        if _all:
            return word.eliminate_word(gen, by, _all=True, inverse=inverse)
        else:
            return word

    def __len__(self):
        """
        For an associative word `self`, returns the number of letters in it.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, a, b = free_group("a b")
        >>> w = a**5*b*a**2*b**-4*a
        >>> len(w)
        13
        >>> len(a**17)
        17
        >>> len(w**0)
        0

        """
        return sum(abs(j) for (i, j) in self)

    def __eq__(self, other):
        """
        Two  associative words are equal if they are words over the
        same alphabet and if they are sequences of the same letters.
        This is equivalent to saying that the external representations
        of the words are equal.
        There is no "universal" empty word, every alphabet has its own
        empty word.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, swapnil0, swapnil1 = free_group("swapnil0 swapnil1")
        >>> f
        <free group on the generators (swapnil0, swapnil1)>
        >>> g, swap0, swap1 = free_group("swap0 swap1")
        >>> g
        <free group on the generators (swap0, swap1)>

        >>> swapnil0 == swapnil1
        False
        >>> swapnil0*swapnil1 == swapnil1/swapnil1*swapnil0*swapnil1
        True
        >>> swapnil0*swapnil1 == swapnil1*swapnil0
        False
        >>> swapnil1**0 == swap0**0
        False

        """
        group = self.group
        if not isinstance(other, group.dtype):
            return False
        return tuple.__eq__(self, other)

    def __lt__(self, other):
        """
        The  ordering  of  associative  words is defined by length and
        lexicography (this ordering is called short-lex ordering), that
        is, shorter words are smaller than longer words, and words of the
        same length are compared w.r.t. the lexicographical ordering induced
        by the ordering of generators. Generators  are  sorted  according
        to the order in which they were created. If the generators are
        invertible then each generator `g` is larger than its inverse `g^{-1}`,
        and `g^{-1}` is larger than every generator that is smaller than `g`.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, a, b = free_group("a b")
        >>> b < a
        False
        >>> a < a.inverse()
        False

        """
        group = self.group
        if not isinstance(other, group.dtype):
            raise TypeError("only FreeGroup elements of same FreeGroup can "
                             "be compared")
        l = len(self)
        m = len(other)
        # implement lenlex order
        if l < m:
            return True
        elif l > m:
            return False
        for i in range(l):
            a = self[i].array_form[0]
            b = other[i].array_form[0]
            p = group.symbols.index(a[0])
            q = group.symbols.index(b[0])
            if p < q:
                return True
            elif p > q:
                return False
            elif a[1] < b[1]:
                return True
            elif a[1] > b[1]:
                return False
        return False

    def __le__(self, other):
        return (self == other or self < other)

    def __gt__(self, other):
        """

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, x, y, z = free_group("x y z")
        >>> y**2 > x**2
        True
        >>> y*z > z*y
        False
        >>> x > x.inverse()
        True

        """
        group = self.group
        if not isinstance(other, group.dtype):
            raise TypeError("only FreeGroup elements of same FreeGroup can "
                             "be compared")
        return not self <= other

    def __ge__(self, other):
        return not self < other

    def exponent_sum(self, gen):
        """
        For an associative word `self` and a generator or inverse of generator
        `gen`, ``exponent_sum`` returns the number of times `gen` appears in
        `self` minus the number of times its inverse appears in `self`. If
        neither `gen` nor its inverse occur in `self` then 0 is returned.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> F, x, y = free_group("x, y")
        >>> w = x**2*y**3
        >>> w.exponent_sum(x)
        2
        >>> w.exponent_sum(x**-1)
        -2
        >>> w = x**2*y**4*x**-3
        >>> w.exponent_sum(x)
        -1

        See Also
        ========

        generator_count

        """
        if len(gen) != 1:
            raise ValueError("gen must be a generator or inverse of a generator")
        s = gen.array_form[0]
        return s[1]*sum(i[1] for i in self.array_form if i[0] == s[0])

    def generator_count(self, gen):
        """
        For an associative word `self` and a generator `gen`,
        ``generator_count`` returns the multiplicity of generator
        `gen` in `self`.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> F, x, y = free_group("x, y")
        >>> w = x**2*y**3
        >>> w.generator_count(x)
        2
        >>> w = x**2*y**4*x**-3
        >>> w.generator_count(x)
        5

        See Also
        ========

        exponent_sum

        """
        if len(gen) != 1 or gen.array_form[0][1] < 0:
            raise ValueError("gen must be a generator")
        s = gen.array_form[0]
        return s[1]*sum(abs(i[1]) for i in self.array_form if i[0] == s[0])

    def subword(self, from_i, to_j, strict=True):
        """
        For an associative word `self` and two positive integers `from_i` and
        `to_j`, `subword` returns the subword of `self` that begins at position
        `from_i` and ends at `to_j - 1`, indexing is done with origin 0.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, a, b = free_group("a b")
        >>> w = a**5*b*a**2*b**-4*a
        >>> w.subword(2, 6)
        a**3*b

        """
        group = self.group
        if not strict:
            from_i = max(from_i, 0)
            to_j = min(len(self), to_j)
        if from_i < 0 or to_j > len(self):
            raise ValueError("`from_i`, `to_j` must be positive and no greater than "
                    "the length of associative word")
        if to_j <= from_i:
            return group.identity
        else:
            letter_form = self.letter_form[from_i: to_j]
            array_form = letter_form_to_array_form(letter_form, group)
            return group.dtype(array_form)

    def subword_index(self, word, start = 0):
        '''
        Find the index of `word` in `self`.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, a, b = free_group("a b")
        >>> w = a**2*b*a*b**3
        >>> w.subword_index(a*b*a*b)
        1

        '''
        l = len(word)
        self_lf = self.letter_form
        word_lf = word.letter_form
        index = None
        for i in range(start,len(self_lf)-l+1):
            if self_lf[i:i+l] == word_lf:
                index = i
                break
        if index is not None:
            return index
        else:
            raise ValueError("The given word is not a subword of self")

    def is_dependent(self, word):
        """
        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> F, x, y = free_group("x, y")
        >>> (x**4*y**-3).is_dependent(x**4*y**-2)
        True
        >>> (x**2*y**-1).is_dependent(x*y)
        False
        >>> (x*y**2*x*y**2).is_dependent(x*y**2)
        True
        >>> (x**12).is_dependent(x**-4)
        True

        See Also
        ========

        is_independent

        """
        try:
            return self.subword_index(word) is not None
        except ValueError:
            pass
        try:
            return self.subword_index(word**-1) is not None
        except ValueError:
            return False

    def is_independent(self, word):
        """

        See Also
        ========

        is_dependent

        """
        return not self.is_dependent(word)

    def contains_generators(self):
        """
        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> F, x, y, z = free_group("x, y, z")
        >>> (x**2*y**-1).contains_generators()
        {x, y}
        >>> (x**3*z).contains_generators()
        {x, z}

        """
        group = self.group
        gens = {group.dtype(((syllable[0], 1),)) for syllable in self.array_form}
        return gens

    def cyclic_subword(self, from_i, to_j):
        group = self.group
        l = len(self)
        letter_form = self.letter_form
        period1 = int(from_i/l)
        if from_i >= l:
            from_i -= l*period1
            to_j -= l*period1
        diff = to_j - from_i
        word = letter_form[from_i: to_j]
        period2 = int(to_j/l) - 1
        word += letter_form*period2 + letter_form[:diff-l+from_i-l*period2]
        word = letter_form_to_array_form(word, group)
        return group.dtype(word)

    def cyclic_conjugates(self):
        """Returns a words which are cyclic to the word `self`.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> F, x, y = free_group("x, y")
        >>> w = x*y*x*y*x
        >>> w.cyclic_conjugates()
        {x*y*x**2*y, x**2*y*x*y, y*x*y*x**2, y*x**2*y*x, x*y*x*y*x}
        >>> s = x*y*x**2*y*x
        >>> s.cyclic_conjugates()
        {x**2*y*x**2*y, y*x**2*y*x**2, x*y*x**2*y*x}

        References
        ==========

        .. [1] https://planetmath.org/cyclicpermutation

        """
        return {self.cyclic_subword(i, i+len(self)) for i in range(len(self))}

    def is_cyclic_conjugate(self, w):
        """
        Checks whether words ``self``, ``w`` are cyclic conjugates.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> F, x, y = free_group("x, y")
        >>> w1 = x**2*y**5
        >>> w2 = x*y**5*x
        >>> w1.is_cyclic_conjugate(w2)
        True
        >>> w3 = x**-1*y**5*x**-1
        >>> w3.is_cyclic_conjugate(w2)
        False

        """
        l1 = len(self)
        l2 = len(w)
        if l1 != l2:
            return False
        w1 = self.identity_cyclic_reduction()
        w2 = w.identity_cyclic_reduction()
        letter1 = w1.letter_form
        letter2 = w2.letter_form
        str1 = ' '.join(map(str, letter1))
        str2 = ' '.join(map(str, letter2))
        if len(str1) != len(str2):
            return False

        return str1 in str2 + ' ' + str2

    def number_syllables(self):
        """Returns the number of syllables of the associative word `self`.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, swapnil0, swapnil1 = free_group("swapnil0 swapnil1")
        >>> (swapnil1**3*swapnil0*swapnil1**-1).number_syllables()
        3

        """
        return len(self.array_form)

    def exponent_syllable(self, i):
        """
        Returns the exponent of the `i`-th syllable of the associative word
        `self`.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, a, b = free_group("a b")
        >>> w = a**5*b*a**2*b**-4*a
        >>> w.exponent_syllable( 2 )
        2

        """
        return self.array_form[i][1]

    def generator_syllable(self, i):
        """
        Returns the symbol of the generator that is involved in the
        i-th syllable of the associative word `self`.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, a, b = free_group("a b")
        >>> w = a**5*b*a**2*b**-4*a
        >>> w.generator_syllable( 3 )
        b

        """
        return self.array_form[i][0]

    def sub_syllables(self, from_i, to_j):
        """
        `sub_syllables` returns the subword of the associative word `self` that
        consists of syllables from positions `from_to` to `to_j`, where
        `from_to` and `to_j` must be positive integers and indexing is done
        with origin 0.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> f, a, b = free_group("a, b")
        >>> w = a**5*b*a**2*b**-4*a
        >>> w.sub_syllables(1, 2)
        b
        >>> w.sub_syllables(3, 3)
        <identity>

        """
        if not isinstance(from_i, int) or not isinstance(to_j, int):
            raise ValueError("both arguments should be integers")
        group = self.group
        if to_j <= from_i:
            return group.identity
        else:
            r = tuple(self.array_form[from_i: to_j])
            return group.dtype(r)

    def substituted_word(self, from_i, to_j, by):
        """
        Returns the associative word obtained by replacing the subword of
        `self` that begins at position `from_i` and ends at position `to_j - 1`
        by the associative word `by`. `from_i` and `to_j` must be positive
        integers, indexing is done with origin 0. In other words,
        `w.substituted_word(w, from_i, to_j, by)` is the product of the three
        words: `w.subword(0, from_i)`, `by`, and
        `w.subword(to_j len(w))`.

        See Also
        ========

        eliminate_word

        """
        lw = len(self)
        if from_i >= to_j or from_i > lw or to_j > lw:
            raise ValueError("values should be within bounds")

        # otherwise there are four possibilities

        # first if from=1 and to=lw then
        if from_i == 0 and to_j == lw:
            return by
        elif from_i == 0:  # second if from_i=1 (and to_j < lw) then
            return by*self.subword(to_j, lw)
        elif to_j == lw:   # third if to_j=1 (and from_i > 1) then
            return self.subword(0, from_i)*by
        else:              # finally
            return self.subword(0, from_i)*by*self.subword(to_j, lw)

    def is_cyclically_reduced(self):
        r"""Returns whether the word is cyclically reduced or not.
        A word is cyclically reduced if by forming the cycle of the
        word, the word is not reduced, i.e a word w = `a_1 ... a_n`
        is called cyclically reduced if `a_1 \ne a_n^{-1}`.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> F, x, y = free_group("x, y")
        >>> (x**2*y**-1*x**-1).is_cyclically_reduced()
        False
        >>> (y*x**2*y**2).is_cyclically_reduced()
        True

        """
        if not self:
            return True
        return self[0] != self[-1]**-1

    def identity_cyclic_reduction(self):
        """Return a unique cyclically reduced version of the word.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> F, x, y = free_group("x, y")
        >>> (x**2*y**2*x**-1).identity_cyclic_reduction()
        x*y**2
        >>> (x**-3*y**-1*x**5).identity_cyclic_reduction()
        x**2*y**-1

        References
        ==========

        .. [1] https://planetmath.org/cyclicallyreduced

        """
        word = self.copy()
        group = self.group
        while not word.is_cyclically_reduced():
            exp1 = word.exponent_syllable(0)
            exp2 = word.exponent_syllable(-1)
            r = exp1 + exp2
            if r == 0:
                rep = word.array_form[1: word.number_syllables() - 1]
            else:
                rep = ((word.generator_syllable(0), exp1 + exp2),) + \
                        word.array_form[1: word.number_syllables() - 1]
            word = group.dtype(rep)
        return word

    def cyclic_reduction(self, removed=False):
        """Return a cyclically reduced version of the word. Unlike
        `identity_cyclic_reduction`, this will not cyclically permute
        the reduced word - just remove the "unreduced" bits on either
        side of it. Compare the examples with those of
        `identity_cyclic_reduction`.

        When `removed` is `True`, return a tuple `(word, r)` where
        self `r` is such that before the reduction the word was either
        `r*word*r**-1`.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> F, x, y = free_group("x, y")
        >>> (x**2*y**2*x**-1).cyclic_reduction()
        x*y**2
        >>> (x**-3*y**-1*x**5).cyclic_reduction()
        y**-1*x**2
        >>> (x**-3*y**-1*x**5).cyclic_reduction(removed=True)
        (y**-1*x**2, x**-3)

        """
        word = self.copy()
        g = self.group.identity
        while not word.is_cyclically_reduced():
            exp1 = abs(word.exponent_syllable(0))
            exp2 = abs(word.exponent_syllable(-1))
            exp = min(exp1, exp2)
            start = word[0]**abs(exp)
            end = word[-1]**abs(exp)
            word = start**-1*word*end**-1
            g = g*start
        if removed:
            return word, g
        return word

    def power_of(self, other):
        '''
        Check if `self == other**n` for some integer n.

        Examples
        ========

        >>> from sympy.combinatorics import free_group
        >>> F, x, y = free_group("x, y")
        >>> ((x*y)**2).power_of(x*y)
        True
        >>> (x**-3*y**-2*x**3).power_of(x**-3*y*x**3)
        True

        '''
        if self.is_identity:
            return True

        l = len(other)
        if l == 1:
            # self has to be a power of one generator
            gens = self.contains_generators()
            s = other in gens or other**-1 in gens
            return len(gens) == 1 and s

        # if self is not cyclically reduced and it is a power of other,
        # other isn't cyclically reduced and the parts removed during
        # their reduction must be equal
        reduced, r1 = self.cyclic_reduction(removed=True)
        if not r1.is_identity:
            other, r2 = other.cyclic_reduction(removed=True)
            if r1 == r2:
                return reduced.power_of(other)
            return False

        if len(self) < l or len(self) % l:
            return False

        prefix = self.subword(0, l)
        if prefix == other or prefix**-1 == other:
            rest = self.subword(l, len(self))
            return rest.power_of(other)
        return False


def letter_form_to_array_form(array_form, group):
    """
    This method converts a list given with possible repetitions of elements in
    it. It returns a new list such that repetitions of consecutive elements is
    removed and replace with a tuple element of size two such that the first
    index contains `value` and the second index contains the number of
    consecutive repetitions of `value`.

    """
    a = list(array_form[:])
    new_array = []
    n = 1
    symbols = group.symbols
    for i in range(len(a)):
        if i == len(a) - 1:
            if a[i] == a[i - 1]:
                if (-a[i]) in symbols:
                    new_array.append((-a[i], -n))
                else:
                    new_array.append((a[i], n))
            else:
                if (-a[i]) in symbols:
                    new_array.append((-a[i], -1))
                else:
                    new_array.append((a[i], 1))
            return new_array
        elif a[i] == a[i + 1]:
            n += 1
        else:
            if (-a[i]) in symbols:
                new_array.append((-a[i], -n))
            else:
                new_array.append((a[i], n))
            n = 1


def zero_mul_simp(l, index):
    """Used to combine two reduced words."""
    while index >=0 and index < len(l) - 1 and l[index][0] == l[index + 1][0]:
        exp = l[index][1] + l[index + 1][1]
        base = l[index][0]
        l[index] = (base, exp)
        del l[index + 1]
        if l[index][1] == 0:
            del l[index]
            index -= 1