Spaces:
Sleeping
Sleeping
File size: 15,852 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
import tempfile
from sympy.core.numbers import pi, Rational
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.trigonometric import (cos, sin, sinc)
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.assumptions import assuming, Q
from sympy.external import import_module
from sympy.printing.codeprinter import ccode
from sympy.codegen.matrix_nodes import MatrixSolve
from sympy.codegen.cfunctions import log2, exp2, expm1, log1p
from sympy.codegen.numpy_nodes import logaddexp, logaddexp2
from sympy.codegen.scipy_nodes import cosm1, powm1
from sympy.codegen.rewriting import (
optimize, cosm1_opt, log2_opt, exp2_opt, expm1_opt, log1p_opt, powm1_opt, optims_c99,
create_expand_pow_optimization, matinv_opt, logaddexp_opt, logaddexp2_opt,
optims_numpy, optims_scipy, sinc_opts, FuncMinusOneOptim
)
from sympy.testing.pytest import XFAIL, skip
from sympy.utilities import lambdify
from sympy.utilities._compilation import compile_link_import_strings, has_c
from sympy.utilities._compilation.util import may_xfail
cython = import_module('cython')
numpy = import_module('numpy')
scipy = import_module('scipy')
def test_log2_opt():
x = Symbol('x')
expr1 = 7*log(3*x + 5)/(log(2))
opt1 = optimize(expr1, [log2_opt])
assert opt1 == 7*log2(3*x + 5)
assert opt1.rewrite(log) == expr1
expr2 = 3*log(5*x + 7)/(13*log(2))
opt2 = optimize(expr2, [log2_opt])
assert opt2 == 3*log2(5*x + 7)/13
assert opt2.rewrite(log) == expr2
expr3 = log(x)/log(2)
opt3 = optimize(expr3, [log2_opt])
assert opt3 == log2(x)
assert opt3.rewrite(log) == expr3
expr4 = log(x)/log(2) + log(x+1)
opt4 = optimize(expr4, [log2_opt])
assert opt4 == log2(x) + log(2)*log2(x+1)
assert opt4.rewrite(log) == expr4
expr5 = log(17)
opt5 = optimize(expr5, [log2_opt])
assert opt5 == expr5
expr6 = log(x + 3)/log(2)
opt6 = optimize(expr6, [log2_opt])
assert str(opt6) == 'log2(x + 3)'
assert opt6.rewrite(log) == expr6
def test_exp2_opt():
x = Symbol('x')
expr1 = 1 + 2**x
opt1 = optimize(expr1, [exp2_opt])
assert opt1 == 1 + exp2(x)
assert opt1.rewrite(Pow) == expr1
expr2 = 1 + 3**x
assert expr2 == optimize(expr2, [exp2_opt])
def test_expm1_opt():
x = Symbol('x')
expr1 = exp(x) - 1
opt1 = optimize(expr1, [expm1_opt])
assert expm1(x) - opt1 == 0
assert opt1.rewrite(exp) == expr1
expr2 = 3*exp(x) - 3
opt2 = optimize(expr2, [expm1_opt])
assert 3*expm1(x) == opt2
assert opt2.rewrite(exp) == expr2
expr3 = 3*exp(x) - 5
opt3 = optimize(expr3, [expm1_opt])
assert 3*expm1(x) - 2 == opt3
assert opt3.rewrite(exp) == expr3
expm1_opt_non_opportunistic = FuncMinusOneOptim(exp, expm1, opportunistic=False)
assert expr3 == optimize(expr3, [expm1_opt_non_opportunistic])
assert opt1 == optimize(expr1, [expm1_opt_non_opportunistic])
assert opt2 == optimize(expr2, [expm1_opt_non_opportunistic])
expr4 = 3*exp(x) + log(x) - 3
opt4 = optimize(expr4, [expm1_opt])
assert 3*expm1(x) + log(x) == opt4
assert opt4.rewrite(exp) == expr4
expr5 = 3*exp(2*x) - 3
opt5 = optimize(expr5, [expm1_opt])
assert 3*expm1(2*x) == opt5
assert opt5.rewrite(exp) == expr5
expr6 = (2*exp(x) + 1)/(exp(x) + 1) + 1
opt6 = optimize(expr6, [expm1_opt])
assert opt6.count_ops() <= expr6.count_ops()
def ev(e):
return e.subs(x, 3).evalf()
assert abs(ev(expr6) - ev(opt6)) < 1e-15
y = Symbol('y')
expr7 = (2*exp(x) - 1)/(1 - exp(y)) - 1/(1-exp(y))
opt7 = optimize(expr7, [expm1_opt])
assert -2*expm1(x)/expm1(y) == opt7
assert (opt7.rewrite(exp) - expr7).factor() == 0
expr8 = (1+exp(x))**2 - 4
opt8 = optimize(expr8, [expm1_opt])
tgt8a = (exp(x) + 3)*expm1(x)
tgt8b = 2*expm1(x) + expm1(2*x)
# Both tgt8a & tgt8b seem to give full precision (~16 digits for double)
# for x=1e-7 (compare with expr8 which only achieves ~8 significant digits).
# If we can show that either tgt8a or tgt8b is preferable, we can
# change this test to ensure the preferable version is returned.
assert (tgt8a - tgt8b).rewrite(exp).factor() == 0
assert opt8 in (tgt8a, tgt8b)
assert (opt8.rewrite(exp) - expr8).factor() == 0
expr9 = sin(expr8)
opt9 = optimize(expr9, [expm1_opt])
tgt9a = sin(tgt8a)
tgt9b = sin(tgt8b)
assert opt9 in (tgt9a, tgt9b)
assert (opt9.rewrite(exp) - expr9.rewrite(exp)).factor().is_zero
def test_expm1_two_exp_terms():
x, y = map(Symbol, 'x y'.split())
expr1 = exp(x) + exp(y) - 2
opt1 = optimize(expr1, [expm1_opt])
assert opt1 == expm1(x) + expm1(y)
def test_cosm1_opt():
x = Symbol('x')
expr1 = cos(x) - 1
opt1 = optimize(expr1, [cosm1_opt])
assert cosm1(x) - opt1 == 0
assert opt1.rewrite(cos) == expr1
expr2 = 3*cos(x) - 3
opt2 = optimize(expr2, [cosm1_opt])
assert 3*cosm1(x) == opt2
assert opt2.rewrite(cos) == expr2
expr3 = 3*cos(x) - 5
opt3 = optimize(expr3, [cosm1_opt])
assert 3*cosm1(x) - 2 == opt3
assert opt3.rewrite(cos) == expr3
cosm1_opt_non_opportunistic = FuncMinusOneOptim(cos, cosm1, opportunistic=False)
assert expr3 == optimize(expr3, [cosm1_opt_non_opportunistic])
assert opt1 == optimize(expr1, [cosm1_opt_non_opportunistic])
assert opt2 == optimize(expr2, [cosm1_opt_non_opportunistic])
expr4 = 3*cos(x) + log(x) - 3
opt4 = optimize(expr4, [cosm1_opt])
assert 3*cosm1(x) + log(x) == opt4
assert opt4.rewrite(cos) == expr4
expr5 = 3*cos(2*x) - 3
opt5 = optimize(expr5, [cosm1_opt])
assert 3*cosm1(2*x) == opt5
assert opt5.rewrite(cos) == expr5
expr6 = 2 - 2*cos(x)
opt6 = optimize(expr6, [cosm1_opt])
assert -2*cosm1(x) == opt6
assert opt6.rewrite(cos) == expr6
def test_cosm1_two_cos_terms():
x, y = map(Symbol, 'x y'.split())
expr1 = cos(x) + cos(y) - 2
opt1 = optimize(expr1, [cosm1_opt])
assert opt1 == cosm1(x) + cosm1(y)
def test_expm1_cosm1_mixed():
x = Symbol('x')
expr1 = exp(x) + cos(x) - 2
opt1 = optimize(expr1, [expm1_opt, cosm1_opt])
assert opt1 == cosm1(x) + expm1(x)
def _check_num_lambdify(expr, opt, val_subs, approx_ref, lambdify_kw=None, poorness=1e10):
""" poorness=1e10 signifies that `expr` loses precision of at least ten decimal digits. """
num_ref = expr.subs(val_subs).evalf()
eps = numpy.finfo(numpy.float64).eps
assert abs(num_ref - approx_ref) < approx_ref*eps
f1 = lambdify(list(val_subs.keys()), opt, **(lambdify_kw or {}))
args_float = tuple(map(float, val_subs.values()))
num_err1 = abs(f1(*args_float) - approx_ref)
assert num_err1 < abs(num_ref*eps)
f2 = lambdify(list(val_subs.keys()), expr, **(lambdify_kw or {}))
num_err2 = abs(f2(*args_float) - approx_ref)
assert num_err2 > abs(num_ref*eps*poorness) # this only ensures that the *test* works as intended
def test_cosm1_apart():
x = Symbol('x')
expr1 = 1/cos(x) - 1
opt1 = optimize(expr1, [cosm1_opt])
assert opt1 == -cosm1(x)/cos(x)
if scipy:
_check_num_lambdify(expr1, opt1, {x: S(10)**-30}, 5e-61, lambdify_kw={"modules": 'scipy'})
expr2 = 2/cos(x) - 2
opt2 = optimize(expr2, optims_scipy)
assert opt2 == -2*cosm1(x)/cos(x)
if scipy:
_check_num_lambdify(expr2, opt2, {x: S(10)**-30}, 1e-60, lambdify_kw={"modules": 'scipy'})
expr3 = pi/cos(3*x) - pi
opt3 = optimize(expr3, [cosm1_opt])
assert opt3 == -pi*cosm1(3*x)/cos(3*x)
if scipy:
_check_num_lambdify(expr3, opt3, {x: S(10)**-30/3}, float(5e-61*pi), lambdify_kw={"modules": 'scipy'})
def test_powm1():
args = x, y = map(Symbol, "xy")
expr1 = x**y - 1
opt1 = optimize(expr1, [powm1_opt])
assert opt1 == powm1(x, y)
for arg in args:
assert expr1.diff(arg) == opt1.diff(arg)
if scipy and tuple(map(int, scipy.version.version.split('.')[:3])) >= (1, 10, 0):
subs1_a = {x: Rational(*(1.0+1e-13).as_integer_ratio()), y: pi}
ref1_f64_a = 3.139081648208105e-13
_check_num_lambdify(expr1, opt1, subs1_a, ref1_f64_a, lambdify_kw={"modules": 'scipy'}, poorness=10**11)
subs1_b = {x: pi, y: Rational(*(1e-10).as_integer_ratio())}
ref1_f64_b = 1.1447298859149205e-10
_check_num_lambdify(expr1, opt1, subs1_b, ref1_f64_b, lambdify_kw={"modules": 'scipy'}, poorness=10**9)
def test_log1p_opt():
x = Symbol('x')
expr1 = log(x + 1)
opt1 = optimize(expr1, [log1p_opt])
assert log1p(x) - opt1 == 0
assert opt1.rewrite(log) == expr1
expr2 = log(3*x + 3)
opt2 = optimize(expr2, [log1p_opt])
assert log1p(x) + log(3) == opt2
assert (opt2.rewrite(log) - expr2).simplify() == 0
expr3 = log(2*x + 1)
opt3 = optimize(expr3, [log1p_opt])
assert log1p(2*x) - opt3 == 0
assert opt3.rewrite(log) == expr3
expr4 = log(x+3)
opt4 = optimize(expr4, [log1p_opt])
assert str(opt4) == 'log(x + 3)'
def test_optims_c99():
x = Symbol('x')
expr1 = 2**x + log(x)/log(2) + log(x + 1) + exp(x) - 1
opt1 = optimize(expr1, optims_c99).simplify()
assert opt1 == exp2(x) + log2(x) + log1p(x) + expm1(x)
assert opt1.rewrite(exp).rewrite(log).rewrite(Pow) == expr1
expr2 = log(x)/log(2) + log(x + 1)
opt2 = optimize(expr2, optims_c99)
assert opt2 == log2(x) + log1p(x)
assert opt2.rewrite(log) == expr2
expr3 = log(x)/log(2) + log(17*x + 17)
opt3 = optimize(expr3, optims_c99)
delta3 = opt3 - (log2(x) + log(17) + log1p(x))
assert delta3 == 0
assert (opt3.rewrite(log) - expr3).simplify() == 0
expr4 = 2**x + 3*log(5*x + 7)/(13*log(2)) + 11*exp(x) - 11 + log(17*x + 17)
opt4 = optimize(expr4, optims_c99).simplify()
delta4 = opt4 - (exp2(x) + 3*log2(5*x + 7)/13 + 11*expm1(x) + log(17) + log1p(x))
assert delta4 == 0
assert (opt4.rewrite(exp).rewrite(log).rewrite(Pow) - expr4).simplify() == 0
expr5 = 3*exp(2*x) - 3
opt5 = optimize(expr5, optims_c99)
delta5 = opt5 - 3*expm1(2*x)
assert delta5 == 0
assert opt5.rewrite(exp) == expr5
expr6 = exp(2*x) - 3
opt6 = optimize(expr6, optims_c99)
assert opt6 in (expm1(2*x) - 2, expr6) # expm1(2*x) - 2 is not better or worse
expr7 = log(3*x + 3)
opt7 = optimize(expr7, optims_c99)
delta7 = opt7 - (log(3) + log1p(x))
assert delta7 == 0
assert (opt7.rewrite(log) - expr7).simplify() == 0
expr8 = log(2*x + 3)
opt8 = optimize(expr8, optims_c99)
assert opt8 == expr8
def test_create_expand_pow_optimization():
cc = lambda x: ccode(
optimize(x, [create_expand_pow_optimization(4)]))
x = Symbol('x')
assert cc(x**4) == 'x*x*x*x'
assert cc(x**4 + x**2) == 'x*x + x*x*x*x'
assert cc(x**5 + x**4) == 'pow(x, 5) + x*x*x*x'
assert cc(sin(x)**4) == 'pow(sin(x), 4)'
# gh issue 15335
assert cc(x**(-4)) == '1.0/(x*x*x*x)'
assert cc(x**(-5)) == 'pow(x, -5)'
assert cc(-x**4) == '-(x*x*x*x)'
assert cc(x**4 - x**2) == '-(x*x) + x*x*x*x'
i = Symbol('i', integer=True)
assert cc(x**i - x**2) == 'pow(x, i) - (x*x)'
y = Symbol('y', real=True)
assert cc(Abs(exp(y**4))) == "exp(y*y*y*y)"
# gh issue 20753
cc2 = lambda x: ccode(optimize(x, [create_expand_pow_optimization(
4, base_req=lambda b: b.is_Function)]))
assert cc2(x**3 + sin(x)**3) == "pow(x, 3) + sin(x)*sin(x)*sin(x)"
def test_matsolve():
n = Symbol('n', integer=True)
A = MatrixSymbol('A', n, n)
x = MatrixSymbol('x', n, 1)
with assuming(Q.fullrank(A)):
assert optimize(A**(-1) * x, [matinv_opt]) == MatrixSolve(A, x)
assert optimize(A**(-1) * x + x, [matinv_opt]) == MatrixSolve(A, x) + x
def test_logaddexp_opt():
x, y = map(Symbol, 'x y'.split())
expr1 = log(exp(x) + exp(y))
opt1 = optimize(expr1, [logaddexp_opt])
assert logaddexp(x, y) - opt1 == 0
assert logaddexp(y, x) - opt1 == 0
assert opt1.rewrite(log) == expr1
def test_logaddexp2_opt():
x, y = map(Symbol, 'x y'.split())
expr1 = log(2**x + 2**y)/log(2)
opt1 = optimize(expr1, [logaddexp2_opt])
assert logaddexp2(x, y) - opt1 == 0
assert logaddexp2(y, x) - opt1 == 0
assert opt1.rewrite(log) == expr1
def test_sinc_opts():
def check(d):
for k, v in d.items():
assert optimize(k, sinc_opts) == v
x = Symbol('x')
check({
sin(x)/x : sinc(x),
sin(2*x)/(2*x) : sinc(2*x),
sin(3*x)/x : 3*sinc(3*x),
x*sin(x) : x*sin(x)
})
y = Symbol('y')
check({
sin(x*y)/(x*y) : sinc(x*y),
y*sin(x/y)/x : sinc(x/y),
sin(sin(x))/sin(x) : sinc(sin(x)),
sin(3*sin(x))/sin(x) : 3*sinc(3*sin(x)),
sin(x)/y : sin(x)/y
})
def test_optims_numpy():
def check(d):
for k, v in d.items():
assert optimize(k, optims_numpy) == v
x = Symbol('x')
check({
sin(2*x)/(2*x) + exp(2*x) - 1: sinc(2*x) + expm1(2*x),
log(x+3)/log(2) + log(x**2 + 1): log1p(x**2) + log2(x+3)
})
@XFAIL # room for improvement, ideally this test case should pass.
def test_optims_numpy_TODO():
def check(d):
for k, v in d.items():
assert optimize(k, optims_numpy) == v
x, y = map(Symbol, 'x y'.split())
check({
log(x*y)*sin(x*y)*log(x*y+1)/(log(2)*x*y): log2(x*y)*sinc(x*y)*log1p(x*y),
exp(x*sin(y)/y) - 1: expm1(x*sinc(y))
})
@may_xfail
def test_compiled_ccode_with_rewriting():
if not cython:
skip("cython not installed.")
if not has_c():
skip("No C compiler found.")
x = Symbol('x')
about_two = 2**(58/S(117))*3**(97/S(117))*5**(4/S(39))*7**(92/S(117))/S(30)*pi
# about_two: 1.999999999999581826
unchanged = 2*exp(x) - about_two
xval = S(10)**-11
ref = unchanged.subs(x, xval).n(19) # 2.0418173913673213e-11
rewritten = optimize(2*exp(x) - about_two, [expm1_opt])
# Unfortunately, we need to call ``.n()`` on our expressions before we hand them
# to ``ccode``, and we need to request a large number of significant digits.
# In this test, results converged for double precision when the following number
# of significant digits were chosen:
NUMBER_OF_DIGITS = 25 # TODO: this should ideally be automatically handled.
func_c = '''
#include <math.h>
double func_unchanged(double x) {
return %(unchanged)s;
}
double func_rewritten(double x) {
return %(rewritten)s;
}
''' % {"unchanged": ccode(unchanged.n(NUMBER_OF_DIGITS)),
"rewritten": ccode(rewritten.n(NUMBER_OF_DIGITS))}
func_pyx = '''
#cython: language_level=3
cdef extern double func_unchanged(double)
cdef extern double func_rewritten(double)
def py_unchanged(x):
return func_unchanged(x)
def py_rewritten(x):
return func_rewritten(x)
'''
with tempfile.TemporaryDirectory() as folder:
mod, info = compile_link_import_strings(
[('func.c', func_c), ('_func.pyx', func_pyx)],
build_dir=folder, compile_kwargs={"std": 'c99'}
)
err_rewritten = abs(mod.py_rewritten(1e-11) - ref)
err_unchanged = abs(mod.py_unchanged(1e-11) - ref)
assert 1e-27 < err_rewritten < 1e-25 # highly accurate.
assert 1e-19 < err_unchanged < 1e-16 # quite poor.
# Tolerances used above were determined as follows:
# >>> no_opt = unchanged.subs(x, xval.evalf()).evalf()
# >>> with_opt = rewritten.n(25).subs(x, 1e-11).evalf()
# >>> with_opt - ref, no_opt - ref
# (1.1536301877952077e-26, 1.6547074214222335e-18)
|