File size: 15,852 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import tempfile
from sympy.core.numbers import pi, Rational
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.trigonometric import (cos, sin, sinc)
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.assumptions import assuming, Q
from sympy.external import import_module
from sympy.printing.codeprinter import ccode
from sympy.codegen.matrix_nodes import MatrixSolve
from sympy.codegen.cfunctions import log2, exp2, expm1, log1p
from sympy.codegen.numpy_nodes import logaddexp, logaddexp2
from sympy.codegen.scipy_nodes import cosm1, powm1
from sympy.codegen.rewriting import (
    optimize, cosm1_opt, log2_opt, exp2_opt, expm1_opt, log1p_opt, powm1_opt, optims_c99,
    create_expand_pow_optimization, matinv_opt, logaddexp_opt, logaddexp2_opt,
    optims_numpy, optims_scipy, sinc_opts, FuncMinusOneOptim
)
from sympy.testing.pytest import XFAIL, skip
from sympy.utilities import lambdify
from sympy.utilities._compilation import compile_link_import_strings, has_c
from sympy.utilities._compilation.util import may_xfail

cython = import_module('cython')
numpy = import_module('numpy')
scipy = import_module('scipy')


def test_log2_opt():
    x = Symbol('x')
    expr1 = 7*log(3*x + 5)/(log(2))
    opt1 = optimize(expr1, [log2_opt])
    assert opt1 == 7*log2(3*x + 5)
    assert opt1.rewrite(log) == expr1

    expr2 = 3*log(5*x + 7)/(13*log(2))
    opt2 = optimize(expr2, [log2_opt])
    assert opt2 == 3*log2(5*x + 7)/13
    assert opt2.rewrite(log) == expr2

    expr3 = log(x)/log(2)
    opt3 = optimize(expr3, [log2_opt])
    assert opt3 == log2(x)
    assert opt3.rewrite(log) == expr3

    expr4 = log(x)/log(2) + log(x+1)
    opt4 = optimize(expr4, [log2_opt])
    assert opt4 == log2(x) + log(2)*log2(x+1)
    assert opt4.rewrite(log) == expr4

    expr5 = log(17)
    opt5 = optimize(expr5, [log2_opt])
    assert opt5 == expr5

    expr6 = log(x + 3)/log(2)
    opt6 = optimize(expr6, [log2_opt])
    assert str(opt6) == 'log2(x + 3)'
    assert opt6.rewrite(log) == expr6


def test_exp2_opt():
    x = Symbol('x')
    expr1 = 1 + 2**x
    opt1 = optimize(expr1, [exp2_opt])
    assert opt1 == 1 + exp2(x)
    assert opt1.rewrite(Pow) == expr1

    expr2 = 1 + 3**x
    assert expr2 == optimize(expr2, [exp2_opt])


def test_expm1_opt():
    x = Symbol('x')

    expr1 = exp(x) - 1
    opt1 = optimize(expr1, [expm1_opt])
    assert expm1(x) - opt1 == 0
    assert opt1.rewrite(exp) == expr1

    expr2 = 3*exp(x) - 3
    opt2 = optimize(expr2, [expm1_opt])
    assert 3*expm1(x) == opt2
    assert opt2.rewrite(exp) == expr2

    expr3 = 3*exp(x) - 5
    opt3 = optimize(expr3, [expm1_opt])
    assert 3*expm1(x) - 2 == opt3
    assert opt3.rewrite(exp) == expr3
    expm1_opt_non_opportunistic = FuncMinusOneOptim(exp, expm1, opportunistic=False)
    assert expr3 == optimize(expr3, [expm1_opt_non_opportunistic])
    assert opt1 == optimize(expr1, [expm1_opt_non_opportunistic])
    assert opt2 == optimize(expr2, [expm1_opt_non_opportunistic])

    expr4 = 3*exp(x) + log(x) - 3
    opt4 = optimize(expr4, [expm1_opt])
    assert 3*expm1(x) + log(x) == opt4
    assert opt4.rewrite(exp) == expr4

    expr5 = 3*exp(2*x) - 3
    opt5 = optimize(expr5, [expm1_opt])
    assert 3*expm1(2*x) == opt5
    assert opt5.rewrite(exp) == expr5

    expr6 = (2*exp(x) + 1)/(exp(x) + 1) + 1
    opt6 = optimize(expr6, [expm1_opt])
    assert opt6.count_ops() <= expr6.count_ops()

    def ev(e):
        return e.subs(x, 3).evalf()
    assert abs(ev(expr6) - ev(opt6)) < 1e-15

    y = Symbol('y')
    expr7 = (2*exp(x) - 1)/(1 - exp(y)) - 1/(1-exp(y))
    opt7 = optimize(expr7, [expm1_opt])
    assert -2*expm1(x)/expm1(y) == opt7
    assert (opt7.rewrite(exp) - expr7).factor() == 0

    expr8 = (1+exp(x))**2 - 4
    opt8 = optimize(expr8, [expm1_opt])
    tgt8a = (exp(x) + 3)*expm1(x)
    tgt8b = 2*expm1(x) + expm1(2*x)
    # Both tgt8a & tgt8b seem to give full precision (~16 digits for double)
    # for x=1e-7 (compare with expr8 which only achieves ~8 significant digits).
    # If we can show that either tgt8a or tgt8b is preferable, we can
    # change this test to ensure the preferable version is returned.
    assert (tgt8a - tgt8b).rewrite(exp).factor() == 0
    assert opt8 in (tgt8a, tgt8b)
    assert (opt8.rewrite(exp) - expr8).factor() == 0

    expr9 = sin(expr8)
    opt9 = optimize(expr9, [expm1_opt])
    tgt9a = sin(tgt8a)
    tgt9b = sin(tgt8b)
    assert opt9 in (tgt9a, tgt9b)
    assert (opt9.rewrite(exp) - expr9.rewrite(exp)).factor().is_zero


def test_expm1_two_exp_terms():
    x, y = map(Symbol, 'x y'.split())
    expr1 = exp(x) + exp(y) - 2
    opt1 = optimize(expr1, [expm1_opt])
    assert opt1 == expm1(x) + expm1(y)


def test_cosm1_opt():
    x = Symbol('x')

    expr1 = cos(x) - 1
    opt1 = optimize(expr1, [cosm1_opt])
    assert cosm1(x) - opt1 == 0
    assert opt1.rewrite(cos) == expr1

    expr2 = 3*cos(x) - 3
    opt2 = optimize(expr2, [cosm1_opt])
    assert 3*cosm1(x) == opt2
    assert opt2.rewrite(cos) == expr2

    expr3 = 3*cos(x) - 5
    opt3 = optimize(expr3, [cosm1_opt])
    assert 3*cosm1(x) - 2 == opt3
    assert opt3.rewrite(cos) == expr3
    cosm1_opt_non_opportunistic = FuncMinusOneOptim(cos, cosm1, opportunistic=False)
    assert expr3 == optimize(expr3, [cosm1_opt_non_opportunistic])
    assert opt1 == optimize(expr1, [cosm1_opt_non_opportunistic])
    assert opt2 == optimize(expr2, [cosm1_opt_non_opportunistic])

    expr4 = 3*cos(x) + log(x) - 3
    opt4 = optimize(expr4, [cosm1_opt])
    assert 3*cosm1(x) + log(x) == opt4
    assert opt4.rewrite(cos) == expr4

    expr5 = 3*cos(2*x) - 3
    opt5 = optimize(expr5, [cosm1_opt])
    assert 3*cosm1(2*x) == opt5
    assert opt5.rewrite(cos) == expr5

    expr6 = 2 - 2*cos(x)
    opt6 = optimize(expr6, [cosm1_opt])
    assert -2*cosm1(x) == opt6
    assert opt6.rewrite(cos) == expr6


def test_cosm1_two_cos_terms():
    x, y = map(Symbol, 'x y'.split())
    expr1 = cos(x) + cos(y) - 2
    opt1 = optimize(expr1, [cosm1_opt])
    assert opt1 == cosm1(x) + cosm1(y)


def test_expm1_cosm1_mixed():
    x = Symbol('x')
    expr1 = exp(x) + cos(x) - 2
    opt1 = optimize(expr1, [expm1_opt, cosm1_opt])
    assert opt1 == cosm1(x) + expm1(x)


def _check_num_lambdify(expr, opt, val_subs, approx_ref, lambdify_kw=None, poorness=1e10):
    """ poorness=1e10 signifies that `expr` loses precision of at least ten decimal digits. """
    num_ref = expr.subs(val_subs).evalf()
    eps = numpy.finfo(numpy.float64).eps
    assert abs(num_ref - approx_ref) < approx_ref*eps
    f1 = lambdify(list(val_subs.keys()), opt, **(lambdify_kw or {}))
    args_float = tuple(map(float, val_subs.values()))
    num_err1 = abs(f1(*args_float) - approx_ref)
    assert num_err1 < abs(num_ref*eps)
    f2 = lambdify(list(val_subs.keys()), expr, **(lambdify_kw or {}))
    num_err2 = abs(f2(*args_float) - approx_ref)
    assert num_err2 > abs(num_ref*eps*poorness)   # this only ensures that the *test* works as intended


def test_cosm1_apart():
    x = Symbol('x')

    expr1 = 1/cos(x) - 1
    opt1 = optimize(expr1, [cosm1_opt])
    assert opt1 == -cosm1(x)/cos(x)
    if scipy:
        _check_num_lambdify(expr1, opt1, {x: S(10)**-30}, 5e-61, lambdify_kw={"modules": 'scipy'})

    expr2 = 2/cos(x) - 2
    opt2 = optimize(expr2, optims_scipy)
    assert opt2 == -2*cosm1(x)/cos(x)
    if scipy:
        _check_num_lambdify(expr2, opt2, {x: S(10)**-30}, 1e-60, lambdify_kw={"modules": 'scipy'})

    expr3 = pi/cos(3*x) - pi
    opt3 = optimize(expr3, [cosm1_opt])
    assert opt3 == -pi*cosm1(3*x)/cos(3*x)
    if scipy:
        _check_num_lambdify(expr3, opt3, {x: S(10)**-30/3}, float(5e-61*pi), lambdify_kw={"modules": 'scipy'})


def test_powm1():
    args = x, y = map(Symbol, "xy")

    expr1 = x**y - 1
    opt1 = optimize(expr1, [powm1_opt])
    assert opt1 == powm1(x, y)
    for arg in args:
        assert expr1.diff(arg) == opt1.diff(arg)
    if scipy and tuple(map(int, scipy.version.version.split('.')[:3])) >= (1, 10, 0):
        subs1_a = {x: Rational(*(1.0+1e-13).as_integer_ratio()), y: pi}
        ref1_f64_a = 3.139081648208105e-13
        _check_num_lambdify(expr1, opt1, subs1_a, ref1_f64_a, lambdify_kw={"modules": 'scipy'}, poorness=10**11)

        subs1_b = {x: pi, y: Rational(*(1e-10).as_integer_ratio())}
        ref1_f64_b = 1.1447298859149205e-10
        _check_num_lambdify(expr1, opt1, subs1_b, ref1_f64_b, lambdify_kw={"modules": 'scipy'}, poorness=10**9)


def test_log1p_opt():
    x = Symbol('x')
    expr1 = log(x + 1)
    opt1 = optimize(expr1, [log1p_opt])
    assert log1p(x) - opt1 == 0
    assert opt1.rewrite(log) == expr1

    expr2 = log(3*x + 3)
    opt2 = optimize(expr2, [log1p_opt])
    assert log1p(x) + log(3) == opt2
    assert (opt2.rewrite(log) - expr2).simplify() == 0

    expr3 = log(2*x + 1)
    opt3 = optimize(expr3, [log1p_opt])
    assert log1p(2*x) - opt3 == 0
    assert opt3.rewrite(log) == expr3

    expr4 = log(x+3)
    opt4 = optimize(expr4, [log1p_opt])
    assert str(opt4) == 'log(x + 3)'


def test_optims_c99():
    x = Symbol('x')

    expr1 = 2**x + log(x)/log(2) + log(x + 1) + exp(x) - 1
    opt1 = optimize(expr1, optims_c99).simplify()
    assert opt1 == exp2(x) + log2(x) + log1p(x) + expm1(x)
    assert opt1.rewrite(exp).rewrite(log).rewrite(Pow) == expr1

    expr2 = log(x)/log(2) + log(x + 1)
    opt2 = optimize(expr2, optims_c99)
    assert opt2 == log2(x) + log1p(x)
    assert opt2.rewrite(log) == expr2

    expr3 = log(x)/log(2) + log(17*x + 17)
    opt3 = optimize(expr3, optims_c99)
    delta3 = opt3 - (log2(x) + log(17) + log1p(x))
    assert delta3 == 0
    assert (opt3.rewrite(log) - expr3).simplify() == 0

    expr4 = 2**x + 3*log(5*x + 7)/(13*log(2)) + 11*exp(x) - 11 + log(17*x + 17)
    opt4 = optimize(expr4, optims_c99).simplify()
    delta4 = opt4 - (exp2(x) + 3*log2(5*x + 7)/13 + 11*expm1(x) + log(17) + log1p(x))
    assert delta4 == 0
    assert (opt4.rewrite(exp).rewrite(log).rewrite(Pow) - expr4).simplify() == 0

    expr5 = 3*exp(2*x) - 3
    opt5 = optimize(expr5, optims_c99)
    delta5 = opt5 - 3*expm1(2*x)
    assert delta5 == 0
    assert opt5.rewrite(exp) == expr5

    expr6 = exp(2*x) - 3
    opt6 = optimize(expr6, optims_c99)
    assert opt6 in (expm1(2*x) - 2, expr6)  # expm1(2*x) - 2 is not better or worse

    expr7 = log(3*x + 3)
    opt7 = optimize(expr7, optims_c99)
    delta7 = opt7 - (log(3) + log1p(x))
    assert delta7 == 0
    assert (opt7.rewrite(log) - expr7).simplify() == 0

    expr8 = log(2*x + 3)
    opt8 = optimize(expr8, optims_c99)
    assert opt8 == expr8


def test_create_expand_pow_optimization():
    cc = lambda x: ccode(
        optimize(x, [create_expand_pow_optimization(4)]))
    x = Symbol('x')
    assert cc(x**4) == 'x*x*x*x'
    assert cc(x**4 + x**2) == 'x*x + x*x*x*x'
    assert cc(x**5 + x**4) == 'pow(x, 5) + x*x*x*x'
    assert cc(sin(x)**4) == 'pow(sin(x), 4)'
    # gh issue 15335
    assert cc(x**(-4)) == '1.0/(x*x*x*x)'
    assert cc(x**(-5)) == 'pow(x, -5)'
    assert cc(-x**4) == '-(x*x*x*x)'
    assert cc(x**4 - x**2) == '-(x*x) + x*x*x*x'
    i = Symbol('i', integer=True)
    assert cc(x**i - x**2) == 'pow(x, i) - (x*x)'
    y = Symbol('y', real=True)
    assert cc(Abs(exp(y**4))) == "exp(y*y*y*y)"

    # gh issue 20753
    cc2 = lambda x: ccode(optimize(x, [create_expand_pow_optimization(
        4, base_req=lambda b: b.is_Function)]))
    assert cc2(x**3 + sin(x)**3) == "pow(x, 3) + sin(x)*sin(x)*sin(x)"


def test_matsolve():
    n = Symbol('n', integer=True)
    A = MatrixSymbol('A', n, n)
    x = MatrixSymbol('x', n, 1)

    with assuming(Q.fullrank(A)):
        assert optimize(A**(-1) * x, [matinv_opt]) == MatrixSolve(A, x)
        assert optimize(A**(-1) * x + x, [matinv_opt]) == MatrixSolve(A, x) + x


def test_logaddexp_opt():
    x, y = map(Symbol, 'x y'.split())
    expr1 = log(exp(x) + exp(y))
    opt1 = optimize(expr1, [logaddexp_opt])
    assert logaddexp(x, y) - opt1 == 0
    assert logaddexp(y, x) - opt1 == 0
    assert opt1.rewrite(log) == expr1


def test_logaddexp2_opt():
    x, y = map(Symbol, 'x y'.split())
    expr1 = log(2**x + 2**y)/log(2)
    opt1 = optimize(expr1, [logaddexp2_opt])
    assert logaddexp2(x, y) - opt1 == 0
    assert logaddexp2(y, x) - opt1 == 0
    assert opt1.rewrite(log) == expr1


def test_sinc_opts():
    def check(d):
        for k, v in d.items():
            assert optimize(k, sinc_opts) == v

    x = Symbol('x')
    check({
        sin(x)/x       : sinc(x),
        sin(2*x)/(2*x) : sinc(2*x),
        sin(3*x)/x     : 3*sinc(3*x),
        x*sin(x)       : x*sin(x)
    })

    y = Symbol('y')
    check({
        sin(x*y)/(x*y)       : sinc(x*y),
        y*sin(x/y)/x         : sinc(x/y),
        sin(sin(x))/sin(x)   : sinc(sin(x)),
        sin(3*sin(x))/sin(x) : 3*sinc(3*sin(x)),
        sin(x)/y             : sin(x)/y
    })


def test_optims_numpy():
    def check(d):
        for k, v in d.items():
            assert optimize(k, optims_numpy) == v

    x = Symbol('x')
    check({
        sin(2*x)/(2*x) + exp(2*x) - 1: sinc(2*x) + expm1(2*x),
        log(x+3)/log(2) + log(x**2 + 1): log1p(x**2) + log2(x+3)
    })


@XFAIL  # room for improvement, ideally this test case should pass.
def test_optims_numpy_TODO():
    def check(d):
        for k, v in d.items():
            assert optimize(k, optims_numpy) == v

    x, y = map(Symbol, 'x y'.split())
    check({
        log(x*y)*sin(x*y)*log(x*y+1)/(log(2)*x*y): log2(x*y)*sinc(x*y)*log1p(x*y),
        exp(x*sin(y)/y) - 1: expm1(x*sinc(y))
    })


@may_xfail
def test_compiled_ccode_with_rewriting():
    if not cython:
        skip("cython not installed.")
    if not has_c():
        skip("No C compiler found.")

    x = Symbol('x')
    about_two = 2**(58/S(117))*3**(97/S(117))*5**(4/S(39))*7**(92/S(117))/S(30)*pi
    # about_two: 1.999999999999581826
    unchanged = 2*exp(x) - about_two
    xval = S(10)**-11
    ref = unchanged.subs(x, xval).n(19) # 2.0418173913673213e-11

    rewritten = optimize(2*exp(x) - about_two, [expm1_opt])

    # Unfortunately, we need to call ``.n()`` on our expressions before we hand them
    # to ``ccode``, and we need to request a large number of significant digits.
    # In this test, results converged for double precision when the following number
    # of significant digits were chosen:
    NUMBER_OF_DIGITS = 25   # TODO: this should ideally be automatically handled.

    func_c = '''
#include <math.h>

double func_unchanged(double x) {
    return %(unchanged)s;
}
double func_rewritten(double x) {
    return %(rewritten)s;
}
''' % {"unchanged": ccode(unchanged.n(NUMBER_OF_DIGITS)),
           "rewritten": ccode(rewritten.n(NUMBER_OF_DIGITS))}

    func_pyx = '''
#cython: language_level=3
cdef extern double func_unchanged(double)
cdef extern double func_rewritten(double)
def py_unchanged(x):
    return func_unchanged(x)
def py_rewritten(x):
    return func_rewritten(x)
'''
    with tempfile.TemporaryDirectory() as folder:
        mod, info = compile_link_import_strings(
            [('func.c', func_c), ('_func.pyx', func_pyx)],
            build_dir=folder, compile_kwargs={"std": 'c99'}
        )
        err_rewritten = abs(mod.py_rewritten(1e-11) - ref)
        err_unchanged = abs(mod.py_unchanged(1e-11) - ref)
        assert 1e-27 < err_rewritten < 1e-25  # highly accurate.
        assert 1e-19 < err_unchanged < 1e-16  # quite poor.

    # Tolerances used above were determined as follows:
    # >>> no_opt = unchanged.subs(x, xval.evalf()).evalf()
    # >>> with_opt = rewritten.n(25).subs(x, 1e-11).evalf()
    # >>> with_opt - ref, no_opt - ref
    # (1.1536301877952077e-26, 1.6547074214222335e-18)