File size: 11,851 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
"""
This module contains SymPy functions mathcin corresponding to special math functions in the
C standard library (since C99, also available in C++11).

The functions defined in this module allows the user to express functions such as ``expm1``
as a SymPy function for symbolic manipulation.

"""
from sympy.core.function import ArgumentIndexError, Function
from sympy.core.numbers import Rational
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.miscellaneous import sqrt


def _expm1(x):
    return exp(x) - S.One


class expm1(Function):
    """
    Represents the exponential function minus one.

    Explanation
    ===========

    The benefit of using ``expm1(x)`` over ``exp(x) - 1``
    is that the latter is prone to cancellation under finite precision
    arithmetic when x is close to zero.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import expm1
    >>> '%.0e' % expm1(1e-99).evalf()
    '1e-99'
    >>> from math import exp
    >>> exp(1e-99) - 1
    0.0
    >>> expm1(x).diff(x)
    exp(x)

    See Also
    ========

    log1p
    """
    nargs = 1

    def fdiff(self, argindex=1):
        """
        Returns the first derivative of this function.
        """
        if argindex == 1:
            return exp(*self.args)
        else:
            raise ArgumentIndexError(self, argindex)

    def _eval_expand_func(self, **hints):
        return _expm1(*self.args)

    def _eval_rewrite_as_exp(self, arg, **kwargs):
        return exp(arg) - S.One

    _eval_rewrite_as_tractable = _eval_rewrite_as_exp

    @classmethod
    def eval(cls, arg):
        exp_arg = exp.eval(arg)
        if exp_arg is not None:
            return exp_arg - S.One

    def _eval_is_real(self):
        return self.args[0].is_real

    def _eval_is_finite(self):
        return self.args[0].is_finite


def _log1p(x):
    return log(x + S.One)


class log1p(Function):
    """
    Represents the natural logarithm of a number plus one.

    Explanation
    ===========

    The benefit of using ``log1p(x)`` over ``log(x + 1)``
    is that the latter is prone to cancellation under finite precision
    arithmetic when x is close to zero.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import log1p
    >>> from sympy import expand_log
    >>> '%.0e' % expand_log(log1p(1e-99)).evalf()
    '1e-99'
    >>> from math import log
    >>> log(1 + 1e-99)
    0.0
    >>> log1p(x).diff(x)
    1/(x + 1)

    See Also
    ========

    expm1
    """
    nargs = 1


    def fdiff(self, argindex=1):
        """
        Returns the first derivative of this function.
        """
        if argindex == 1:
            return S.One/(self.args[0] + S.One)
        else:
            raise ArgumentIndexError(self, argindex)


    def _eval_expand_func(self, **hints):
        return _log1p(*self.args)

    def _eval_rewrite_as_log(self, arg, **kwargs):
        return _log1p(arg)

    _eval_rewrite_as_tractable = _eval_rewrite_as_log

    @classmethod
    def eval(cls, arg):
        if arg.is_Rational:
            return log(arg + S.One)
        elif not arg.is_Float:  # not safe to add 1 to Float
            return log.eval(arg + S.One)
        elif arg.is_number:
            return log(Rational(arg) + S.One)

    def _eval_is_real(self):
        return (self.args[0] + S.One).is_nonnegative

    def _eval_is_finite(self):
        if (self.args[0] + S.One).is_zero:
            return False
        return self.args[0].is_finite

    def _eval_is_positive(self):
        return self.args[0].is_positive

    def _eval_is_zero(self):
        return self.args[0].is_zero

    def _eval_is_nonnegative(self):
        return self.args[0].is_nonnegative

_Two = S(2)

def _exp2(x):
    return Pow(_Two, x)

class exp2(Function):
    """
    Represents the exponential function with base two.

    Explanation
    ===========

    The benefit of using ``exp2(x)`` over ``2**x``
    is that the latter is not as efficient under finite precision
    arithmetic.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import exp2
    >>> exp2(2).evalf() == 4.0
    True
    >>> exp2(x).diff(x)
    log(2)*exp2(x)

    See Also
    ========

    log2
    """
    nargs = 1


    def fdiff(self, argindex=1):
        """
        Returns the first derivative of this function.
        """
        if argindex == 1:
            return self*log(_Two)
        else:
            raise ArgumentIndexError(self, argindex)

    def _eval_rewrite_as_Pow(self, arg, **kwargs):
        return _exp2(arg)

    _eval_rewrite_as_tractable = _eval_rewrite_as_Pow

    def _eval_expand_func(self, **hints):
        return _exp2(*self.args)

    @classmethod
    def eval(cls, arg):
        if arg.is_number:
            return _exp2(arg)


def _log2(x):
    return log(x)/log(_Two)


class log2(Function):
    """
    Represents the logarithm function with base two.

    Explanation
    ===========

    The benefit of using ``log2(x)`` over ``log(x)/log(2)``
    is that the latter is not as efficient under finite precision
    arithmetic.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import log2
    >>> log2(4).evalf() == 2.0
    True
    >>> log2(x).diff(x)
    1/(x*log(2))

    See Also
    ========

    exp2
    log10
    """
    nargs = 1

    def fdiff(self, argindex=1):
        """
        Returns the first derivative of this function.
        """
        if argindex == 1:
            return S.One/(log(_Two)*self.args[0])
        else:
            raise ArgumentIndexError(self, argindex)


    @classmethod
    def eval(cls, arg):
        if arg.is_number:
            result = log.eval(arg, base=_Two)
            if result.is_Atom:
                return result
        elif arg.is_Pow and arg.base == _Two:
            return arg.exp

    def _eval_evalf(self, *args, **kwargs):
        return self.rewrite(log).evalf(*args, **kwargs)

    def _eval_expand_func(self, **hints):
        return _log2(*self.args)

    def _eval_rewrite_as_log(self, arg, **kwargs):
        return _log2(arg)

    _eval_rewrite_as_tractable = _eval_rewrite_as_log


def _fma(x, y, z):
    return x*y + z


class fma(Function):
    """
    Represents "fused multiply add".

    Explanation
    ===========

    The benefit of using ``fma(x, y, z)`` over ``x*y + z``
    is that, under finite precision arithmetic, the former is
    supported by special instructions on some CPUs.

    Examples
    ========

    >>> from sympy.abc import x, y, z
    >>> from sympy.codegen.cfunctions import fma
    >>> fma(x, y, z).diff(x)
    y

    """
    nargs = 3

    def fdiff(self, argindex=1):
        """
        Returns the first derivative of this function.
        """
        if argindex in (1, 2):
            return self.args[2 - argindex]
        elif argindex == 3:
            return S.One
        else:
            raise ArgumentIndexError(self, argindex)


    def _eval_expand_func(self, **hints):
        return _fma(*self.args)

    def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
        return _fma(arg)


_Ten = S(10)


def _log10(x):
    return log(x)/log(_Ten)


class log10(Function):
    """
    Represents the logarithm function with base ten.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import log10
    >>> log10(100).evalf() == 2.0
    True
    >>> log10(x).diff(x)
    1/(x*log(10))

    See Also
    ========

    log2
    """
    nargs = 1

    def fdiff(self, argindex=1):
        """
        Returns the first derivative of this function.
        """
        if argindex == 1:
            return S.One/(log(_Ten)*self.args[0])
        else:
            raise ArgumentIndexError(self, argindex)


    @classmethod
    def eval(cls, arg):
        if arg.is_number:
            result = log.eval(arg, base=_Ten)
            if result.is_Atom:
                return result
        elif arg.is_Pow and arg.base == _Ten:
            return arg.exp

    def _eval_expand_func(self, **hints):
        return _log10(*self.args)

    def _eval_rewrite_as_log(self, arg, **kwargs):
        return _log10(arg)

    _eval_rewrite_as_tractable = _eval_rewrite_as_log


def _Sqrt(x):
    return Pow(x, S.Half)


class Sqrt(Function):  # 'sqrt' already defined in sympy.functions.elementary.miscellaneous
    """
    Represents the square root function.

    Explanation
    ===========

    The reason why one would use ``Sqrt(x)`` over ``sqrt(x)``
    is that the latter is internally represented as ``Pow(x, S.Half)`` which
    may not be what one wants when doing code-generation.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import Sqrt
    >>> Sqrt(x)
    Sqrt(x)
    >>> Sqrt(x).diff(x)
    1/(2*sqrt(x))

    See Also
    ========

    Cbrt
    """
    nargs = 1

    def fdiff(self, argindex=1):
        """
        Returns the first derivative of this function.
        """
        if argindex == 1:
            return Pow(self.args[0], Rational(-1, 2))/_Two
        else:
            raise ArgumentIndexError(self, argindex)

    def _eval_expand_func(self, **hints):
        return _Sqrt(*self.args)

    def _eval_rewrite_as_Pow(self, arg, **kwargs):
        return _Sqrt(arg)

    _eval_rewrite_as_tractable = _eval_rewrite_as_Pow


def _Cbrt(x):
    return Pow(x, Rational(1, 3))


class Cbrt(Function):  # 'cbrt' already defined in sympy.functions.elementary.miscellaneous
    """
    Represents the cube root function.

    Explanation
    ===========

    The reason why one would use ``Cbrt(x)`` over ``cbrt(x)``
    is that the latter is internally represented as ``Pow(x, Rational(1, 3))`` which
    may not be what one wants when doing code-generation.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import Cbrt
    >>> Cbrt(x)
    Cbrt(x)
    >>> Cbrt(x).diff(x)
    1/(3*x**(2/3))

    See Also
    ========

    Sqrt
    """
    nargs = 1

    def fdiff(self, argindex=1):
        """
        Returns the first derivative of this function.
        """
        if argindex == 1:
            return Pow(self.args[0], Rational(-_Two/3))/3
        else:
            raise ArgumentIndexError(self, argindex)


    def _eval_expand_func(self, **hints):
        return _Cbrt(*self.args)

    def _eval_rewrite_as_Pow(self, arg, **kwargs):
        return _Cbrt(arg)

    _eval_rewrite_as_tractable = _eval_rewrite_as_Pow


def _hypot(x, y):
    return sqrt(Pow(x, 2) + Pow(y, 2))


class hypot(Function):
    """
    Represents the hypotenuse function.

    Explanation
    ===========

    The hypotenuse function is provided by e.g. the math library
    in the C99 standard, hence one may want to represent the function
    symbolically when doing code-generation.

    Examples
    ========

    >>> from sympy.abc import x, y
    >>> from sympy.codegen.cfunctions import hypot
    >>> hypot(3, 4).evalf() == 5.0
    True
    >>> hypot(x, y)
    hypot(x, y)
    >>> hypot(x, y).diff(x)
    x/hypot(x, y)

    """
    nargs = 2

    def fdiff(self, argindex=1):
        """
        Returns the first derivative of this function.
        """
        if argindex in (1, 2):
            return 2*self.args[argindex-1]/(_Two*self.func(*self.args))
        else:
            raise ArgumentIndexError(self, argindex)


    def _eval_expand_func(self, **hints):
        return _hypot(*self.args)

    def _eval_rewrite_as_Pow(self, arg, **kwargs):
        return _hypot(arg)

    _eval_rewrite_as_tractable = _eval_rewrite_as_Pow


class isnan(Function):
    nargs = 1