Spaces:
Sleeping
Sleeping
File size: 11,851 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
"""
This module contains SymPy functions mathcin corresponding to special math functions in the
C standard library (since C99, also available in C++11).
The functions defined in this module allows the user to express functions such as ``expm1``
as a SymPy function for symbolic manipulation.
"""
from sympy.core.function import ArgumentIndexError, Function
from sympy.core.numbers import Rational
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.miscellaneous import sqrt
def _expm1(x):
return exp(x) - S.One
class expm1(Function):
"""
Represents the exponential function minus one.
Explanation
===========
The benefit of using ``expm1(x)`` over ``exp(x) - 1``
is that the latter is prone to cancellation under finite precision
arithmetic when x is close to zero.
Examples
========
>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import expm1
>>> '%.0e' % expm1(1e-99).evalf()
'1e-99'
>>> from math import exp
>>> exp(1e-99) - 1
0.0
>>> expm1(x).diff(x)
exp(x)
See Also
========
log1p
"""
nargs = 1
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return exp(*self.args)
else:
raise ArgumentIndexError(self, argindex)
def _eval_expand_func(self, **hints):
return _expm1(*self.args)
def _eval_rewrite_as_exp(self, arg, **kwargs):
return exp(arg) - S.One
_eval_rewrite_as_tractable = _eval_rewrite_as_exp
@classmethod
def eval(cls, arg):
exp_arg = exp.eval(arg)
if exp_arg is not None:
return exp_arg - S.One
def _eval_is_real(self):
return self.args[0].is_real
def _eval_is_finite(self):
return self.args[0].is_finite
def _log1p(x):
return log(x + S.One)
class log1p(Function):
"""
Represents the natural logarithm of a number plus one.
Explanation
===========
The benefit of using ``log1p(x)`` over ``log(x + 1)``
is that the latter is prone to cancellation under finite precision
arithmetic when x is close to zero.
Examples
========
>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import log1p
>>> from sympy import expand_log
>>> '%.0e' % expand_log(log1p(1e-99)).evalf()
'1e-99'
>>> from math import log
>>> log(1 + 1e-99)
0.0
>>> log1p(x).diff(x)
1/(x + 1)
See Also
========
expm1
"""
nargs = 1
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return S.One/(self.args[0] + S.One)
else:
raise ArgumentIndexError(self, argindex)
def _eval_expand_func(self, **hints):
return _log1p(*self.args)
def _eval_rewrite_as_log(self, arg, **kwargs):
return _log1p(arg)
_eval_rewrite_as_tractable = _eval_rewrite_as_log
@classmethod
def eval(cls, arg):
if arg.is_Rational:
return log(arg + S.One)
elif not arg.is_Float: # not safe to add 1 to Float
return log.eval(arg + S.One)
elif arg.is_number:
return log(Rational(arg) + S.One)
def _eval_is_real(self):
return (self.args[0] + S.One).is_nonnegative
def _eval_is_finite(self):
if (self.args[0] + S.One).is_zero:
return False
return self.args[0].is_finite
def _eval_is_positive(self):
return self.args[0].is_positive
def _eval_is_zero(self):
return self.args[0].is_zero
def _eval_is_nonnegative(self):
return self.args[0].is_nonnegative
_Two = S(2)
def _exp2(x):
return Pow(_Two, x)
class exp2(Function):
"""
Represents the exponential function with base two.
Explanation
===========
The benefit of using ``exp2(x)`` over ``2**x``
is that the latter is not as efficient under finite precision
arithmetic.
Examples
========
>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import exp2
>>> exp2(2).evalf() == 4.0
True
>>> exp2(x).diff(x)
log(2)*exp2(x)
See Also
========
log2
"""
nargs = 1
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return self*log(_Two)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
return _exp2(arg)
_eval_rewrite_as_tractable = _eval_rewrite_as_Pow
def _eval_expand_func(self, **hints):
return _exp2(*self.args)
@classmethod
def eval(cls, arg):
if arg.is_number:
return _exp2(arg)
def _log2(x):
return log(x)/log(_Two)
class log2(Function):
"""
Represents the logarithm function with base two.
Explanation
===========
The benefit of using ``log2(x)`` over ``log(x)/log(2)``
is that the latter is not as efficient under finite precision
arithmetic.
Examples
========
>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import log2
>>> log2(4).evalf() == 2.0
True
>>> log2(x).diff(x)
1/(x*log(2))
See Also
========
exp2
log10
"""
nargs = 1
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return S.One/(log(_Two)*self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_number:
result = log.eval(arg, base=_Two)
if result.is_Atom:
return result
elif arg.is_Pow and arg.base == _Two:
return arg.exp
def _eval_evalf(self, *args, **kwargs):
return self.rewrite(log).evalf(*args, **kwargs)
def _eval_expand_func(self, **hints):
return _log2(*self.args)
def _eval_rewrite_as_log(self, arg, **kwargs):
return _log2(arg)
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _fma(x, y, z):
return x*y + z
class fma(Function):
"""
Represents "fused multiply add".
Explanation
===========
The benefit of using ``fma(x, y, z)`` over ``x*y + z``
is that, under finite precision arithmetic, the former is
supported by special instructions on some CPUs.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.codegen.cfunctions import fma
>>> fma(x, y, z).diff(x)
y
"""
nargs = 3
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex in (1, 2):
return self.args[2 - argindex]
elif argindex == 3:
return S.One
else:
raise ArgumentIndexError(self, argindex)
def _eval_expand_func(self, **hints):
return _fma(*self.args)
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
return _fma(arg)
_Ten = S(10)
def _log10(x):
return log(x)/log(_Ten)
class log10(Function):
"""
Represents the logarithm function with base ten.
Examples
========
>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import log10
>>> log10(100).evalf() == 2.0
True
>>> log10(x).diff(x)
1/(x*log(10))
See Also
========
log2
"""
nargs = 1
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return S.One/(log(_Ten)*self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_number:
result = log.eval(arg, base=_Ten)
if result.is_Atom:
return result
elif arg.is_Pow and arg.base == _Ten:
return arg.exp
def _eval_expand_func(self, **hints):
return _log10(*self.args)
def _eval_rewrite_as_log(self, arg, **kwargs):
return _log10(arg)
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _Sqrt(x):
return Pow(x, S.Half)
class Sqrt(Function): # 'sqrt' already defined in sympy.functions.elementary.miscellaneous
"""
Represents the square root function.
Explanation
===========
The reason why one would use ``Sqrt(x)`` over ``sqrt(x)``
is that the latter is internally represented as ``Pow(x, S.Half)`` which
may not be what one wants when doing code-generation.
Examples
========
>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import Sqrt
>>> Sqrt(x)
Sqrt(x)
>>> Sqrt(x).diff(x)
1/(2*sqrt(x))
See Also
========
Cbrt
"""
nargs = 1
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return Pow(self.args[0], Rational(-1, 2))/_Two
else:
raise ArgumentIndexError(self, argindex)
def _eval_expand_func(self, **hints):
return _Sqrt(*self.args)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
return _Sqrt(arg)
_eval_rewrite_as_tractable = _eval_rewrite_as_Pow
def _Cbrt(x):
return Pow(x, Rational(1, 3))
class Cbrt(Function): # 'cbrt' already defined in sympy.functions.elementary.miscellaneous
"""
Represents the cube root function.
Explanation
===========
The reason why one would use ``Cbrt(x)`` over ``cbrt(x)``
is that the latter is internally represented as ``Pow(x, Rational(1, 3))`` which
may not be what one wants when doing code-generation.
Examples
========
>>> from sympy.abc import x
>>> from sympy.codegen.cfunctions import Cbrt
>>> Cbrt(x)
Cbrt(x)
>>> Cbrt(x).diff(x)
1/(3*x**(2/3))
See Also
========
Sqrt
"""
nargs = 1
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return Pow(self.args[0], Rational(-_Two/3))/3
else:
raise ArgumentIndexError(self, argindex)
def _eval_expand_func(self, **hints):
return _Cbrt(*self.args)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
return _Cbrt(arg)
_eval_rewrite_as_tractable = _eval_rewrite_as_Pow
def _hypot(x, y):
return sqrt(Pow(x, 2) + Pow(y, 2))
class hypot(Function):
"""
Represents the hypotenuse function.
Explanation
===========
The hypotenuse function is provided by e.g. the math library
in the C99 standard, hence one may want to represent the function
symbolically when doing code-generation.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.codegen.cfunctions import hypot
>>> hypot(3, 4).evalf() == 5.0
True
>>> hypot(x, y)
hypot(x, y)
>>> hypot(x, y).diff(x)
x/hypot(x, y)
"""
nargs = 2
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex in (1, 2):
return 2*self.args[argindex-1]/(_Two*self.func(*self.args))
else:
raise ArgumentIndexError(self, argindex)
def _eval_expand_func(self, **hints):
return _hypot(*self.args)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
return _hypot(arg)
_eval_rewrite_as_tractable = _eval_rewrite_as_Pow
class isnan(Function):
nargs = 1
|