File size: 18,557 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
from sympy.core.function import Lambda
from sympy.core.numbers import (E, I, Rational, oo, pi)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol)
from sympy.functions.elementary.complexes import (Abs, re)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.integers import frac
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (
    cos, cot, csc, sec, sin, tan, asin, acos, atan, acot, asec, acsc)
from sympy.functions.elementary.hyperbolic import (sinh, cosh, tanh, coth,
    sech, csch, asinh, acosh, atanh, acoth, asech, acsch)
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.error_functions import expint
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.simplify.simplify import simplify
from sympy.calculus.util import (function_range, continuous_domain, not_empty_in,
                                 periodicity, lcim, is_convex,
                                 stationary_points, minimum, maximum)
from sympy.sets.sets import (Interval, FiniteSet, Complement, Union)
from sympy.sets.fancysets import ImageSet
from sympy.sets.conditionset import ConditionSet
from sympy.testing.pytest import XFAIL, raises, _both_exp_pow, slow
from sympy.abc import x, y

a = Symbol('a', real=True)

def test_function_range():
    assert function_range(sin(x), x, Interval(-pi/2, pi/2)
        ) == Interval(-1, 1)
    assert function_range(sin(x), x, Interval(0, pi)
        ) == Interval(0, 1)
    assert function_range(tan(x), x, Interval(0, pi)
        ) == Interval(-oo, oo)
    assert function_range(tan(x), x, Interval(pi/2, pi)
        ) == Interval(-oo, 0)
    assert function_range((x + 3)/(x - 2), x, Interval(-5, 5)
        ) == Union(Interval(-oo, Rational(2, 7)), Interval(Rational(8, 3), oo))
    assert function_range(1/(x**2), x, Interval(-1, 1)
        ) == Interval(1, oo)
    assert function_range(exp(x), x, Interval(-1, 1)
        ) == Interval(exp(-1), exp(1))
    assert function_range(log(x) - x, x, S.Reals
        ) == Interval(-oo, -1)
    assert function_range(sqrt(3*x - 1), x, Interval(0, 2)
        ) == Interval(0, sqrt(5))
    assert function_range(x*(x - 1) - (x**2 - x), x, S.Reals
        ) == FiniteSet(0)
    assert function_range(x*(x - 1) - (x**2 - x) + y, x, S.Reals
        ) == FiniteSet(y)
    assert function_range(sin(x), x, Union(Interval(-5, -3), FiniteSet(4))
        ) == Union(Interval(-sin(3), 1), FiniteSet(sin(4)))
    assert function_range(cos(x), x, Interval(-oo, -4)
        ) == Interval(-1, 1)
    assert function_range(cos(x), x, S.EmptySet) == S.EmptySet
    assert function_range(x/sqrt(x**2+1), x, S.Reals) == Interval.open(-1,1)
    raises(NotImplementedError, lambda : function_range(
        exp(x)*(sin(x) - cos(x))/2 - x, x, S.Reals))
    raises(NotImplementedError, lambda : function_range(
        sin(x) + x, x, S.Reals)) # issue 13273
    raises(NotImplementedError, lambda : function_range(
        log(x), x, S.Integers))
    raises(NotImplementedError, lambda : function_range(
        sin(x)/2, x, S.Naturals))


@slow
def test_function_range1():
    assert function_range(tan(x)**2 + tan(3*x)**2 + 1, x, S.Reals) == Interval(1,oo)


def test_continuous_domain():
    assert continuous_domain(sin(x), x, Interval(0, 2*pi)) == Interval(0, 2*pi)
    assert continuous_domain(tan(x), x, Interval(0, 2*pi)) == \
        Union(Interval(0, pi/2, False, True), Interval(pi/2, pi*Rational(3, 2), True, True),
              Interval(pi*Rational(3, 2), 2*pi, True, False))
    assert continuous_domain(cot(x), x, Interval(0, 2*pi)) == Union(
        Interval.open(0, pi), Interval.open(pi, 2*pi))
    assert continuous_domain((x - 1)/((x - 1)**2), x, S.Reals) == \
        Union(Interval(-oo, 1, True, True), Interval(1, oo, True, True))
    assert continuous_domain(log(x) + log(4*x - 1), x, S.Reals) == \
        Interval(Rational(1, 4), oo, True, True)
    assert continuous_domain(1/sqrt(x - 3), x, S.Reals) == Interval(3, oo, True, True)
    assert continuous_domain(1/x - 2, x, S.Reals) == \
        Union(Interval.open(-oo, 0), Interval.open(0, oo))
    assert continuous_domain(1/(x**2 - 4) + 2, x, S.Reals) == \
        Union(Interval.open(-oo, -2), Interval.open(-2, 2), Interval.open(2, oo))
    assert continuous_domain((x+1)**pi, x, S.Reals) == Interval(-1, oo)
    assert continuous_domain((x+1)**(pi/2), x, S.Reals) == Interval(-1, oo)
    assert continuous_domain(x**x, x, S.Reals) == Interval(0, oo)
    assert continuous_domain((x+1)**log(x**2), x, S.Reals) == Union(
        Interval.Ropen(-1, 0), Interval.open(0, oo))
    domain = continuous_domain(log(tan(x)**2 + 1), x, S.Reals)
    assert not domain.contains(3*pi/2)
    assert domain.contains(5)
    d = Symbol('d', even=True, zero=False)
    assert continuous_domain(x**(1/d), x, S.Reals) == Interval(0, oo)
    n = Dummy('n')
    assert continuous_domain(1/sin(x), x, S.Reals).dummy_eq(Complement(
        S.Reals, Union(ImageSet(Lambda(n, 2*n*pi + pi), S.Integers),
                       ImageSet(Lambda(n, 2*n*pi), S.Integers))))
    assert continuous_domain(sin(x) + cos(x), x, S.Reals) == S.Reals
    assert continuous_domain(asin(x), x, S.Reals) == Interval(-1, 1) # issue #21786
    assert continuous_domain(1/acos(log(x)), x, S.Reals) == Interval.Ropen(exp(-1), E)
    assert continuous_domain(sinh(x)+cosh(x), x, S.Reals) == S.Reals
    assert continuous_domain(tanh(x)+sech(x), x, S.Reals) == S.Reals
    assert continuous_domain(atan(x)+asinh(x), x, S.Reals) == S.Reals
    assert continuous_domain(acosh(x), x, S.Reals) == Interval(1, oo)
    assert continuous_domain(atanh(x), x, S.Reals) == Interval.open(-1, 1)
    assert continuous_domain(atanh(x)+acosh(x), x, S.Reals) == S.EmptySet
    assert continuous_domain(asech(x), x, S.Reals) == Interval.Lopen(0, 1)
    assert continuous_domain(acoth(x), x, S.Reals) == Union(
        Interval.open(-oo, -1), Interval.open(1, oo))
    assert continuous_domain(asec(x), x, S.Reals) == Union(
        Interval(-oo, -1), Interval(1, oo))
    assert continuous_domain(acsc(x), x, S.Reals) == Union(
        Interval(-oo, -1), Interval(1, oo))
    for f in (coth, acsch, csch):
        assert continuous_domain(f(x), x, S.Reals) == Union(
            Interval.open(-oo, 0), Interval.open(0, oo))
    assert continuous_domain(acot(x), x, S.Reals).contains(0) == False
    assert continuous_domain(1/(exp(x) - x), x, S.Reals) == Complement(
        S.Reals, ConditionSet(x, Eq(-x + exp(x), 0), S.Reals))
    assert continuous_domain(frac(x**2), x, Interval(-2,-1)) == Union(
        Interval.open(-2, -sqrt(3)), Interval.open(-sqrt(2), -1),
        Interval.open(-sqrt(3), -sqrt(2)))
    assert continuous_domain(frac(x), x, S.Reals) == Complement(
        S.Reals, S.Integers)
    raises(NotImplementedError, lambda : continuous_domain(
        1/(x**2+1), x, S.Complexes))
    raises(NotImplementedError, lambda : continuous_domain(
        gamma(x), x, Interval(-5,0)))
    assert continuous_domain(x + gamma(pi), x, S.Reals) == S.Reals


@XFAIL
def test_continuous_domain_acot():
    acot_cont = Piecewise((pi+acot(x), x<0), (acot(x), True))
    assert continuous_domain(acot_cont, x, S.Reals) == S.Reals

@XFAIL
def test_continuous_domain_gamma():
    assert continuous_domain(gamma(x), x, S.Reals).contains(-1) == False

@XFAIL
def test_continuous_domain_neg_power():
    assert continuous_domain((x-2)**(1-x), x, S.Reals) == Interval.open(2, oo)


def test_not_empty_in():
    assert not_empty_in(FiniteSet(x, 2*x).intersect(Interval(1, 2, True, False)), x) == \
        Interval(S.Half, 2, True, False)
    assert not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x) == \
        Union(Interval(-sqrt(2), -1), Interval(1, 2))
    assert not_empty_in(FiniteSet(x**2 + x, x).intersect(Interval(2, 4)), x) == \
        Union(Interval(-sqrt(17)/2 - S.Half, -2),
              Interval(1, Rational(-1, 2) + sqrt(17)/2), Interval(2, 4))
    assert not_empty_in(FiniteSet(x/(x - 1)).intersect(S.Reals), x) == \
        Complement(S.Reals, FiniteSet(1))
    assert not_empty_in(FiniteSet(a/(a - 1)).intersect(S.Reals), a) == \
        Complement(S.Reals, FiniteSet(1))
    assert not_empty_in(FiniteSet((x**2 - 3*x + 2)/(x - 1)).intersect(S.Reals), x) == \
        Complement(S.Reals, FiniteSet(1))
    assert not_empty_in(FiniteSet(3, 4, x/(x - 1)).intersect(Interval(2, 3)), x) == \
        Interval(-oo, oo)
    assert not_empty_in(FiniteSet(4, x/(x - 1)).intersect(Interval(2, 3)), x) == \
        Interval(S(3)/2, 2)
    assert not_empty_in(FiniteSet(x/(x**2 - 1)).intersect(S.Reals), x) == \
        Complement(S.Reals, FiniteSet(-1, 1))
    assert not_empty_in(FiniteSet(x, x**2).intersect(Union(Interval(1, 3, True, True),
                                                           Interval(4, 5))), x) == \
        Union(Interval(-sqrt(5), -2), Interval(-sqrt(3), -1, True, True),
              Interval(1, 3, True, True), Interval(4, 5))
    assert not_empty_in(FiniteSet(1).intersect(Interval(3, 4)), x) == S.EmptySet
    assert not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x) == \
        Union(Interval(-2, -1, True, False), Interval(2, oo))
    raises(ValueError, lambda: not_empty_in(x))
    raises(ValueError, lambda: not_empty_in(Interval(0, 1), x))
    raises(NotImplementedError,
           lambda: not_empty_in(FiniteSet(x).intersect(S.Reals), x, a))


@_both_exp_pow
def test_periodicity():
    assert periodicity(sin(2*x), x) == pi
    assert periodicity((-2)*tan(4*x), x) == pi/4
    assert periodicity(sin(x)**2, x) == 2*pi
    assert periodicity(3**tan(3*x), x) == pi/3
    assert periodicity(tan(x)*cos(x), x) == 2*pi
    assert periodicity(sin(x)**(tan(x)), x) == 2*pi
    assert periodicity(tan(x)*sec(x), x) == 2*pi
    assert periodicity(sin(2*x)*cos(2*x) - y, x) == pi/2
    assert periodicity(tan(x) + cot(x), x) == pi
    assert periodicity(sin(x) - cos(2*x), x) == 2*pi
    assert periodicity(sin(x) - 1, x) == 2*pi
    assert periodicity(sin(4*x) + sin(x)*cos(x), x) == pi
    assert periodicity(exp(sin(x)), x) == 2*pi
    assert periodicity(log(cot(2*x)) - sin(cos(2*x)), x) == pi
    assert periodicity(sin(2*x)*exp(tan(x) - csc(2*x)), x) == pi
    assert periodicity(cos(sec(x) - csc(2*x)), x) == 2*pi
    assert periodicity(tan(sin(2*x)), x) == pi
    assert periodicity(2*tan(x)**2, x) == pi
    assert periodicity(sin(x%4), x) == 4
    assert periodicity(sin(x)%4, x) == 2*pi
    assert periodicity(tan((3*x-2)%4), x) == Rational(4, 3)
    assert periodicity((sqrt(2)*(x+1)+x) % 3, x) == 3 / (sqrt(2)+1)
    assert periodicity((x**2+1) % x, x) is None
    assert periodicity(sin(re(x)), x) == 2*pi
    assert periodicity(sin(x)**2 + cos(x)**2, x) is S.Zero
    assert periodicity(tan(x), y) is S.Zero
    assert periodicity(sin(x) + I*cos(x), x) == 2*pi
    assert periodicity(x - sin(2*y), y) == pi

    assert periodicity(exp(x), x) is None
    assert periodicity(exp(I*x), x) == 2*pi
    assert periodicity(exp(I*a), a) == 2*pi
    assert periodicity(exp(a), a) is None
    assert periodicity(exp(log(sin(a) + I*cos(2*a)), evaluate=False), a) == 2*pi
    assert periodicity(exp(log(sin(2*a) + I*cos(a)), evaluate=False), a) == 2*pi
    assert periodicity(exp(sin(a)), a) == 2*pi
    assert periodicity(exp(2*I*a), a) == pi
    assert periodicity(exp(a + I*sin(a)), a) is None
    assert periodicity(exp(cos(a/2) + sin(a)), a) == 4*pi
    assert periodicity(log(x), x) is None
    assert periodicity(exp(x)**sin(x), x) is None
    assert periodicity(sin(x)**y, y) is None

    assert periodicity(Abs(sin(Abs(sin(x)))), x) == pi
    assert all(periodicity(Abs(f(x)), x) == pi for f in (
        cos, sin, sec, csc, tan, cot))
    assert periodicity(Abs(sin(tan(x))), x) == pi
    assert periodicity(Abs(sin(sin(x) + tan(x))), x) == 2*pi
    assert periodicity(sin(x) > S.Half, x) == 2*pi

    assert periodicity(x > 2, x) is None
    assert periodicity(x**3 - x**2 + 1, x) is None
    assert periodicity(Abs(x), x) is None
    assert periodicity(Abs(x**2 - 1), x) is None

    assert periodicity((x**2 + 4)%2, x) is None
    assert periodicity((E**x)%3, x) is None

    assert periodicity(sin(expint(1, x))/expint(1, x), x) is None
    # returning `None` for any Piecewise
    p = Piecewise((0, x < -1), (x**2, x <= 1), (log(x), True))
    assert periodicity(p, x) is None

    m = MatrixSymbol('m', 3, 3)
    raises(NotImplementedError, lambda: periodicity(sin(m), m))
    raises(NotImplementedError, lambda: periodicity(sin(m[0, 0]), m))
    raises(NotImplementedError, lambda: periodicity(sin(m), m[0, 0]))
    raises(NotImplementedError, lambda: periodicity(sin(m[0, 0]), m[0, 0]))


def test_periodicity_check():
    assert periodicity(tan(x), x, check=True) == pi
    assert periodicity(sin(x) + cos(x), x, check=True) == 2*pi
    assert periodicity(sec(x), x) == 2*pi
    assert periodicity(sin(x*y), x) == 2*pi/abs(y)
    assert periodicity(Abs(sec(sec(x))), x) == pi


def test_lcim():
    assert lcim([S.Half, S(2), S(3)]) == 6
    assert lcim([pi/2, pi/4, pi]) == pi
    assert lcim([2*pi, pi/2]) == 2*pi
    assert lcim([S.One, 2*pi]) is None
    assert lcim([S(2) + 2*E, E/3 + Rational(1, 3), S.One + E]) == S(2) + 2*E


def test_is_convex():
    assert is_convex(1/x, x, domain=Interval.open(0, oo)) == True
    assert is_convex(1/x, x, domain=Interval(-oo, 0)) == False
    assert is_convex(x**2, x, domain=Interval(0, oo)) == True
    assert is_convex(1/x**3, x, domain=Interval.Lopen(0, oo)) == True
    assert is_convex(-1/x**3, x, domain=Interval.Ropen(-oo, 0)) == True
    assert is_convex(log(x) ,x) == False
    assert is_convex(x**2+y**2, x, y) == True
    assert is_convex(cos(x) + cos(y), x) == False
    assert is_convex(8*x**2 - 2*y**2, x, y) == False


def test_stationary_points():
    assert stationary_points(sin(x), x, Interval(-pi/2, pi/2)
        ) == {-pi/2, pi/2}
    assert  stationary_points(sin(x), x, Interval.Ropen(0, pi/4)
        ) is S.EmptySet
    assert stationary_points(tan(x), x,
        ) is S.EmptySet
    assert stationary_points(sin(x)*cos(x), x, Interval(0, pi)
        ) == {pi/4, pi*Rational(3, 4)}
    assert stationary_points(sec(x), x, Interval(0, pi)
        ) == {0, pi}
    assert stationary_points((x+3)*(x-2), x
        ) == FiniteSet(Rational(-1, 2))
    assert stationary_points((x + 3)/(x - 2), x, Interval(-5, 5)
        ) is S.EmptySet
    assert stationary_points((x**2+3)/(x-2), x
        ) == {2 - sqrt(7), 2 + sqrt(7)}
    assert stationary_points((x**2+3)/(x-2), x, Interval(0, 5)
        ) == {2 + sqrt(7)}
    assert stationary_points(x**4 + x**3 - 5*x**2, x, S.Reals
        ) == FiniteSet(-2, 0, Rational(5, 4))
    assert stationary_points(exp(x), x
        ) is S.EmptySet
    assert stationary_points(log(x) - x, x, S.Reals
        ) == {1}
    assert stationary_points(cos(x), x, Union(Interval(0, 5), Interval(-6, -3))
        ) == {0, -pi, pi}
    assert stationary_points(y, x, S.Reals
        ) == S.Reals
    assert stationary_points(y, x, S.EmptySet) == S.EmptySet


def test_maximum():
    assert maximum(sin(x), x) is S.One
    assert maximum(sin(x), x, Interval(0, 1)) == sin(1)
    assert maximum(tan(x), x) is oo
    assert maximum(tan(x), x, Interval(-pi/4, pi/4)) is S.One
    assert maximum(sin(x)*cos(x), x, S.Reals) == S.Half
    assert simplify(maximum(sin(x)*cos(x), x, Interval(pi*Rational(3, 8), pi*Rational(5, 8)))
        ) == sqrt(2)/4
    assert maximum((x+3)*(x-2), x) is oo
    assert maximum((x+3)*(x-2), x, Interval(-5, 0)) == S(14)
    assert maximum((x+3)/(x-2), x, Interval(-5, 0)) == Rational(2, 7)
    assert simplify(maximum(-x**4-x**3+x**2+10, x)
        ) == 41*sqrt(41)/512 + Rational(5419, 512)
    assert maximum(exp(x), x, Interval(-oo, 2)) == exp(2)
    assert maximum(log(x) - x, x, S.Reals) is S.NegativeOne
    assert maximum(cos(x), x, Union(Interval(0, 5), Interval(-6, -3))
        ) is S.One
    assert maximum(cos(x)-sin(x), x, S.Reals) == sqrt(2)
    assert maximum(y, x, S.Reals) == y
    assert maximum(abs(a**3 + a), a, Interval(0, 2)) == 10
    assert maximum(abs(60*a**3 + 24*a), a, Interval(0, 2)) == 528
    assert maximum(abs(12*a*(5*a**2 + 2)), a, Interval(0, 2)) == 528
    assert maximum(x/sqrt(x**2+1), x, S.Reals) == 1

    raises(ValueError, lambda : maximum(sin(x), x, S.EmptySet))
    raises(ValueError, lambda : maximum(log(cos(x)), x, S.EmptySet))
    raises(ValueError, lambda : maximum(1/(x**2 + y**2 + 1), x, S.EmptySet))
    raises(ValueError, lambda : maximum(sin(x), sin(x)))
    raises(ValueError, lambda : maximum(sin(x), x*y, S.EmptySet))
    raises(ValueError, lambda : maximum(sin(x), S.One))


def test_minimum():
    assert minimum(sin(x), x) is S.NegativeOne
    assert minimum(sin(x), x, Interval(1, 4)) == sin(4)
    assert minimum(tan(x), x) is -oo
    assert minimum(tan(x), x, Interval(-pi/4, pi/4)) is S.NegativeOne
    assert minimum(sin(x)*cos(x), x, S.Reals) == Rational(-1, 2)
    assert simplify(minimum(sin(x)*cos(x), x, Interval(pi*Rational(3, 8), pi*Rational(5, 8)))
        ) == -sqrt(2)/4
    assert minimum((x+3)*(x-2), x) == Rational(-25, 4)
    assert minimum((x+3)/(x-2), x, Interval(-5, 0)) == Rational(-3, 2)
    assert minimum(x**4-x**3+x**2+10, x) == S(10)
    assert minimum(exp(x), x, Interval(-2, oo)) == exp(-2)
    assert minimum(log(x) - x, x, S.Reals) is -oo
    assert minimum(cos(x), x, Union(Interval(0, 5), Interval(-6, -3))
        ) is S.NegativeOne
    assert minimum(cos(x)-sin(x), x, S.Reals) == -sqrt(2)
    assert minimum(y, x, S.Reals) == y
    assert minimum(x/sqrt(x**2+1), x, S.Reals) == -1

    raises(ValueError, lambda : minimum(sin(x), x, S.EmptySet))
    raises(ValueError, lambda : minimum(log(cos(x)), x, S.EmptySet))
    raises(ValueError, lambda : minimum(1/(x**2 + y**2 + 1), x, S.EmptySet))
    raises(ValueError, lambda : minimum(sin(x), sin(x)))
    raises(ValueError, lambda : minimum(sin(x), x*y, S.EmptySet))
    raises(ValueError, lambda : minimum(sin(x), S.One))


def test_issue_19869():
    assert (maximum(sqrt(3)*(x - 1)/(3*sqrt(x**2 + 1)), x)
        ) == sqrt(3)/3


def test_issue_16469():
    f = abs(a)
    assert function_range(f, a, S.Reals) == Interval(0, oo, False, True)


@_both_exp_pow
def test_issue_18747():
    assert periodicity(exp(pi*I*(x/4 + S.Half/2)), x) == 8


def test_issue_25942():
    assert (acos(x) > pi/3).as_set() == Interval.Ropen(-1, S(1)/2)