Spaces:
Sleeping
Sleeping
File size: 18,557 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
from sympy.core.function import Lambda
from sympy.core.numbers import (E, I, Rational, oo, pi)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol)
from sympy.functions.elementary.complexes import (Abs, re)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.integers import frac
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (
cos, cot, csc, sec, sin, tan, asin, acos, atan, acot, asec, acsc)
from sympy.functions.elementary.hyperbolic import (sinh, cosh, tanh, coth,
sech, csch, asinh, acosh, atanh, acoth, asech, acsch)
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.error_functions import expint
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.simplify.simplify import simplify
from sympy.calculus.util import (function_range, continuous_domain, not_empty_in,
periodicity, lcim, is_convex,
stationary_points, minimum, maximum)
from sympy.sets.sets import (Interval, FiniteSet, Complement, Union)
from sympy.sets.fancysets import ImageSet
from sympy.sets.conditionset import ConditionSet
from sympy.testing.pytest import XFAIL, raises, _both_exp_pow, slow
from sympy.abc import x, y
a = Symbol('a', real=True)
def test_function_range():
assert function_range(sin(x), x, Interval(-pi/2, pi/2)
) == Interval(-1, 1)
assert function_range(sin(x), x, Interval(0, pi)
) == Interval(0, 1)
assert function_range(tan(x), x, Interval(0, pi)
) == Interval(-oo, oo)
assert function_range(tan(x), x, Interval(pi/2, pi)
) == Interval(-oo, 0)
assert function_range((x + 3)/(x - 2), x, Interval(-5, 5)
) == Union(Interval(-oo, Rational(2, 7)), Interval(Rational(8, 3), oo))
assert function_range(1/(x**2), x, Interval(-1, 1)
) == Interval(1, oo)
assert function_range(exp(x), x, Interval(-1, 1)
) == Interval(exp(-1), exp(1))
assert function_range(log(x) - x, x, S.Reals
) == Interval(-oo, -1)
assert function_range(sqrt(3*x - 1), x, Interval(0, 2)
) == Interval(0, sqrt(5))
assert function_range(x*(x - 1) - (x**2 - x), x, S.Reals
) == FiniteSet(0)
assert function_range(x*(x - 1) - (x**2 - x) + y, x, S.Reals
) == FiniteSet(y)
assert function_range(sin(x), x, Union(Interval(-5, -3), FiniteSet(4))
) == Union(Interval(-sin(3), 1), FiniteSet(sin(4)))
assert function_range(cos(x), x, Interval(-oo, -4)
) == Interval(-1, 1)
assert function_range(cos(x), x, S.EmptySet) == S.EmptySet
assert function_range(x/sqrt(x**2+1), x, S.Reals) == Interval.open(-1,1)
raises(NotImplementedError, lambda : function_range(
exp(x)*(sin(x) - cos(x))/2 - x, x, S.Reals))
raises(NotImplementedError, lambda : function_range(
sin(x) + x, x, S.Reals)) # issue 13273
raises(NotImplementedError, lambda : function_range(
log(x), x, S.Integers))
raises(NotImplementedError, lambda : function_range(
sin(x)/2, x, S.Naturals))
@slow
def test_function_range1():
assert function_range(tan(x)**2 + tan(3*x)**2 + 1, x, S.Reals) == Interval(1,oo)
def test_continuous_domain():
assert continuous_domain(sin(x), x, Interval(0, 2*pi)) == Interval(0, 2*pi)
assert continuous_domain(tan(x), x, Interval(0, 2*pi)) == \
Union(Interval(0, pi/2, False, True), Interval(pi/2, pi*Rational(3, 2), True, True),
Interval(pi*Rational(3, 2), 2*pi, True, False))
assert continuous_domain(cot(x), x, Interval(0, 2*pi)) == Union(
Interval.open(0, pi), Interval.open(pi, 2*pi))
assert continuous_domain((x - 1)/((x - 1)**2), x, S.Reals) == \
Union(Interval(-oo, 1, True, True), Interval(1, oo, True, True))
assert continuous_domain(log(x) + log(4*x - 1), x, S.Reals) == \
Interval(Rational(1, 4), oo, True, True)
assert continuous_domain(1/sqrt(x - 3), x, S.Reals) == Interval(3, oo, True, True)
assert continuous_domain(1/x - 2, x, S.Reals) == \
Union(Interval.open(-oo, 0), Interval.open(0, oo))
assert continuous_domain(1/(x**2 - 4) + 2, x, S.Reals) == \
Union(Interval.open(-oo, -2), Interval.open(-2, 2), Interval.open(2, oo))
assert continuous_domain((x+1)**pi, x, S.Reals) == Interval(-1, oo)
assert continuous_domain((x+1)**(pi/2), x, S.Reals) == Interval(-1, oo)
assert continuous_domain(x**x, x, S.Reals) == Interval(0, oo)
assert continuous_domain((x+1)**log(x**2), x, S.Reals) == Union(
Interval.Ropen(-1, 0), Interval.open(0, oo))
domain = continuous_domain(log(tan(x)**2 + 1), x, S.Reals)
assert not domain.contains(3*pi/2)
assert domain.contains(5)
d = Symbol('d', even=True, zero=False)
assert continuous_domain(x**(1/d), x, S.Reals) == Interval(0, oo)
n = Dummy('n')
assert continuous_domain(1/sin(x), x, S.Reals).dummy_eq(Complement(
S.Reals, Union(ImageSet(Lambda(n, 2*n*pi + pi), S.Integers),
ImageSet(Lambda(n, 2*n*pi), S.Integers))))
assert continuous_domain(sin(x) + cos(x), x, S.Reals) == S.Reals
assert continuous_domain(asin(x), x, S.Reals) == Interval(-1, 1) # issue #21786
assert continuous_domain(1/acos(log(x)), x, S.Reals) == Interval.Ropen(exp(-1), E)
assert continuous_domain(sinh(x)+cosh(x), x, S.Reals) == S.Reals
assert continuous_domain(tanh(x)+sech(x), x, S.Reals) == S.Reals
assert continuous_domain(atan(x)+asinh(x), x, S.Reals) == S.Reals
assert continuous_domain(acosh(x), x, S.Reals) == Interval(1, oo)
assert continuous_domain(atanh(x), x, S.Reals) == Interval.open(-1, 1)
assert continuous_domain(atanh(x)+acosh(x), x, S.Reals) == S.EmptySet
assert continuous_domain(asech(x), x, S.Reals) == Interval.Lopen(0, 1)
assert continuous_domain(acoth(x), x, S.Reals) == Union(
Interval.open(-oo, -1), Interval.open(1, oo))
assert continuous_domain(asec(x), x, S.Reals) == Union(
Interval(-oo, -1), Interval(1, oo))
assert continuous_domain(acsc(x), x, S.Reals) == Union(
Interval(-oo, -1), Interval(1, oo))
for f in (coth, acsch, csch):
assert continuous_domain(f(x), x, S.Reals) == Union(
Interval.open(-oo, 0), Interval.open(0, oo))
assert continuous_domain(acot(x), x, S.Reals).contains(0) == False
assert continuous_domain(1/(exp(x) - x), x, S.Reals) == Complement(
S.Reals, ConditionSet(x, Eq(-x + exp(x), 0), S.Reals))
assert continuous_domain(frac(x**2), x, Interval(-2,-1)) == Union(
Interval.open(-2, -sqrt(3)), Interval.open(-sqrt(2), -1),
Interval.open(-sqrt(3), -sqrt(2)))
assert continuous_domain(frac(x), x, S.Reals) == Complement(
S.Reals, S.Integers)
raises(NotImplementedError, lambda : continuous_domain(
1/(x**2+1), x, S.Complexes))
raises(NotImplementedError, lambda : continuous_domain(
gamma(x), x, Interval(-5,0)))
assert continuous_domain(x + gamma(pi), x, S.Reals) == S.Reals
@XFAIL
def test_continuous_domain_acot():
acot_cont = Piecewise((pi+acot(x), x<0), (acot(x), True))
assert continuous_domain(acot_cont, x, S.Reals) == S.Reals
@XFAIL
def test_continuous_domain_gamma():
assert continuous_domain(gamma(x), x, S.Reals).contains(-1) == False
@XFAIL
def test_continuous_domain_neg_power():
assert continuous_domain((x-2)**(1-x), x, S.Reals) == Interval.open(2, oo)
def test_not_empty_in():
assert not_empty_in(FiniteSet(x, 2*x).intersect(Interval(1, 2, True, False)), x) == \
Interval(S.Half, 2, True, False)
assert not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x) == \
Union(Interval(-sqrt(2), -1), Interval(1, 2))
assert not_empty_in(FiniteSet(x**2 + x, x).intersect(Interval(2, 4)), x) == \
Union(Interval(-sqrt(17)/2 - S.Half, -2),
Interval(1, Rational(-1, 2) + sqrt(17)/2), Interval(2, 4))
assert not_empty_in(FiniteSet(x/(x - 1)).intersect(S.Reals), x) == \
Complement(S.Reals, FiniteSet(1))
assert not_empty_in(FiniteSet(a/(a - 1)).intersect(S.Reals), a) == \
Complement(S.Reals, FiniteSet(1))
assert not_empty_in(FiniteSet((x**2 - 3*x + 2)/(x - 1)).intersect(S.Reals), x) == \
Complement(S.Reals, FiniteSet(1))
assert not_empty_in(FiniteSet(3, 4, x/(x - 1)).intersect(Interval(2, 3)), x) == \
Interval(-oo, oo)
assert not_empty_in(FiniteSet(4, x/(x - 1)).intersect(Interval(2, 3)), x) == \
Interval(S(3)/2, 2)
assert not_empty_in(FiniteSet(x/(x**2 - 1)).intersect(S.Reals), x) == \
Complement(S.Reals, FiniteSet(-1, 1))
assert not_empty_in(FiniteSet(x, x**2).intersect(Union(Interval(1, 3, True, True),
Interval(4, 5))), x) == \
Union(Interval(-sqrt(5), -2), Interval(-sqrt(3), -1, True, True),
Interval(1, 3, True, True), Interval(4, 5))
assert not_empty_in(FiniteSet(1).intersect(Interval(3, 4)), x) == S.EmptySet
assert not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x) == \
Union(Interval(-2, -1, True, False), Interval(2, oo))
raises(ValueError, lambda: not_empty_in(x))
raises(ValueError, lambda: not_empty_in(Interval(0, 1), x))
raises(NotImplementedError,
lambda: not_empty_in(FiniteSet(x).intersect(S.Reals), x, a))
@_both_exp_pow
def test_periodicity():
assert periodicity(sin(2*x), x) == pi
assert periodicity((-2)*tan(4*x), x) == pi/4
assert periodicity(sin(x)**2, x) == 2*pi
assert periodicity(3**tan(3*x), x) == pi/3
assert periodicity(tan(x)*cos(x), x) == 2*pi
assert periodicity(sin(x)**(tan(x)), x) == 2*pi
assert periodicity(tan(x)*sec(x), x) == 2*pi
assert periodicity(sin(2*x)*cos(2*x) - y, x) == pi/2
assert periodicity(tan(x) + cot(x), x) == pi
assert periodicity(sin(x) - cos(2*x), x) == 2*pi
assert periodicity(sin(x) - 1, x) == 2*pi
assert periodicity(sin(4*x) + sin(x)*cos(x), x) == pi
assert periodicity(exp(sin(x)), x) == 2*pi
assert periodicity(log(cot(2*x)) - sin(cos(2*x)), x) == pi
assert periodicity(sin(2*x)*exp(tan(x) - csc(2*x)), x) == pi
assert periodicity(cos(sec(x) - csc(2*x)), x) == 2*pi
assert periodicity(tan(sin(2*x)), x) == pi
assert periodicity(2*tan(x)**2, x) == pi
assert periodicity(sin(x%4), x) == 4
assert periodicity(sin(x)%4, x) == 2*pi
assert periodicity(tan((3*x-2)%4), x) == Rational(4, 3)
assert periodicity((sqrt(2)*(x+1)+x) % 3, x) == 3 / (sqrt(2)+1)
assert periodicity((x**2+1) % x, x) is None
assert periodicity(sin(re(x)), x) == 2*pi
assert periodicity(sin(x)**2 + cos(x)**2, x) is S.Zero
assert periodicity(tan(x), y) is S.Zero
assert periodicity(sin(x) + I*cos(x), x) == 2*pi
assert periodicity(x - sin(2*y), y) == pi
assert periodicity(exp(x), x) is None
assert periodicity(exp(I*x), x) == 2*pi
assert periodicity(exp(I*a), a) == 2*pi
assert periodicity(exp(a), a) is None
assert periodicity(exp(log(sin(a) + I*cos(2*a)), evaluate=False), a) == 2*pi
assert periodicity(exp(log(sin(2*a) + I*cos(a)), evaluate=False), a) == 2*pi
assert periodicity(exp(sin(a)), a) == 2*pi
assert periodicity(exp(2*I*a), a) == pi
assert periodicity(exp(a + I*sin(a)), a) is None
assert periodicity(exp(cos(a/2) + sin(a)), a) == 4*pi
assert periodicity(log(x), x) is None
assert periodicity(exp(x)**sin(x), x) is None
assert periodicity(sin(x)**y, y) is None
assert periodicity(Abs(sin(Abs(sin(x)))), x) == pi
assert all(periodicity(Abs(f(x)), x) == pi for f in (
cos, sin, sec, csc, tan, cot))
assert periodicity(Abs(sin(tan(x))), x) == pi
assert periodicity(Abs(sin(sin(x) + tan(x))), x) == 2*pi
assert periodicity(sin(x) > S.Half, x) == 2*pi
assert periodicity(x > 2, x) is None
assert periodicity(x**3 - x**2 + 1, x) is None
assert periodicity(Abs(x), x) is None
assert periodicity(Abs(x**2 - 1), x) is None
assert periodicity((x**2 + 4)%2, x) is None
assert periodicity((E**x)%3, x) is None
assert periodicity(sin(expint(1, x))/expint(1, x), x) is None
# returning `None` for any Piecewise
p = Piecewise((0, x < -1), (x**2, x <= 1), (log(x), True))
assert periodicity(p, x) is None
m = MatrixSymbol('m', 3, 3)
raises(NotImplementedError, lambda: periodicity(sin(m), m))
raises(NotImplementedError, lambda: periodicity(sin(m[0, 0]), m))
raises(NotImplementedError, lambda: periodicity(sin(m), m[0, 0]))
raises(NotImplementedError, lambda: periodicity(sin(m[0, 0]), m[0, 0]))
def test_periodicity_check():
assert periodicity(tan(x), x, check=True) == pi
assert periodicity(sin(x) + cos(x), x, check=True) == 2*pi
assert periodicity(sec(x), x) == 2*pi
assert periodicity(sin(x*y), x) == 2*pi/abs(y)
assert periodicity(Abs(sec(sec(x))), x) == pi
def test_lcim():
assert lcim([S.Half, S(2), S(3)]) == 6
assert lcim([pi/2, pi/4, pi]) == pi
assert lcim([2*pi, pi/2]) == 2*pi
assert lcim([S.One, 2*pi]) is None
assert lcim([S(2) + 2*E, E/3 + Rational(1, 3), S.One + E]) == S(2) + 2*E
def test_is_convex():
assert is_convex(1/x, x, domain=Interval.open(0, oo)) == True
assert is_convex(1/x, x, domain=Interval(-oo, 0)) == False
assert is_convex(x**2, x, domain=Interval(0, oo)) == True
assert is_convex(1/x**3, x, domain=Interval.Lopen(0, oo)) == True
assert is_convex(-1/x**3, x, domain=Interval.Ropen(-oo, 0)) == True
assert is_convex(log(x) ,x) == False
assert is_convex(x**2+y**2, x, y) == True
assert is_convex(cos(x) + cos(y), x) == False
assert is_convex(8*x**2 - 2*y**2, x, y) == False
def test_stationary_points():
assert stationary_points(sin(x), x, Interval(-pi/2, pi/2)
) == {-pi/2, pi/2}
assert stationary_points(sin(x), x, Interval.Ropen(0, pi/4)
) is S.EmptySet
assert stationary_points(tan(x), x,
) is S.EmptySet
assert stationary_points(sin(x)*cos(x), x, Interval(0, pi)
) == {pi/4, pi*Rational(3, 4)}
assert stationary_points(sec(x), x, Interval(0, pi)
) == {0, pi}
assert stationary_points((x+3)*(x-2), x
) == FiniteSet(Rational(-1, 2))
assert stationary_points((x + 3)/(x - 2), x, Interval(-5, 5)
) is S.EmptySet
assert stationary_points((x**2+3)/(x-2), x
) == {2 - sqrt(7), 2 + sqrt(7)}
assert stationary_points((x**2+3)/(x-2), x, Interval(0, 5)
) == {2 + sqrt(7)}
assert stationary_points(x**4 + x**3 - 5*x**2, x, S.Reals
) == FiniteSet(-2, 0, Rational(5, 4))
assert stationary_points(exp(x), x
) is S.EmptySet
assert stationary_points(log(x) - x, x, S.Reals
) == {1}
assert stationary_points(cos(x), x, Union(Interval(0, 5), Interval(-6, -3))
) == {0, -pi, pi}
assert stationary_points(y, x, S.Reals
) == S.Reals
assert stationary_points(y, x, S.EmptySet) == S.EmptySet
def test_maximum():
assert maximum(sin(x), x) is S.One
assert maximum(sin(x), x, Interval(0, 1)) == sin(1)
assert maximum(tan(x), x) is oo
assert maximum(tan(x), x, Interval(-pi/4, pi/4)) is S.One
assert maximum(sin(x)*cos(x), x, S.Reals) == S.Half
assert simplify(maximum(sin(x)*cos(x), x, Interval(pi*Rational(3, 8), pi*Rational(5, 8)))
) == sqrt(2)/4
assert maximum((x+3)*(x-2), x) is oo
assert maximum((x+3)*(x-2), x, Interval(-5, 0)) == S(14)
assert maximum((x+3)/(x-2), x, Interval(-5, 0)) == Rational(2, 7)
assert simplify(maximum(-x**4-x**3+x**2+10, x)
) == 41*sqrt(41)/512 + Rational(5419, 512)
assert maximum(exp(x), x, Interval(-oo, 2)) == exp(2)
assert maximum(log(x) - x, x, S.Reals) is S.NegativeOne
assert maximum(cos(x), x, Union(Interval(0, 5), Interval(-6, -3))
) is S.One
assert maximum(cos(x)-sin(x), x, S.Reals) == sqrt(2)
assert maximum(y, x, S.Reals) == y
assert maximum(abs(a**3 + a), a, Interval(0, 2)) == 10
assert maximum(abs(60*a**3 + 24*a), a, Interval(0, 2)) == 528
assert maximum(abs(12*a*(5*a**2 + 2)), a, Interval(0, 2)) == 528
assert maximum(x/sqrt(x**2+1), x, S.Reals) == 1
raises(ValueError, lambda : maximum(sin(x), x, S.EmptySet))
raises(ValueError, lambda : maximum(log(cos(x)), x, S.EmptySet))
raises(ValueError, lambda : maximum(1/(x**2 + y**2 + 1), x, S.EmptySet))
raises(ValueError, lambda : maximum(sin(x), sin(x)))
raises(ValueError, lambda : maximum(sin(x), x*y, S.EmptySet))
raises(ValueError, lambda : maximum(sin(x), S.One))
def test_minimum():
assert minimum(sin(x), x) is S.NegativeOne
assert minimum(sin(x), x, Interval(1, 4)) == sin(4)
assert minimum(tan(x), x) is -oo
assert minimum(tan(x), x, Interval(-pi/4, pi/4)) is S.NegativeOne
assert minimum(sin(x)*cos(x), x, S.Reals) == Rational(-1, 2)
assert simplify(minimum(sin(x)*cos(x), x, Interval(pi*Rational(3, 8), pi*Rational(5, 8)))
) == -sqrt(2)/4
assert minimum((x+3)*(x-2), x) == Rational(-25, 4)
assert minimum((x+3)/(x-2), x, Interval(-5, 0)) == Rational(-3, 2)
assert minimum(x**4-x**3+x**2+10, x) == S(10)
assert minimum(exp(x), x, Interval(-2, oo)) == exp(-2)
assert minimum(log(x) - x, x, S.Reals) is -oo
assert minimum(cos(x), x, Union(Interval(0, 5), Interval(-6, -3))
) is S.NegativeOne
assert minimum(cos(x)-sin(x), x, S.Reals) == -sqrt(2)
assert minimum(y, x, S.Reals) == y
assert minimum(x/sqrt(x**2+1), x, S.Reals) == -1
raises(ValueError, lambda : minimum(sin(x), x, S.EmptySet))
raises(ValueError, lambda : minimum(log(cos(x)), x, S.EmptySet))
raises(ValueError, lambda : minimum(1/(x**2 + y**2 + 1), x, S.EmptySet))
raises(ValueError, lambda : minimum(sin(x), sin(x)))
raises(ValueError, lambda : minimum(sin(x), x*y, S.EmptySet))
raises(ValueError, lambda : minimum(sin(x), S.One))
def test_issue_19869():
assert (maximum(sqrt(3)*(x - 1)/(3*sqrt(x**2 + 1)), x)
) == sqrt(3)/3
def test_issue_16469():
f = abs(a)
assert function_range(f, a, S.Reals) == Interval(0, oo, False, True)
@_both_exp_pow
def test_issue_18747():
assert periodicity(exp(pi*I*(x/4 + S.Half/2)), x) == 8
def test_issue_25942():
assert (acos(x) > pi/3).as_set() == Interval.Ropen(-1, S(1)/2)
|