Spaces:
Sleeping
Sleeping
File size: 12,184 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
"""
Singularities
=============
This module implements algorithms for finding singularities for a function
and identifying types of functions.
The differential calculus methods in this module include methods to identify
the following function types in the given ``Interval``:
- Increasing
- Strictly Increasing
- Decreasing
- Strictly Decreasing
- Monotonic
"""
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.trigonometric import sec, csc, cot, tan, cos
from sympy.functions.elementary.hyperbolic import (
sech, csch, coth, tanh, cosh, asech, acsch, atanh, acoth)
from sympy.utilities.misc import filldedent
def singularities(expression, symbol, domain=None):
"""
Find singularities of a given function.
Parameters
==========
expression : Expr
The target function in which singularities need to be found.
symbol : Symbol
The symbol over the values of which the singularity in
expression in being searched for.
Returns
=======
Set
A set of values for ``symbol`` for which ``expression`` has a
singularity. An ``EmptySet`` is returned if ``expression`` has no
singularities for any given value of ``Symbol``.
Raises
======
NotImplementedError
Methods for determining the singularities of this function have
not been developed.
Notes
=====
This function does not find non-isolated singularities
nor does it find branch points of the expression.
Currently supported functions are:
- univariate continuous (real or complex) functions
References
==========
.. [1] https://en.wikipedia.org/wiki/Mathematical_singularity
Examples
========
>>> from sympy import singularities, Symbol, log
>>> x = Symbol('x', real=True)
>>> y = Symbol('y', real=False)
>>> singularities(x**2 + x + 1, x)
EmptySet
>>> singularities(1/(x + 1), x)
{-1}
>>> singularities(1/(y**2 + 1), y)
{-I, I}
>>> singularities(1/(y**3 + 1), y)
{-1, 1/2 - sqrt(3)*I/2, 1/2 + sqrt(3)*I/2}
>>> singularities(log(x), x)
{0}
"""
from sympy.solvers.solveset import solveset
if domain is None:
domain = S.Reals if symbol.is_real else S.Complexes
try:
sings = S.EmptySet
e = expression.rewrite([sec, csc, cot, tan], cos)
e = e.rewrite([sech, csch, coth, tanh], cosh)
for i in e.atoms(Pow):
if i.exp.is_infinite:
raise NotImplementedError
if i.exp.is_negative:
# XXX: exponent of varying sign not handled
sings += solveset(i.base, symbol, domain)
for i in expression.atoms(log, asech, acsch):
sings += solveset(i.args[0], symbol, domain)
for i in expression.atoms(atanh, acoth):
sings += solveset(i.args[0] - 1, symbol, domain)
sings += solveset(i.args[0] + 1, symbol, domain)
return sings
except NotImplementedError:
raise NotImplementedError(filldedent('''
Methods for determining the singularities
of this function have not been developed.'''))
###########################################################################
# DIFFERENTIAL CALCULUS METHODS #
###########################################################################
def monotonicity_helper(expression, predicate, interval=S.Reals, symbol=None):
"""
Helper function for functions checking function monotonicity.
Parameters
==========
expression : Expr
The target function which is being checked
predicate : function
The property being tested for. The function takes in an integer
and returns a boolean. The integer input is the derivative and
the boolean result should be true if the property is being held,
and false otherwise.
interval : Set, optional
The range of values in which we are testing, defaults to all reals.
symbol : Symbol, optional
The symbol present in expression which gets varied over the given range.
It returns a boolean indicating whether the interval in which
the function's derivative satisfies given predicate is a superset
of the given interval.
Returns
=======
Boolean
True if ``predicate`` is true for all the derivatives when ``symbol``
is varied in ``range``, False otherwise.
"""
from sympy.solvers.solveset import solveset
expression = sympify(expression)
free = expression.free_symbols
if symbol is None:
if len(free) > 1:
raise NotImplementedError(
'The function has not yet been implemented'
' for all multivariate expressions.'
)
variable = symbol or (free.pop() if free else Symbol('x'))
derivative = expression.diff(variable)
predicate_interval = solveset(predicate(derivative), variable, S.Reals)
return interval.is_subset(predicate_interval)
def is_increasing(expression, interval=S.Reals, symbol=None):
"""
Return whether the function is increasing in the given interval.
Parameters
==========
expression : Expr
The target function which is being checked.
interval : Set, optional
The range of values in which we are testing (defaults to set of
all real numbers).
symbol : Symbol, optional
The symbol present in expression which gets varied over the given range.
Returns
=======
Boolean
True if ``expression`` is increasing (either strictly increasing or
constant) in the given ``interval``, False otherwise.
Examples
========
>>> from sympy import is_increasing
>>> from sympy.abc import x, y
>>> from sympy import S, Interval, oo
>>> is_increasing(x**3 - 3*x**2 + 4*x, S.Reals)
True
>>> is_increasing(-x**2, Interval(-oo, 0))
True
>>> is_increasing(-x**2, Interval(0, oo))
False
>>> is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3))
False
>>> is_increasing(x**2 + y, Interval(1, 2), x)
True
"""
return monotonicity_helper(expression, lambda x: x >= 0, interval, symbol)
def is_strictly_increasing(expression, interval=S.Reals, symbol=None):
"""
Return whether the function is strictly increasing in the given interval.
Parameters
==========
expression : Expr
The target function which is being checked.
interval : Set, optional
The range of values in which we are testing (defaults to set of
all real numbers).
symbol : Symbol, optional
The symbol present in expression which gets varied over the given range.
Returns
=======
Boolean
True if ``expression`` is strictly increasing in the given ``interval``,
False otherwise.
Examples
========
>>> from sympy import is_strictly_increasing
>>> from sympy.abc import x, y
>>> from sympy import Interval, oo
>>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2))
True
>>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo))
True
>>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3))
False
>>> is_strictly_increasing(-x**2, Interval(0, oo))
False
>>> is_strictly_increasing(-x**2 + y, Interval(-oo, 0), x)
False
"""
return monotonicity_helper(expression, lambda x: x > 0, interval, symbol)
def is_decreasing(expression, interval=S.Reals, symbol=None):
"""
Return whether the function is decreasing in the given interval.
Parameters
==========
expression : Expr
The target function which is being checked.
interval : Set, optional
The range of values in which we are testing (defaults to set of
all real numbers).
symbol : Symbol, optional
The symbol present in expression which gets varied over the given range.
Returns
=======
Boolean
True if ``expression`` is decreasing (either strictly decreasing or
constant) in the given ``interval``, False otherwise.
Examples
========
>>> from sympy import is_decreasing
>>> from sympy.abc import x, y
>>> from sympy import S, Interval, oo
>>> is_decreasing(1/(x**2 - 3*x), Interval.open(S(3)/2, 3))
True
>>> is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3))
True
>>> is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
True
>>> is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
False
>>> is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, 1.5))
False
>>> is_decreasing(-x**2, Interval(-oo, 0))
False
>>> is_decreasing(-x**2 + y, Interval(-oo, 0), x)
False
"""
return monotonicity_helper(expression, lambda x: x <= 0, interval, symbol)
def is_strictly_decreasing(expression, interval=S.Reals, symbol=None):
"""
Return whether the function is strictly decreasing in the given interval.
Parameters
==========
expression : Expr
The target function which is being checked.
interval : Set, optional
The range of values in which we are testing (defaults to set of
all real numbers).
symbol : Symbol, optional
The symbol present in expression which gets varied over the given range.
Returns
=======
Boolean
True if ``expression`` is strictly decreasing in the given ``interval``,
False otherwise.
Examples
========
>>> from sympy import is_strictly_decreasing
>>> from sympy.abc import x, y
>>> from sympy import S, Interval, oo
>>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo))
True
>>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2))
False
>>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, 1.5))
False
>>> is_strictly_decreasing(-x**2, Interval(-oo, 0))
False
>>> is_strictly_decreasing(-x**2 + y, Interval(-oo, 0), x)
False
"""
return monotonicity_helper(expression, lambda x: x < 0, interval, symbol)
def is_monotonic(expression, interval=S.Reals, symbol=None):
"""
Return whether the function is monotonic in the given interval.
Parameters
==========
expression : Expr
The target function which is being checked.
interval : Set, optional
The range of values in which we are testing (defaults to set of
all real numbers).
symbol : Symbol, optional
The symbol present in expression which gets varied over the given range.
Returns
=======
Boolean
True if ``expression`` is monotonic in the given ``interval``,
False otherwise.
Raises
======
NotImplementedError
Monotonicity check has not been implemented for the queried function.
Examples
========
>>> from sympy import is_monotonic
>>> from sympy.abc import x, y
>>> from sympy import S, Interval, oo
>>> is_monotonic(1/(x**2 - 3*x), Interval.open(S(3)/2, 3))
True
>>> is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3))
True
>>> is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo))
True
>>> is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals)
True
>>> is_monotonic(-x**2, S.Reals)
False
>>> is_monotonic(x**2 + y + 1, Interval(1, 2), x)
True
"""
from sympy.solvers.solveset import solveset
expression = sympify(expression)
free = expression.free_symbols
if symbol is None and len(free) > 1:
raise NotImplementedError(
'is_monotonic has not yet been implemented'
' for all multivariate expressions.'
)
variable = symbol or (free.pop() if free else Symbol('x'))
turning_points = solveset(expression.diff(variable), variable, interval)
return interval.intersection(turning_points) is S.EmptySet
|