Spaces:
Sleeping
Sleeping
File size: 17,053 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
"""
Finite difference weights
=========================
This module implements an algorithm for efficient generation of finite
difference weights for ordinary differentials of functions for
derivatives from 0 (interpolation) up to arbitrary order.
The core algorithm is provided in the finite difference weight generating
function (``finite_diff_weights``), and two convenience functions are provided
for:
- estimating a derivative (or interpolate) directly from a series of points
is also provided (``apply_finite_diff``).
- differentiating by using finite difference approximations
(``differentiate_finite``).
"""
from sympy.core.function import Derivative
from sympy.core.singleton import S
from sympy.core.function import Subs
from sympy.core.traversal import preorder_traversal
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.iterables import iterable
def finite_diff_weights(order, x_list, x0=S.One):
"""
Calculates the finite difference weights for an arbitrarily spaced
one-dimensional grid (``x_list``) for derivatives at ``x0`` of order
0, 1, ..., up to ``order`` using a recursive formula. Order of accuracy
is at least ``len(x_list) - order``, if ``x_list`` is defined correctly.
Parameters
==========
order: int
Up to what derivative order weights should be calculated.
0 corresponds to interpolation.
x_list: sequence
Sequence of (unique) values for the independent variable.
It is useful (but not necessary) to order ``x_list`` from
nearest to furthest from ``x0``; see examples below.
x0: Number or Symbol
Root or value of the independent variable for which the finite
difference weights should be generated. Default is ``S.One``.
Returns
=======
list
A list of sublists, each corresponding to coefficients for
increasing derivative order, and each containing lists of
coefficients for increasing subsets of x_list.
Examples
========
>>> from sympy import finite_diff_weights, S
>>> res = finite_diff_weights(1, [-S(1)/2, S(1)/2, S(3)/2, S(5)/2], 0)
>>> res
[[[1, 0, 0, 0],
[1/2, 1/2, 0, 0],
[3/8, 3/4, -1/8, 0],
[5/16, 15/16, -5/16, 1/16]],
[[0, 0, 0, 0],
[-1, 1, 0, 0],
[-1, 1, 0, 0],
[-23/24, 7/8, 1/8, -1/24]]]
>>> res[0][-1] # FD weights for 0th derivative, using full x_list
[5/16, 15/16, -5/16, 1/16]
>>> res[1][-1] # FD weights for 1st derivative
[-23/24, 7/8, 1/8, -1/24]
>>> res[1][-2] # FD weights for 1st derivative, using x_list[:-1]
[-1, 1, 0, 0]
>>> res[1][-1][0] # FD weight for 1st deriv. for x_list[0]
-23/24
>>> res[1][-1][1] # FD weight for 1st deriv. for x_list[1], etc.
7/8
Each sublist contains the most accurate formula at the end.
Note, that in the above example ``res[1][1]`` is the same as ``res[1][2]``.
Since res[1][2] has an order of accuracy of
``len(x_list[:3]) - order = 3 - 1 = 2``, the same is true for ``res[1][1]``!
>>> res = finite_diff_weights(1, [S(0), S(1), -S(1), S(2), -S(2)], 0)[1]
>>> res
[[0, 0, 0, 0, 0],
[-1, 1, 0, 0, 0],
[0, 1/2, -1/2, 0, 0],
[-1/2, 1, -1/3, -1/6, 0],
[0, 2/3, -2/3, -1/12, 1/12]]
>>> res[0] # no approximation possible, using x_list[0] only
[0, 0, 0, 0, 0]
>>> res[1] # classic forward step approximation
[-1, 1, 0, 0, 0]
>>> res[2] # classic centered approximation
[0, 1/2, -1/2, 0, 0]
>>> res[3:] # higher order approximations
[[-1/2, 1, -1/3, -1/6, 0], [0, 2/3, -2/3, -1/12, 1/12]]
Let us compare this to a differently defined ``x_list``. Pay attention to
``foo[i][k]`` corresponding to the gridpoint defined by ``x_list[k]``.
>>> foo = finite_diff_weights(1, [-S(2), -S(1), S(0), S(1), S(2)], 0)[1]
>>> foo
[[0, 0, 0, 0, 0],
[-1, 1, 0, 0, 0],
[1/2, -2, 3/2, 0, 0],
[1/6, -1, 1/2, 1/3, 0],
[1/12, -2/3, 0, 2/3, -1/12]]
>>> foo[1] # not the same and of lower accuracy as res[1]!
[-1, 1, 0, 0, 0]
>>> foo[2] # classic double backward step approximation
[1/2, -2, 3/2, 0, 0]
>>> foo[4] # the same as res[4]
[1/12, -2/3, 0, 2/3, -1/12]
Note that, unless you plan on using approximations based on subsets of
``x_list``, the order of gridpoints does not matter.
The capability to generate weights at arbitrary points can be
used e.g. to minimize Runge's phenomenon by using Chebyshev nodes:
>>> from sympy import cos, symbols, pi, simplify
>>> N, (h, x) = 4, symbols('h x')
>>> x_list = [x+h*cos(i*pi/(N)) for i in range(N,-1,-1)] # chebyshev nodes
>>> print(x_list)
[-h + x, -sqrt(2)*h/2 + x, x, sqrt(2)*h/2 + x, h + x]
>>> mycoeffs = finite_diff_weights(1, x_list, 0)[1][4]
>>> [simplify(c) for c in mycoeffs] #doctest: +NORMALIZE_WHITESPACE
[(h**3/2 + h**2*x - 3*h*x**2 - 4*x**3)/h**4,
(-sqrt(2)*h**3 - 4*h**2*x + 3*sqrt(2)*h*x**2 + 8*x**3)/h**4,
(6*h**2*x - 8*x**3)/h**4,
(sqrt(2)*h**3 - 4*h**2*x - 3*sqrt(2)*h*x**2 + 8*x**3)/h**4,
(-h**3/2 + h**2*x + 3*h*x**2 - 4*x**3)/h**4]
Notes
=====
If weights for a finite difference approximation of 3rd order
derivative is wanted, weights for 0th, 1st and 2nd order are
calculated "for free", so are formulae using subsets of ``x_list``.
This is something one can take advantage of to save computational cost.
Be aware that one should define ``x_list`` from nearest to furthest from
``x0``. If not, subsets of ``x_list`` will yield poorer approximations,
which might not grand an order of accuracy of ``len(x_list) - order``.
See also
========
sympy.calculus.finite_diff.apply_finite_diff
References
==========
.. [1] Generation of Finite Difference Formulas on Arbitrarily Spaced
Grids, Bengt Fornberg; Mathematics of computation; 51; 184;
(1988); 699-706; doi:10.1090/S0025-5718-1988-0935077-0
"""
# The notation below closely corresponds to the one used in the paper.
order = S(order)
if not order.is_number:
raise ValueError("Cannot handle symbolic order.")
if order < 0:
raise ValueError("Negative derivative order illegal.")
if int(order) != order:
raise ValueError("Non-integer order illegal")
M = order
N = len(x_list) - 1
delta = [[[0 for nu in range(N+1)] for n in range(N+1)] for
m in range(M+1)]
delta[0][0][0] = S.One
c1 = S.One
for n in range(1, N+1):
c2 = S.One
for nu in range(n):
c3 = x_list[n] - x_list[nu]
c2 = c2 * c3
if n <= M:
delta[n][n-1][nu] = 0
for m in range(min(n, M)+1):
delta[m][n][nu] = (x_list[n]-x0)*delta[m][n-1][nu] -\
m*delta[m-1][n-1][nu]
delta[m][n][nu] /= c3
for m in range(min(n, M)+1):
delta[m][n][n] = c1/c2*(m*delta[m-1][n-1][n-1] -
(x_list[n-1]-x0)*delta[m][n-1][n-1])
c1 = c2
return delta
def apply_finite_diff(order, x_list, y_list, x0=S.Zero):
"""
Calculates the finite difference approximation of
the derivative of requested order at ``x0`` from points
provided in ``x_list`` and ``y_list``.
Parameters
==========
order: int
order of derivative to approximate. 0 corresponds to interpolation.
x_list: sequence
Sequence of (unique) values for the independent variable.
y_list: sequence
The function value at corresponding values for the independent
variable in x_list.
x0: Number or Symbol
At what value of the independent variable the derivative should be
evaluated. Defaults to 0.
Returns
=======
sympy.core.add.Add or sympy.core.numbers.Number
The finite difference expression approximating the requested
derivative order at ``x0``.
Examples
========
>>> from sympy import apply_finite_diff
>>> cube = lambda arg: (1.0*arg)**3
>>> xlist = range(-3,3+1)
>>> apply_finite_diff(2, xlist, map(cube, xlist), 2) - 12 # doctest: +SKIP
-3.55271367880050e-15
we see that the example above only contain rounding errors.
apply_finite_diff can also be used on more abstract objects:
>>> from sympy import IndexedBase, Idx
>>> x, y = map(IndexedBase, 'xy')
>>> i = Idx('i')
>>> x_list, y_list = zip(*[(x[i+j], y[i+j]) for j in range(-1,2)])
>>> apply_finite_diff(1, x_list, y_list, x[i])
((x[i + 1] - x[i])/(-x[i - 1] + x[i]) - 1)*y[i]/(x[i + 1] - x[i]) -
(x[i + 1] - x[i])*y[i - 1]/((x[i + 1] - x[i - 1])*(-x[i - 1] + x[i])) +
(-x[i - 1] + x[i])*y[i + 1]/((x[i + 1] - x[i - 1])*(x[i + 1] - x[i]))
Notes
=====
Order = 0 corresponds to interpolation.
Only supply so many points you think makes sense
to around x0 when extracting the derivative (the function
need to be well behaved within that region). Also beware
of Runge's phenomenon.
See also
========
sympy.calculus.finite_diff.finite_diff_weights
References
==========
Fortran 90 implementation with Python interface for numerics: finitediff_
.. _finitediff: https://github.com/bjodah/finitediff
"""
# In the original paper the following holds for the notation:
# M = order
# N = len(x_list) - 1
N = len(x_list) - 1
if len(x_list) != len(y_list):
raise ValueError("x_list and y_list not equal in length.")
delta = finite_diff_weights(order, x_list, x0)
derivative = 0
for nu in range(len(x_list)):
derivative += delta[order][N][nu]*y_list[nu]
return derivative
def _as_finite_diff(derivative, points=1, x0=None, wrt=None):
"""
Returns an approximation of a derivative of a function in
the form of a finite difference formula. The expression is a
weighted sum of the function at a number of discrete values of
(one of) the independent variable(s).
Parameters
==========
derivative: a Derivative instance
points: sequence or coefficient, optional
If sequence: discrete values (length >= order+1) of the
independent variable used for generating the finite
difference weights.
If it is a coefficient, it will be used as the step-size
for generating an equidistant sequence of length order+1
centered around ``x0``. default: 1 (step-size 1)
x0: number or Symbol, optional
the value of the independent variable (``wrt``) at which the
derivative is to be approximated. Default: same as ``wrt``.
wrt: Symbol, optional
"with respect to" the variable for which the (partial)
derivative is to be approximated for. If not provided it
is required that the Derivative is ordinary. Default: ``None``.
Examples
========
>>> from sympy import symbols, Function, exp, sqrt, Symbol
>>> from sympy.calculus.finite_diff import _as_finite_diff
>>> x, h = symbols('x h')
>>> f = Function('f')
>>> _as_finite_diff(f(x).diff(x))
-f(x - 1/2) + f(x + 1/2)
The default step size and number of points are 1 and ``order + 1``
respectively. We can change the step size by passing a symbol
as a parameter:
>>> _as_finite_diff(f(x).diff(x), h)
-f(-h/2 + x)/h + f(h/2 + x)/h
We can also specify the discretized values to be used in a sequence:
>>> _as_finite_diff(f(x).diff(x), [x, x+h, x+2*h])
-3*f(x)/(2*h) + 2*f(h + x)/h - f(2*h + x)/(2*h)
The algorithm is not restricted to use equidistant spacing, nor
do we need to make the approximation around ``x0``, but we can get
an expression estimating the derivative at an offset:
>>> e, sq2 = exp(1), sqrt(2)
>>> xl = [x-h, x+h, x+e*h]
>>> _as_finite_diff(f(x).diff(x, 1), xl, x+h*sq2)
2*h*((h + sqrt(2)*h)/(2*h) - (-sqrt(2)*h + h)/(2*h))*f(E*h + x)/((-h + E*h)*(h + E*h)) +
(-(-sqrt(2)*h + h)/(2*h) - (-sqrt(2)*h + E*h)/(2*h))*f(-h + x)/(h + E*h) +
(-(h + sqrt(2)*h)/(2*h) + (-sqrt(2)*h + E*h)/(2*h))*f(h + x)/(-h + E*h)
Partial derivatives are also supported:
>>> y = Symbol('y')
>>> d2fdxdy=f(x,y).diff(x,y)
>>> _as_finite_diff(d2fdxdy, wrt=x)
-Derivative(f(x - 1/2, y), y) + Derivative(f(x + 1/2, y), y)
See also
========
sympy.calculus.finite_diff.apply_finite_diff
sympy.calculus.finite_diff.finite_diff_weights
"""
if derivative.is_Derivative:
pass
elif derivative.is_Atom:
return derivative
else:
return derivative.fromiter(
[_as_finite_diff(ar, points, x0, wrt) for ar
in derivative.args], **derivative.assumptions0)
if wrt is None:
old = None
for v in derivative.variables:
if old is v:
continue
derivative = _as_finite_diff(derivative, points, x0, v)
old = v
return derivative
order = derivative.variables.count(wrt)
if x0 is None:
x0 = wrt
if not iterable(points):
if getattr(points, 'is_Function', False) and wrt in points.args:
points = points.subs(wrt, x0)
# points is simply the step-size, let's make it a
# equidistant sequence centered around x0
if order % 2 == 0:
# even order => odd number of points, grid point included
points = [x0 + points*i for i
in range(-order//2, order//2 + 1)]
else:
# odd order => even number of points, half-way wrt grid point
points = [x0 + points*S(i)/2 for i
in range(-order, order + 1, 2)]
others = [wrt, 0]
for v in set(derivative.variables):
if v == wrt:
continue
others += [v, derivative.variables.count(v)]
if len(points) < order+1:
raise ValueError("Too few points for order %d" % order)
return apply_finite_diff(order, points, [
Derivative(derivative.expr.subs({wrt: x}), *others) for
x in points], x0)
def differentiate_finite(expr, *symbols,
points=1, x0=None, wrt=None, evaluate=False):
r""" Differentiate expr and replace Derivatives with finite differences.
Parameters
==========
expr : expression
\*symbols : differentiate with respect to symbols
points: sequence, coefficient or undefined function, optional
see ``Derivative.as_finite_difference``
x0: number or Symbol, optional
see ``Derivative.as_finite_difference``
wrt: Symbol, optional
see ``Derivative.as_finite_difference``
Examples
========
>>> from sympy import sin, Function, differentiate_finite
>>> from sympy.abc import x, y, h
>>> f, g = Function('f'), Function('g')
>>> differentiate_finite(f(x)*g(x), x, points=[x-h, x+h])
-f(-h + x)*g(-h + x)/(2*h) + f(h + x)*g(h + x)/(2*h)
``differentiate_finite`` works on any expression, including the expressions
with embedded derivatives:
>>> differentiate_finite(f(x) + sin(x), x, 2)
-2*f(x) + f(x - 1) + f(x + 1) - 2*sin(x) + sin(x - 1) + sin(x + 1)
>>> differentiate_finite(f(x, y), x, y)
f(x - 1/2, y - 1/2) - f(x - 1/2, y + 1/2) - f(x + 1/2, y - 1/2) + f(x + 1/2, y + 1/2)
>>> differentiate_finite(f(x)*g(x).diff(x), x)
(-g(x) + g(x + 1))*f(x + 1/2) - (g(x) - g(x - 1))*f(x - 1/2)
To make finite difference with non-constant discretization step use
undefined functions:
>>> dx = Function('dx')
>>> differentiate_finite(f(x)*g(x).diff(x), points=dx(x))
-(-g(x - dx(x)/2 - dx(x - dx(x)/2)/2)/dx(x - dx(x)/2) +
g(x - dx(x)/2 + dx(x - dx(x)/2)/2)/dx(x - dx(x)/2))*f(x - dx(x)/2)/dx(x) +
(-g(x + dx(x)/2 - dx(x + dx(x)/2)/2)/dx(x + dx(x)/2) +
g(x + dx(x)/2 + dx(x + dx(x)/2)/2)/dx(x + dx(x)/2))*f(x + dx(x)/2)/dx(x)
"""
if any(term.is_Derivative for term in list(preorder_traversal(expr))):
evaluate = False
Dexpr = expr.diff(*symbols, evaluate=evaluate)
if evaluate:
sympy_deprecation_warning("""
The evaluate flag to differentiate_finite() is deprecated.
evaluate=True expands the intermediate derivatives before computing
differences, but this usually not what you want, as it does not
satisfy the product rule.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-differentiate_finite-evaluate",
)
return Dexpr.replace(
lambda arg: arg.is_Derivative,
lambda arg: arg.as_finite_difference(points=points, x0=x0, wrt=wrt))
else:
DFexpr = Dexpr.as_finite_difference(points=points, x0=x0, wrt=wrt)
return DFexpr.replace(
lambda arg: isinstance(arg, Subs),
lambda arg: arg.expr.as_finite_difference(
points=points, x0=arg.point[0], wrt=arg.variables[0]))
|