Spaces:
Sleeping
Sleeping
File size: 28,659 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 |
from sympy.core import Add, Mul, Pow, S
from sympy.core.basic import Basic
from sympy.core.expr import Expr
from sympy.core.numbers import _sympifyit, oo, zoo
from sympy.core.relational import is_le, is_lt, is_ge, is_gt
from sympy.core.sympify import _sympify
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.logic.boolalg import And
from sympy.multipledispatch import dispatch
from sympy.series.order import Order
from sympy.sets.sets import FiniteSet
class AccumulationBounds(Expr):
r"""An accumulation bounds.
# Note AccumulationBounds has an alias: AccumBounds
AccumulationBounds represent an interval `[a, b]`, which is always closed
at the ends. Here `a` and `b` can be any value from extended real numbers.
The intended meaning of AccummulationBounds is to give an approximate
location of the accumulation points of a real function at a limit point.
Let `a` and `b` be reals such that `a \le b`.
`\left\langle a, b\right\rangle = \{x \in \mathbb{R} \mid a \le x \le b\}`
`\left\langle -\infty, b\right\rangle = \{x \in \mathbb{R} \mid x \le b\} \cup \{-\infty, \infty\}`
`\left\langle a, \infty \right\rangle = \{x \in \mathbb{R} \mid a \le x\} \cup \{-\infty, \infty\}`
`\left\langle -\infty, \infty \right\rangle = \mathbb{R} \cup \{-\infty, \infty\}`
``oo`` and ``-oo`` are added to the second and third definition respectively,
since if either ``-oo`` or ``oo`` is an argument, then the other one should
be included (though not as an end point). This is forced, since we have,
for example, ``1/AccumBounds(0, 1) = AccumBounds(1, oo)``, and the limit at
`0` is not one-sided. As `x` tends to `0-`, then `1/x \rightarrow -\infty`, so `-\infty`
should be interpreted as belonging to ``AccumBounds(1, oo)`` though it need
not appear explicitly.
In many cases it suffices to know that the limit set is bounded.
However, in some other cases more exact information could be useful.
For example, all accumulation values of `\cos(x) + 1` are non-negative.
(``AccumBounds(-1, 1) + 1 = AccumBounds(0, 2)``)
A AccumulationBounds object is defined to be real AccumulationBounds,
if its end points are finite reals.
Let `X`, `Y` be real AccumulationBounds, then their sum, difference,
product are defined to be the following sets:
`X + Y = \{ x+y \mid x \in X \cap y \in Y\}`
`X - Y = \{ x-y \mid x \in X \cap y \in Y\}`
`X \times Y = \{ x \times y \mid x \in X \cap y \in Y\}`
When an AccumBounds is raised to a negative power, if 0 is contained
between the bounds then an infinite range is returned, otherwise if an
endpoint is 0 then a semi-infinite range with consistent sign will be returned.
AccumBounds in expressions behave a lot like Intervals but the
semantics are not necessarily the same. Division (or exponentiation
to a negative integer power) could be handled with *intervals* by
returning a union of the results obtained after splitting the
bounds between negatives and positives, but that is not done with
AccumBounds. In addition, bounds are assumed to be independent of
each other; if the same bound is used in more than one place in an
expression, the result may not be the supremum or infimum of the
expression (see below). Finally, when a boundary is ``1``,
exponentiation to the power of ``oo`` yields ``oo``, neither
``1`` nor ``nan``.
Examples
========
>>> from sympy import AccumBounds, sin, exp, log, pi, E, S, oo
>>> from sympy.abc import x
>>> AccumBounds(0, 1) + AccumBounds(1, 2)
AccumBounds(1, 3)
>>> AccumBounds(0, 1) - AccumBounds(0, 2)
AccumBounds(-2, 1)
>>> AccumBounds(-2, 3)*AccumBounds(-1, 1)
AccumBounds(-3, 3)
>>> AccumBounds(1, 2)*AccumBounds(3, 5)
AccumBounds(3, 10)
The exponentiation of AccumulationBounds is defined
as follows:
If 0 does not belong to `X` or `n > 0` then
`X^n = \{ x^n \mid x \in X\}`
>>> AccumBounds(1, 4)**(S(1)/2)
AccumBounds(1, 2)
otherwise, an infinite or semi-infinite result is obtained:
>>> 1/AccumBounds(-1, 1)
AccumBounds(-oo, oo)
>>> 1/AccumBounds(0, 2)
AccumBounds(1/2, oo)
>>> 1/AccumBounds(-oo, 0)
AccumBounds(-oo, 0)
A boundary of 1 will always generate all nonnegatives:
>>> AccumBounds(1, 2)**oo
AccumBounds(0, oo)
>>> AccumBounds(0, 1)**oo
AccumBounds(0, oo)
If the exponent is itself an AccumulationBounds or is not an
integer then unevaluated results will be returned unless the base
values are positive:
>>> AccumBounds(2, 3)**AccumBounds(-1, 2)
AccumBounds(1/3, 9)
>>> AccumBounds(-2, 3)**AccumBounds(-1, 2)
AccumBounds(-2, 3)**AccumBounds(-1, 2)
>>> AccumBounds(-2, -1)**(S(1)/2)
sqrt(AccumBounds(-2, -1))
Note: `\left\langle a, b\right\rangle^2` is not same as `\left\langle a, b\right\rangle \times \left\langle a, b\right\rangle`
>>> AccumBounds(-1, 1)**2
AccumBounds(0, 1)
>>> AccumBounds(1, 3) < 4
True
>>> AccumBounds(1, 3) < -1
False
Some elementary functions can also take AccumulationBounds as input.
A function `f` evaluated for some real AccumulationBounds `\left\langle a, b \right\rangle`
is defined as `f(\left\langle a, b\right\rangle) = \{ f(x) \mid a \le x \le b \}`
>>> sin(AccumBounds(pi/6, pi/3))
AccumBounds(1/2, sqrt(3)/2)
>>> exp(AccumBounds(0, 1))
AccumBounds(1, E)
>>> log(AccumBounds(1, E))
AccumBounds(0, 1)
Some symbol in an expression can be substituted for a AccumulationBounds
object. But it does not necessarily evaluate the AccumulationBounds for
that expression.
The same expression can be evaluated to different values depending upon
the form it is used for substitution since each instance of an
AccumulationBounds is considered independent. For example:
>>> (x**2 + 2*x + 1).subs(x, AccumBounds(-1, 1))
AccumBounds(-1, 4)
>>> ((x + 1)**2).subs(x, AccumBounds(-1, 1))
AccumBounds(0, 4)
References
==========
.. [1] https://en.wikipedia.org/wiki/Interval_arithmetic
.. [2] https://fab.cba.mit.edu/classes/S62.12/docs/Hickey_interval.pdf
Notes
=====
Do not use ``AccumulationBounds`` for floating point interval arithmetic
calculations, use ``mpmath.iv`` instead.
"""
is_extended_real = True
is_number = False
def __new__(cls, min, max):
min = _sympify(min)
max = _sympify(max)
# Only allow real intervals (use symbols with 'is_extended_real=True').
if not min.is_extended_real or not max.is_extended_real:
raise ValueError("Only real AccumulationBounds are supported")
if max == min:
return max
# Make sure that the created AccumBounds object will be valid.
if max.is_number and min.is_number:
bad = max.is_comparable and min.is_comparable and max < min
else:
bad = (max - min).is_extended_negative
if bad:
raise ValueError(
"Lower limit should be smaller than upper limit")
return Basic.__new__(cls, min, max)
# setting the operation priority
_op_priority = 11.0
def _eval_is_real(self):
if self.min.is_real and self.max.is_real:
return True
@property
def min(self):
"""
Returns the minimum possible value attained by AccumulationBounds
object.
Examples
========
>>> from sympy import AccumBounds
>>> AccumBounds(1, 3).min
1
"""
return self.args[0]
@property
def max(self):
"""
Returns the maximum possible value attained by AccumulationBounds
object.
Examples
========
>>> from sympy import AccumBounds
>>> AccumBounds(1, 3).max
3
"""
return self.args[1]
@property
def delta(self):
"""
Returns the difference of maximum possible value attained by
AccumulationBounds object and minimum possible value attained
by AccumulationBounds object.
Examples
========
>>> from sympy import AccumBounds
>>> AccumBounds(1, 3).delta
2
"""
return self.max - self.min
@property
def mid(self):
"""
Returns the mean of maximum possible value attained by
AccumulationBounds object and minimum possible value
attained by AccumulationBounds object.
Examples
========
>>> from sympy import AccumBounds
>>> AccumBounds(1, 3).mid
2
"""
return (self.min + self.max) / 2
@_sympifyit('other', NotImplemented)
def _eval_power(self, other):
return self.__pow__(other)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Expr):
if isinstance(other, AccumBounds):
return AccumBounds(
Add(self.min, other.min),
Add(self.max, other.max))
if other is S.Infinity and self.min is S.NegativeInfinity or \
other is S.NegativeInfinity and self.max is S.Infinity:
return AccumBounds(-oo, oo)
elif other.is_extended_real:
if self.min is S.NegativeInfinity and self.max is S.Infinity:
return AccumBounds(-oo, oo)
elif self.min is S.NegativeInfinity:
return AccumBounds(-oo, self.max + other)
elif self.max is S.Infinity:
return AccumBounds(self.min + other, oo)
else:
return AccumBounds(Add(self.min, other), Add(self.max, other))
return Add(self, other, evaluate=False)
return NotImplemented
__radd__ = __add__
def __neg__(self):
return AccumBounds(-self.max, -self.min)
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Expr):
if isinstance(other, AccumBounds):
return AccumBounds(
Add(self.min, -other.max),
Add(self.max, -other.min))
if other is S.NegativeInfinity and self.min is S.NegativeInfinity or \
other is S.Infinity and self.max is S.Infinity:
return AccumBounds(-oo, oo)
elif other.is_extended_real:
if self.min is S.NegativeInfinity and self.max is S.Infinity:
return AccumBounds(-oo, oo)
elif self.min is S.NegativeInfinity:
return AccumBounds(-oo, self.max - other)
elif self.max is S.Infinity:
return AccumBounds(self.min - other, oo)
else:
return AccumBounds(
Add(self.min, -other),
Add(self.max, -other))
return Add(self, -other, evaluate=False)
return NotImplemented
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
return self.__neg__() + other
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if self.args == (-oo, oo):
return self
if isinstance(other, Expr):
if isinstance(other, AccumBounds):
if other.args == (-oo, oo):
return other
v = set()
for a in self.args:
vi = other*a
v.update(vi.args or (vi,))
return AccumBounds(Min(*v), Max(*v))
if other is S.Infinity:
if self.min.is_zero:
return AccumBounds(0, oo)
if self.max.is_zero:
return AccumBounds(-oo, 0)
if other is S.NegativeInfinity:
if self.min.is_zero:
return AccumBounds(-oo, 0)
if self.max.is_zero:
return AccumBounds(0, oo)
if other.is_extended_real:
if other.is_zero:
if self.max is S.Infinity:
return AccumBounds(0, oo)
if self.min is S.NegativeInfinity:
return AccumBounds(-oo, 0)
return S.Zero
if other.is_extended_positive:
return AccumBounds(
Mul(self.min, other),
Mul(self.max, other))
elif other.is_extended_negative:
return AccumBounds(
Mul(self.max, other),
Mul(self.min, other))
if isinstance(other, Order):
return other
return Mul(self, other, evaluate=False)
return NotImplemented
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __truediv__(self, other):
if isinstance(other, Expr):
if isinstance(other, AccumBounds):
if other.min.is_positive or other.max.is_negative:
return self * AccumBounds(1/other.max, 1/other.min)
if (self.min.is_extended_nonpositive and self.max.is_extended_nonnegative and
other.min.is_extended_nonpositive and other.max.is_extended_nonnegative):
if self.min.is_zero and other.min.is_zero:
return AccumBounds(0, oo)
if self.max.is_zero and other.min.is_zero:
return AccumBounds(-oo, 0)
return AccumBounds(-oo, oo)
if self.max.is_extended_negative:
if other.min.is_extended_negative:
if other.max.is_zero:
return AccumBounds(self.max / other.min, oo)
if other.max.is_extended_positive:
# if we were dealing with intervals we would return
# Union(Interval(-oo, self.max/other.max),
# Interval(self.max/other.min, oo))
return AccumBounds(-oo, oo)
if other.min.is_zero and other.max.is_extended_positive:
return AccumBounds(-oo, self.max / other.max)
if self.min.is_extended_positive:
if other.min.is_extended_negative:
if other.max.is_zero:
return AccumBounds(-oo, self.min / other.min)
if other.max.is_extended_positive:
# if we were dealing with intervals we would return
# Union(Interval(-oo, self.min/other.min),
# Interval(self.min/other.max, oo))
return AccumBounds(-oo, oo)
if other.min.is_zero and other.max.is_extended_positive:
return AccumBounds(self.min / other.max, oo)
elif other.is_extended_real:
if other in (S.Infinity, S.NegativeInfinity):
if self == AccumBounds(-oo, oo):
return AccumBounds(-oo, oo)
if self.max is S.Infinity:
return AccumBounds(Min(0, other), Max(0, other))
if self.min is S.NegativeInfinity:
return AccumBounds(Min(0, -other), Max(0, -other))
if other.is_extended_positive:
return AccumBounds(self.min / other, self.max / other)
elif other.is_extended_negative:
return AccumBounds(self.max / other, self.min / other)
if (1 / other) is S.ComplexInfinity:
return Mul(self, 1 / other, evaluate=False)
else:
return Mul(self, 1 / other)
return NotImplemented
@_sympifyit('other', NotImplemented)
def __rtruediv__(self, other):
if isinstance(other, Expr):
if other.is_extended_real:
if other.is_zero:
return S.Zero
if (self.min.is_extended_nonpositive and self.max.is_extended_nonnegative):
if self.min.is_zero:
if other.is_extended_positive:
return AccumBounds(Mul(other, 1 / self.max), oo)
if other.is_extended_negative:
return AccumBounds(-oo, Mul(other, 1 / self.max))
if self.max.is_zero:
if other.is_extended_positive:
return AccumBounds(-oo, Mul(other, 1 / self.min))
if other.is_extended_negative:
return AccumBounds(Mul(other, 1 / self.min), oo)
return AccumBounds(-oo, oo)
else:
return AccumBounds(Min(other / self.min, other / self.max),
Max(other / self.min, other / self.max))
return Mul(other, 1 / self, evaluate=False)
else:
return NotImplemented
@_sympifyit('other', NotImplemented)
def __pow__(self, other):
if isinstance(other, Expr):
if other is S.Infinity:
if self.min.is_extended_nonnegative:
if self.max < 1:
return S.Zero
if self.min > 1:
return S.Infinity
return AccumBounds(0, oo)
elif self.max.is_extended_negative:
if self.min > -1:
return S.Zero
if self.max < -1:
return zoo
return S.NaN
else:
if self.min > -1:
if self.max < 1:
return S.Zero
return AccumBounds(0, oo)
return AccumBounds(-oo, oo)
if other is S.NegativeInfinity:
return (1/self)**oo
# generically true
if (self.max - self.min).is_nonnegative:
# well defined
if self.min.is_nonnegative:
# no 0 to worry about
if other.is_nonnegative:
# no infinity to worry about
return self.func(self.min**other, self.max**other)
if other.is_zero:
return S.One # x**0 = 1
if other.is_Integer or other.is_integer:
if self.min.is_extended_positive:
return AccumBounds(
Min(self.min**other, self.max**other),
Max(self.min**other, self.max**other))
elif self.max.is_extended_negative:
return AccumBounds(
Min(self.max**other, self.min**other),
Max(self.max**other, self.min**other))
if other % 2 == 0:
if other.is_extended_negative:
if self.min.is_zero:
return AccumBounds(self.max**other, oo)
if self.max.is_zero:
return AccumBounds(self.min**other, oo)
return (1/self)**(-other)
return AccumBounds(
S.Zero, Max(self.min**other, self.max**other))
elif other % 2 == 1:
if other.is_extended_negative:
if self.min.is_zero:
return AccumBounds(self.max**other, oo)
if self.max.is_zero:
return AccumBounds(-oo, self.min**other)
return (1/self)**(-other)
return AccumBounds(self.min**other, self.max**other)
# non-integer exponent
# 0**neg or neg**frac yields complex
if (other.is_number or other.is_rational) and (
self.min.is_extended_nonnegative or (
other.is_extended_nonnegative and
self.min.is_extended_nonnegative)):
num, den = other.as_numer_denom()
if num is S.One:
return AccumBounds(*[i**(1/den) for i in self.args])
elif den is not S.One: # e.g. if other is not Float
return (self**num)**(1/den) # ok for non-negative base
if isinstance(other, AccumBounds):
if (self.min.is_extended_positive or
self.min.is_extended_nonnegative and
other.min.is_extended_nonnegative):
p = [self**i for i in other.args]
if not any(i.is_Pow for i in p):
a = [j for i in p for j in i.args or (i,)]
try:
return self.func(min(a), max(a))
except TypeError: # can't sort
pass
return Pow(self, other, evaluate=False)
return NotImplemented
@_sympifyit('other', NotImplemented)
def __rpow__(self, other):
if other.is_real and other.is_extended_nonnegative and (
self.max - self.min).is_extended_positive:
if other is S.One:
return S.One
if other.is_extended_positive:
a, b = [other**i for i in self.args]
if min(a, b) != a:
a, b = b, a
return self.func(a, b)
if other.is_zero:
if self.min.is_zero:
return self.func(0, 1)
if self.min.is_extended_positive:
return S.Zero
return Pow(other, self, evaluate=False)
def __abs__(self):
if self.max.is_extended_negative:
return self.__neg__()
elif self.min.is_extended_negative:
return AccumBounds(S.Zero, Max(abs(self.min), self.max))
else:
return self
def __contains__(self, other):
"""
Returns ``True`` if other is contained in self, where other
belongs to extended real numbers, ``False`` if not contained,
otherwise TypeError is raised.
Examples
========
>>> from sympy import AccumBounds, oo
>>> 1 in AccumBounds(-1, 3)
True
-oo and oo go together as limits (in AccumulationBounds).
>>> -oo in AccumBounds(1, oo)
True
>>> oo in AccumBounds(-oo, 0)
True
"""
other = _sympify(other)
if other in (S.Infinity, S.NegativeInfinity):
if self.min is S.NegativeInfinity or self.max is S.Infinity:
return True
return False
rv = And(self.min <= other, self.max >= other)
if rv not in (True, False):
raise TypeError("input failed to evaluate")
return rv
def intersection(self, other):
"""
Returns the intersection of 'self' and 'other'.
Here other can be an instance of :py:class:`~.FiniteSet` or AccumulationBounds.
Parameters
==========
other : AccumulationBounds
Another AccumulationBounds object with which the intersection
has to be computed.
Returns
=======
AccumulationBounds
Intersection of ``self`` and ``other``.
Examples
========
>>> from sympy import AccumBounds, FiniteSet
>>> AccumBounds(1, 3).intersection(AccumBounds(2, 4))
AccumBounds(2, 3)
>>> AccumBounds(1, 3).intersection(AccumBounds(4, 6))
EmptySet
>>> AccumBounds(1, 4).intersection(FiniteSet(1, 2, 5))
{1, 2}
"""
if not isinstance(other, (AccumBounds, FiniteSet)):
raise TypeError(
"Input must be AccumulationBounds or FiniteSet object")
if isinstance(other, FiniteSet):
fin_set = S.EmptySet
for i in other:
if i in self:
fin_set = fin_set + FiniteSet(i)
return fin_set
if self.max < other.min or self.min > other.max:
return S.EmptySet
if self.min <= other.min:
if self.max <= other.max:
return AccumBounds(other.min, self.max)
if self.max > other.max:
return other
if other.min <= self.min:
if other.max < self.max:
return AccumBounds(self.min, other.max)
if other.max > self.max:
return self
def union(self, other):
# TODO : Devise a better method for Union of AccumBounds
# this method is not actually correct and
# can be made better
if not isinstance(other, AccumBounds):
raise TypeError(
"Input must be AccumulationBounds or FiniteSet object")
if self.min <= other.min and self.max >= other.min:
return AccumBounds(self.min, Max(self.max, other.max))
if other.min <= self.min and other.max >= self.min:
return AccumBounds(other.min, Max(self.max, other.max))
@dispatch(AccumulationBounds, AccumulationBounds) # type: ignore # noqa:F811
def _eval_is_le(lhs, rhs): # noqa:F811
if is_le(lhs.max, rhs.min):
return True
if is_gt(lhs.min, rhs.max):
return False
@dispatch(AccumulationBounds, Basic) # type: ignore # noqa:F811
def _eval_is_le(lhs, rhs): # noqa: F811
"""
Returns ``True `` if range of values attained by ``lhs`` AccumulationBounds
object is greater than the range of values attained by ``rhs``,
where ``rhs`` may be any value of type AccumulationBounds object or
extended real number value, ``False`` if ``rhs`` satisfies
the same property, else an unevaluated :py:class:`~.Relational`.
Examples
========
>>> from sympy import AccumBounds, oo
>>> AccumBounds(1, 3) > AccumBounds(4, oo)
False
>>> AccumBounds(1, 4) > AccumBounds(3, 4)
AccumBounds(1, 4) > AccumBounds(3, 4)
>>> AccumBounds(1, oo) > -1
True
"""
if not rhs.is_extended_real:
raise TypeError(
"Invalid comparison of %s %s" %
(type(rhs), rhs))
elif rhs.is_comparable:
if is_le(lhs.max, rhs):
return True
if is_gt(lhs.min, rhs):
return False
@dispatch(AccumulationBounds, AccumulationBounds)
def _eval_is_ge(lhs, rhs): # noqa:F811
if is_ge(lhs.min, rhs.max):
return True
if is_lt(lhs.max, rhs.min):
return False
@dispatch(AccumulationBounds, Expr) # type:ignore
def _eval_is_ge(lhs, rhs): # noqa: F811
"""
Returns ``True`` if range of values attained by ``lhs`` AccumulationBounds
object is less that the range of values attained by ``rhs``, where
other may be any value of type AccumulationBounds object or extended
real number value, ``False`` if ``rhs`` satisfies the same
property, else an unevaluated :py:class:`~.Relational`.
Examples
========
>>> from sympy import AccumBounds, oo
>>> AccumBounds(1, 3) >= AccumBounds(4, oo)
False
>>> AccumBounds(1, 4) >= AccumBounds(3, 4)
AccumBounds(1, 4) >= AccumBounds(3, 4)
>>> AccumBounds(1, oo) >= 1
True
"""
if not rhs.is_extended_real:
raise TypeError(
"Invalid comparison of %s %s" %
(type(rhs), rhs))
elif rhs.is_comparable:
if is_ge(lhs.min, rhs):
return True
if is_lt(lhs.max, rhs):
return False
@dispatch(Expr, AccumulationBounds) # type:ignore
def _eval_is_ge(lhs, rhs): # noqa:F811
if not lhs.is_extended_real:
raise TypeError(
"Invalid comparison of %s %s" %
(type(lhs), lhs))
elif lhs.is_comparable:
if is_le(rhs.max, lhs):
return True
if is_gt(rhs.min, lhs):
return False
@dispatch(AccumulationBounds, AccumulationBounds) # type:ignore
def _eval_is_ge(lhs, rhs): # noqa:F811
if is_ge(lhs.min, rhs.max):
return True
if is_lt(lhs.max, rhs.min):
return False
# setting an alias for AccumulationBounds
AccumBounds = AccumulationBounds
|