Spaces:
Sleeping
Sleeping
File size: 8,834 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
from sympy.assumptions.ask import Q
from sympy.assumptions.refine import refine
from sympy.core.expr import Expr
from sympy.core.numbers import (I, Rational, nan, pi)
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.elementary.complexes import (Abs, arg, im, re, sign)
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (atan, atan2)
from sympy.abc import w, x, y, z
from sympy.core.relational import Eq, Ne
from sympy.functions.elementary.piecewise import Piecewise
from sympy.matrices.expressions.matexpr import MatrixSymbol
def test_Abs():
assert refine(Abs(x), Q.positive(x)) == x
assert refine(1 + Abs(x), Q.positive(x)) == 1 + x
assert refine(Abs(x), Q.negative(x)) == -x
assert refine(1 + Abs(x), Q.negative(x)) == 1 - x
assert refine(Abs(x**2)) != x**2
assert refine(Abs(x**2), Q.real(x)) == x**2
def test_pow1():
assert refine((-1)**x, Q.even(x)) == 1
assert refine((-1)**x, Q.odd(x)) == -1
assert refine((-2)**x, Q.even(x)) == 2**x
# nested powers
assert refine(sqrt(x**2)) != Abs(x)
assert refine(sqrt(x**2), Q.complex(x)) != Abs(x)
assert refine(sqrt(x**2), Q.real(x)) == Abs(x)
assert refine(sqrt(x**2), Q.positive(x)) == x
assert refine((x**3)**Rational(1, 3)) != x
assert refine((x**3)**Rational(1, 3), Q.real(x)) != x
assert refine((x**3)**Rational(1, 3), Q.positive(x)) == x
assert refine(sqrt(1/x), Q.real(x)) != 1/sqrt(x)
assert refine(sqrt(1/x), Q.positive(x)) == 1/sqrt(x)
# powers of (-1)
assert refine((-1)**(x + y), Q.even(x)) == (-1)**y
assert refine((-1)**(x + y + z), Q.odd(x) & Q.odd(z)) == (-1)**y
assert refine((-1)**(x + y + 1), Q.odd(x)) == (-1)**y
assert refine((-1)**(x + y + 2), Q.odd(x)) == (-1)**(y + 1)
assert refine((-1)**(x + 3)) == (-1)**(x + 1)
# continuation
assert refine((-1)**((-1)**x/2 - S.Half), Q.integer(x)) == (-1)**x
assert refine((-1)**((-1)**x/2 + S.Half), Q.integer(x)) == (-1)**(x + 1)
assert refine((-1)**((-1)**x/2 + 5*S.Half), Q.integer(x)) == (-1)**(x + 1)
def test_pow2():
assert refine((-1)**((-1)**x/2 - 7*S.Half), Q.integer(x)) == (-1)**(x + 1)
assert refine((-1)**((-1)**x/2 - 9*S.Half), Q.integer(x)) == (-1)**x
# powers of Abs
assert refine(Abs(x)**2, Q.real(x)) == x**2
assert refine(Abs(x)**3, Q.real(x)) == Abs(x)**3
assert refine(Abs(x)**2) == Abs(x)**2
def test_exp():
x = Symbol('x', integer=True)
assert refine(exp(pi*I*2*x)) == 1
assert refine(exp(pi*I*2*(x + S.Half))) == -1
assert refine(exp(pi*I*2*(x + Rational(1, 4)))) == I
assert refine(exp(pi*I*2*(x + Rational(3, 4)))) == -I
def test_Piecewise():
assert refine(Piecewise((1, x < 0), (3, True)), (x < 0)) == 1
assert refine(Piecewise((1, x < 0), (3, True)), ~(x < 0)) == 3
assert refine(Piecewise((1, x < 0), (3, True)), (y < 0)) == \
Piecewise((1, x < 0), (3, True))
assert refine(Piecewise((1, x > 0), (3, True)), (x > 0)) == 1
assert refine(Piecewise((1, x > 0), (3, True)), ~(x > 0)) == 3
assert refine(Piecewise((1, x > 0), (3, True)), (y > 0)) == \
Piecewise((1, x > 0), (3, True))
assert refine(Piecewise((1, x <= 0), (3, True)), (x <= 0)) == 1
assert refine(Piecewise((1, x <= 0), (3, True)), ~(x <= 0)) == 3
assert refine(Piecewise((1, x <= 0), (3, True)), (y <= 0)) == \
Piecewise((1, x <= 0), (3, True))
assert refine(Piecewise((1, x >= 0), (3, True)), (x >= 0)) == 1
assert refine(Piecewise((1, x >= 0), (3, True)), ~(x >= 0)) == 3
assert refine(Piecewise((1, x >= 0), (3, True)), (y >= 0)) == \
Piecewise((1, x >= 0), (3, True))
assert refine(Piecewise((1, Eq(x, 0)), (3, True)), (Eq(x, 0)))\
== 1
assert refine(Piecewise((1, Eq(x, 0)), (3, True)), (Eq(0, x)))\
== 1
assert refine(Piecewise((1, Eq(x, 0)), (3, True)), ~(Eq(x, 0)))\
== 3
assert refine(Piecewise((1, Eq(x, 0)), (3, True)), ~(Eq(0, x)))\
== 3
assert refine(Piecewise((1, Eq(x, 0)), (3, True)), (Eq(y, 0)))\
== Piecewise((1, Eq(x, 0)), (3, True))
assert refine(Piecewise((1, Ne(x, 0)), (3, True)), (Ne(x, 0)))\
== 1
assert refine(Piecewise((1, Ne(x, 0)), (3, True)), ~(Ne(x, 0)))\
== 3
assert refine(Piecewise((1, Ne(x, 0)), (3, True)), (Ne(y, 0)))\
== Piecewise((1, Ne(x, 0)), (3, True))
def test_atan2():
assert refine(atan2(y, x), Q.real(y) & Q.positive(x)) == atan(y/x)
assert refine(atan2(y, x), Q.negative(y) & Q.positive(x)) == atan(y/x)
assert refine(atan2(y, x), Q.negative(y) & Q.negative(x)) == atan(y/x) - pi
assert refine(atan2(y, x), Q.positive(y) & Q.negative(x)) == atan(y/x) + pi
assert refine(atan2(y, x), Q.zero(y) & Q.negative(x)) == pi
assert refine(atan2(y, x), Q.positive(y) & Q.zero(x)) == pi/2
assert refine(atan2(y, x), Q.negative(y) & Q.zero(x)) == -pi/2
assert refine(atan2(y, x), Q.zero(y) & Q.zero(x)) is nan
def test_re():
assert refine(re(x), Q.real(x)) == x
assert refine(re(x), Q.imaginary(x)) is S.Zero
assert refine(re(x+y), Q.real(x) & Q.real(y)) == x + y
assert refine(re(x+y), Q.real(x) & Q.imaginary(y)) == x
assert refine(re(x*y), Q.real(x) & Q.real(y)) == x * y
assert refine(re(x*y), Q.real(x) & Q.imaginary(y)) == 0
assert refine(re(x*y*z), Q.real(x) & Q.real(y) & Q.real(z)) == x * y * z
def test_im():
assert refine(im(x), Q.imaginary(x)) == -I*x
assert refine(im(x), Q.real(x)) is S.Zero
assert refine(im(x+y), Q.imaginary(x) & Q.imaginary(y)) == -I*x - I*y
assert refine(im(x+y), Q.real(x) & Q.imaginary(y)) == -I*y
assert refine(im(x*y), Q.imaginary(x) & Q.real(y)) == -I*x*y
assert refine(im(x*y), Q.imaginary(x) & Q.imaginary(y)) == 0
assert refine(im(1/x), Q.imaginary(x)) == -I/x
assert refine(im(x*y*z), Q.imaginary(x) & Q.imaginary(y)
& Q.imaginary(z)) == -I*x*y*z
def test_complex():
assert refine(re(1/(x + I*y)), Q.real(x) & Q.real(y)) == \
x/(x**2 + y**2)
assert refine(im(1/(x + I*y)), Q.real(x) & Q.real(y)) == \
-y/(x**2 + y**2)
assert refine(re((w + I*x) * (y + I*z)), Q.real(w) & Q.real(x) & Q.real(y)
& Q.real(z)) == w*y - x*z
assert refine(im((w + I*x) * (y + I*z)), Q.real(w) & Q.real(x) & Q.real(y)
& Q.real(z)) == w*z + x*y
def test_sign():
x = Symbol('x', real = True)
assert refine(sign(x), Q.positive(x)) == 1
assert refine(sign(x), Q.negative(x)) == -1
assert refine(sign(x), Q.zero(x)) == 0
assert refine(sign(x), True) == sign(x)
assert refine(sign(Abs(x)), Q.nonzero(x)) == 1
x = Symbol('x', imaginary=True)
assert refine(sign(x), Q.positive(im(x))) == S.ImaginaryUnit
assert refine(sign(x), Q.negative(im(x))) == -S.ImaginaryUnit
assert refine(sign(x), True) == sign(x)
x = Symbol('x', complex=True)
assert refine(sign(x), Q.zero(x)) == 0
def test_arg():
x = Symbol('x', complex = True)
assert refine(arg(x), Q.positive(x)) == 0
assert refine(arg(x), Q.negative(x)) == pi
def test_func_args():
class MyClass(Expr):
# A class with nontrivial .func
def __init__(self, *args):
self.my_member = ""
@property
def func(self):
def my_func(*args):
obj = MyClass(*args)
obj.my_member = self.my_member
return obj
return my_func
x = MyClass()
x.my_member = "A very important value"
assert x.my_member == refine(x).my_member
def test_issue_refine_9384():
assert refine(Piecewise((1, x < 0), (0, True)), Q.positive(x)) == 0
assert refine(Piecewise((1, x < 0), (0, True)), Q.negative(x)) == 1
assert refine(Piecewise((1, x > 0), (0, True)), Q.positive(x)) == 1
assert refine(Piecewise((1, x > 0), (0, True)), Q.negative(x)) == 0
def test_eval_refine():
class MockExpr(Expr):
def _eval_refine(self, assumptions):
return True
mock_obj = MockExpr()
assert refine(mock_obj)
def test_refine_issue_12724():
expr1 = refine(Abs(x * y), Q.positive(x))
expr2 = refine(Abs(x * y * z), Q.positive(x))
assert expr1 == x * Abs(y)
assert expr2 == x * Abs(y * z)
y1 = Symbol('y1', real = True)
expr3 = refine(Abs(x * y1**2 * z), Q.positive(x))
assert expr3 == x * y1**2 * Abs(z)
def test_matrixelement():
x = MatrixSymbol('x', 3, 3)
i = Symbol('i', positive = True)
j = Symbol('j', positive = True)
assert refine(x[0, 1], Q.symmetric(x)) == x[0, 1]
assert refine(x[1, 0], Q.symmetric(x)) == x[0, 1]
assert refine(x[i, j], Q.symmetric(x)) == x[j, i]
assert refine(x[j, i], Q.symmetric(x)) == x[j, i]
|