File size: 12,258 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
from sympy.assumptions.ask import (Q, ask)
from sympy.core.symbol import Symbol
from sympy.matrices.expressions.diagonal import (DiagMatrix, DiagonalMatrix)
from sympy.matrices.dense import Matrix
from sympy.matrices.expressions import (MatrixSymbol, Identity, ZeroMatrix,
        OneMatrix, Trace, MatrixSlice, Determinant, BlockMatrix, BlockDiagMatrix)
from sympy.matrices.expressions.factorizations import LofLU
from sympy.testing.pytest import XFAIL

X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 3)
Z = MatrixSymbol('Z', 2, 2)
A1x1 = MatrixSymbol('A1x1', 1, 1)
B1x1 = MatrixSymbol('B1x1', 1, 1)
C0x0 = MatrixSymbol('C0x0', 0, 0)
V1 = MatrixSymbol('V1', 2, 1)
V2 = MatrixSymbol('V2', 2, 1)

def test_square():
    assert ask(Q.square(X))
    assert not ask(Q.square(Y))
    assert ask(Q.square(Y*Y.T))

def test_invertible():
    assert ask(Q.invertible(X), Q.invertible(X))
    assert ask(Q.invertible(Y)) is False
    assert ask(Q.invertible(X*Y), Q.invertible(X)) is False
    assert ask(Q.invertible(X*Z), Q.invertible(X)) is None
    assert ask(Q.invertible(X*Z), Q.invertible(X) & Q.invertible(Z)) is True
    assert ask(Q.invertible(X.T)) is None
    assert ask(Q.invertible(X.T), Q.invertible(X)) is True
    assert ask(Q.invertible(X.I)) is True
    assert ask(Q.invertible(Identity(3))) is True
    assert ask(Q.invertible(ZeroMatrix(3, 3))) is False
    assert ask(Q.invertible(OneMatrix(1, 1))) is True
    assert ask(Q.invertible(OneMatrix(3, 3))) is False
    assert ask(Q.invertible(X), Q.fullrank(X) & Q.square(X))

def test_singular():
    assert ask(Q.singular(X)) is None
    assert ask(Q.singular(X), Q.invertible(X)) is False
    assert ask(Q.singular(X), ~Q.invertible(X)) is True

@XFAIL
def test_invertible_fullrank():
    assert ask(Q.invertible(X), Q.fullrank(X)) is True


def test_invertible_BlockMatrix():
    assert ask(Q.invertible(BlockMatrix([Identity(3)]))) == True
    assert ask(Q.invertible(BlockMatrix([ZeroMatrix(3, 3)]))) == False

    X = Matrix([[1, 2, 3], [3, 5, 4]])
    Y = Matrix([[4, 2, 7], [2, 3, 5]])
    # non-invertible A block
    assert ask(Q.invertible(BlockMatrix([
        [Matrix.ones(3, 3), Y.T],
        [X, Matrix.eye(2)],
    ]))) == True
    # non-invertible B block
    assert ask(Q.invertible(BlockMatrix([
        [Y.T, Matrix.ones(3, 3)],
        [Matrix.eye(2), X],
    ]))) == True
    # non-invertible C block
    assert ask(Q.invertible(BlockMatrix([
        [X, Matrix.eye(2)],
        [Matrix.ones(3, 3), Y.T],
    ]))) == True
    # non-invertible D block
    assert ask(Q.invertible(BlockMatrix([
        [Matrix.eye(2), X],
        [Y.T, Matrix.ones(3, 3)],
    ]))) == True


def test_invertible_BlockDiagMatrix():
    assert ask(Q.invertible(BlockDiagMatrix(Identity(3), Identity(5)))) == True
    assert ask(Q.invertible(BlockDiagMatrix(ZeroMatrix(3, 3), Identity(5)))) == False
    assert ask(Q.invertible(BlockDiagMatrix(Identity(3), OneMatrix(5, 5)))) == False


def test_symmetric():
    assert ask(Q.symmetric(X), Q.symmetric(X))
    assert ask(Q.symmetric(X*Z), Q.symmetric(X)) is None
    assert ask(Q.symmetric(X*Z), Q.symmetric(X) & Q.symmetric(Z)) is True
    assert ask(Q.symmetric(X + Z), Q.symmetric(X) & Q.symmetric(Z)) is True
    assert ask(Q.symmetric(Y)) is False
    assert ask(Q.symmetric(Y*Y.T)) is True
    assert ask(Q.symmetric(Y.T*X*Y)) is None
    assert ask(Q.symmetric(Y.T*X*Y), Q.symmetric(X)) is True
    assert ask(Q.symmetric(X**10), Q.symmetric(X)) is True
    assert ask(Q.symmetric(A1x1)) is True
    assert ask(Q.symmetric(A1x1 + B1x1)) is True
    assert ask(Q.symmetric(A1x1 * B1x1)) is True
    assert ask(Q.symmetric(V1.T*V1)) is True
    assert ask(Q.symmetric(V1.T*(V1 + V2))) is True
    assert ask(Q.symmetric(V1.T*(V1 + V2) + A1x1)) is True
    assert ask(Q.symmetric(MatrixSlice(Y, (0, 1), (1, 2)))) is True
    assert ask(Q.symmetric(Identity(3))) is True
    assert ask(Q.symmetric(ZeroMatrix(3, 3))) is True
    assert ask(Q.symmetric(OneMatrix(3, 3))) is True

def _test_orthogonal_unitary(predicate):
    assert ask(predicate(X), predicate(X))
    assert ask(predicate(X.T), predicate(X)) is True
    assert ask(predicate(X.I), predicate(X)) is True
    assert ask(predicate(X**2), predicate(X))
    assert ask(predicate(Y)) is False
    assert ask(predicate(X)) is None
    assert ask(predicate(X), ~Q.invertible(X)) is False
    assert ask(predicate(X*Z*X), predicate(X) & predicate(Z)) is True
    assert ask(predicate(Identity(3))) is True
    assert ask(predicate(ZeroMatrix(3, 3))) is False
    assert ask(Q.invertible(X), predicate(X))
    assert not ask(predicate(X + Z), predicate(X) & predicate(Z))

def test_orthogonal():
    _test_orthogonal_unitary(Q.orthogonal)

def test_unitary():
    _test_orthogonal_unitary(Q.unitary)
    assert ask(Q.unitary(X), Q.orthogonal(X))

def test_fullrank():
    assert ask(Q.fullrank(X), Q.fullrank(X))
    assert ask(Q.fullrank(X**2), Q.fullrank(X))
    assert ask(Q.fullrank(X.T), Q.fullrank(X)) is True
    assert ask(Q.fullrank(X)) is None
    assert ask(Q.fullrank(Y)) is None
    assert ask(Q.fullrank(X*Z), Q.fullrank(X) & Q.fullrank(Z)) is True
    assert ask(Q.fullrank(Identity(3))) is True
    assert ask(Q.fullrank(ZeroMatrix(3, 3))) is False
    assert ask(Q.fullrank(OneMatrix(1, 1))) is True
    assert ask(Q.fullrank(OneMatrix(3, 3))) is False
    assert ask(Q.invertible(X), ~Q.fullrank(X)) == False


def test_positive_definite():
    assert ask(Q.positive_definite(X), Q.positive_definite(X))
    assert ask(Q.positive_definite(X.T), Q.positive_definite(X)) is True
    assert ask(Q.positive_definite(X.I), Q.positive_definite(X)) is True
    assert ask(Q.positive_definite(Y)) is False
    assert ask(Q.positive_definite(X)) is None
    assert ask(Q.positive_definite(X**3), Q.positive_definite(X))
    assert ask(Q.positive_definite(X*Z*X),
            Q.positive_definite(X) & Q.positive_definite(Z)) is True
    assert ask(Q.positive_definite(X), Q.orthogonal(X))
    assert ask(Q.positive_definite(Y.T*X*Y),
            Q.positive_definite(X) & Q.fullrank(Y)) is True
    assert not ask(Q.positive_definite(Y.T*X*Y), Q.positive_definite(X))
    assert ask(Q.positive_definite(Identity(3))) is True
    assert ask(Q.positive_definite(ZeroMatrix(3, 3))) is False
    assert ask(Q.positive_definite(OneMatrix(1, 1))) is True
    assert ask(Q.positive_definite(OneMatrix(3, 3))) is False
    assert ask(Q.positive_definite(X + Z), Q.positive_definite(X) &
            Q.positive_definite(Z)) is True
    assert not ask(Q.positive_definite(-X), Q.positive_definite(X))
    assert ask(Q.positive(X[1, 1]), Q.positive_definite(X))

def test_triangular():
    assert ask(Q.upper_triangular(X + Z.T + Identity(2)), Q.upper_triangular(X) &
            Q.lower_triangular(Z)) is True
    assert ask(Q.upper_triangular(X*Z.T), Q.upper_triangular(X) &
            Q.lower_triangular(Z)) is True
    assert ask(Q.lower_triangular(Identity(3))) is True
    assert ask(Q.lower_triangular(ZeroMatrix(3, 3))) is True
    assert ask(Q.upper_triangular(ZeroMatrix(3, 3))) is True
    assert ask(Q.lower_triangular(OneMatrix(1, 1))) is True
    assert ask(Q.upper_triangular(OneMatrix(1, 1))) is True
    assert ask(Q.lower_triangular(OneMatrix(3, 3))) is False
    assert ask(Q.upper_triangular(OneMatrix(3, 3))) is False
    assert ask(Q.triangular(X), Q.unit_triangular(X))
    assert ask(Q.upper_triangular(X**3), Q.upper_triangular(X))
    assert ask(Q.lower_triangular(X**3), Q.lower_triangular(X))


def test_diagonal():
    assert ask(Q.diagonal(X + Z.T + Identity(2)), Q.diagonal(X) &
               Q.diagonal(Z)) is True
    assert ask(Q.diagonal(ZeroMatrix(3, 3)))
    assert ask(Q.diagonal(OneMatrix(1, 1))) is True
    assert ask(Q.diagonal(OneMatrix(3, 3))) is False
    assert ask(Q.lower_triangular(X) & Q.upper_triangular(X), Q.diagonal(X))
    assert ask(Q.diagonal(X), Q.lower_triangular(X) & Q.upper_triangular(X))
    assert ask(Q.symmetric(X), Q.diagonal(X))
    assert ask(Q.triangular(X), Q.diagonal(X))
    assert ask(Q.diagonal(C0x0))
    assert ask(Q.diagonal(A1x1))
    assert ask(Q.diagonal(A1x1 + B1x1))
    assert ask(Q.diagonal(A1x1*B1x1))
    assert ask(Q.diagonal(V1.T*V2))
    assert ask(Q.diagonal(V1.T*(X + Z)*V1))
    assert ask(Q.diagonal(MatrixSlice(Y, (0, 1), (1, 2)))) is True
    assert ask(Q.diagonal(V1.T*(V1 + V2))) is True
    assert ask(Q.diagonal(X**3), Q.diagonal(X))
    assert ask(Q.diagonal(Identity(3)))
    assert ask(Q.diagonal(DiagMatrix(V1)))
    assert ask(Q.diagonal(DiagonalMatrix(X)))


def test_non_atoms():
    assert ask(Q.real(Trace(X)), Q.positive(Trace(X)))

@XFAIL
def test_non_trivial_implies():
    X = MatrixSymbol('X', 3, 3)
    Y = MatrixSymbol('Y', 3, 3)
    assert ask(Q.lower_triangular(X+Y), Q.lower_triangular(X) &
               Q.lower_triangular(Y)) is True
    assert ask(Q.triangular(X), Q.lower_triangular(X)) is True
    assert ask(Q.triangular(X+Y), Q.lower_triangular(X) &
               Q.lower_triangular(Y)) is True

def test_MatrixSlice():
    X = MatrixSymbol('X', 4, 4)
    B = MatrixSlice(X, (1, 3), (1, 3))
    C = MatrixSlice(X, (0, 3), (1, 3))
    assert ask(Q.symmetric(B), Q.symmetric(X))
    assert ask(Q.invertible(B), Q.invertible(X))
    assert ask(Q.diagonal(B), Q.diagonal(X))
    assert ask(Q.orthogonal(B), Q.orthogonal(X))
    assert ask(Q.upper_triangular(B), Q.upper_triangular(X))

    assert not ask(Q.symmetric(C), Q.symmetric(X))
    assert not ask(Q.invertible(C), Q.invertible(X))
    assert not ask(Q.diagonal(C), Q.diagonal(X))
    assert not ask(Q.orthogonal(C), Q.orthogonal(X))
    assert not ask(Q.upper_triangular(C), Q.upper_triangular(X))

def test_det_trace_positive():
    X = MatrixSymbol('X', 4, 4)
    assert ask(Q.positive(Trace(X)), Q.positive_definite(X))
    assert ask(Q.positive(Determinant(X)), Q.positive_definite(X))

def test_field_assumptions():
    X = MatrixSymbol('X', 4, 4)
    Y = MatrixSymbol('Y', 4, 4)
    assert ask(Q.real_elements(X), Q.real_elements(X))
    assert not ask(Q.integer_elements(X), Q.real_elements(X))
    assert ask(Q.complex_elements(X), Q.real_elements(X))
    assert ask(Q.complex_elements(X**2), Q.real_elements(X))
    assert ask(Q.real_elements(X**2), Q.integer_elements(X))
    assert ask(Q.real_elements(X+Y), Q.real_elements(X)) is None
    assert ask(Q.real_elements(X+Y), Q.real_elements(X) & Q.real_elements(Y))
    from sympy.matrices.expressions.hadamard import HadamardProduct
    assert ask(Q.real_elements(HadamardProduct(X, Y)),
                    Q.real_elements(X) & Q.real_elements(Y))
    assert ask(Q.complex_elements(X+Y), Q.real_elements(X) & Q.complex_elements(Y))

    assert ask(Q.real_elements(X.T), Q.real_elements(X))
    assert ask(Q.real_elements(X.I), Q.real_elements(X) & Q.invertible(X))
    assert ask(Q.real_elements(Trace(X)), Q.real_elements(X))
    assert ask(Q.integer_elements(Determinant(X)), Q.integer_elements(X))
    assert not ask(Q.integer_elements(X.I), Q.integer_elements(X))
    alpha = Symbol('alpha')
    assert ask(Q.real_elements(alpha*X), Q.real_elements(X) & Q.real(alpha))
    assert ask(Q.real_elements(LofLU(X)), Q.real_elements(X))
    e = Symbol('e', integer=True, negative=True)
    assert ask(Q.real_elements(X**e), Q.real_elements(X) & Q.invertible(X))
    assert ask(Q.real_elements(X**e), Q.real_elements(X)) is None

def test_matrix_element_sets():
    X = MatrixSymbol('X', 4, 4)
    assert ask(Q.real(X[1, 2]), Q.real_elements(X))
    assert ask(Q.integer(X[1, 2]), Q.integer_elements(X))
    assert ask(Q.complex(X[1, 2]), Q.complex_elements(X))
    assert ask(Q.integer_elements(Identity(3)))
    assert ask(Q.integer_elements(ZeroMatrix(3, 3)))
    assert ask(Q.integer_elements(OneMatrix(3, 3)))
    from sympy.matrices.expressions.fourier import DFT
    assert ask(Q.complex_elements(DFT(3)))


def test_matrix_element_sets_slices_blocks():
    X = MatrixSymbol('X', 4, 4)
    assert ask(Q.integer_elements(X[:, 3]), Q.integer_elements(X))
    assert ask(Q.integer_elements(BlockMatrix([[X], [X]])),
                        Q.integer_elements(X))

def test_matrix_element_sets_determinant_trace():
    assert ask(Q.integer(Determinant(X)), Q.integer_elements(X))
    assert ask(Q.integer(Trace(X)), Q.integer_elements(X))