File size: 9,418 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
from collections import defaultdict

from sympy.assumptions.ask import Q
from sympy.core import (Add, Mul, Pow, Number, NumberSymbol, Symbol)
from sympy.core.numbers import ImaginaryUnit
from sympy.functions.elementary.complexes import Abs
from sympy.logic.boolalg import (Equivalent, And, Or, Implies)
from sympy.matrices.expressions import MatMul

# APIs here may be subject to change


### Helper functions ###

def allargs(symbol, fact, expr):
    """
    Apply all arguments of the expression to the fact structure.

    Parameters
    ==========

    symbol : Symbol
        A placeholder symbol.

    fact : Boolean
        Resulting ``Boolean`` expression.

    expr : Expr

    Examples
    ========

    >>> from sympy import Q
    >>> from sympy.assumptions.sathandlers import allargs
    >>> from sympy.abc import x, y
    >>> allargs(x, Q.negative(x) | Q.positive(x), x*y)
    (Q.negative(x) | Q.positive(x)) & (Q.negative(y) | Q.positive(y))

    """
    return And(*[fact.subs(symbol, arg) for arg in expr.args])


def anyarg(symbol, fact, expr):
    """
    Apply any argument of the expression to the fact structure.

    Parameters
    ==========

    symbol : Symbol
        A placeholder symbol.

    fact : Boolean
        Resulting ``Boolean`` expression.

    expr : Expr

    Examples
    ========

    >>> from sympy import Q
    >>> from sympy.assumptions.sathandlers import anyarg
    >>> from sympy.abc import x, y
    >>> anyarg(x, Q.negative(x) & Q.positive(x), x*y)
    (Q.negative(x) & Q.positive(x)) | (Q.negative(y) & Q.positive(y))

    """
    return Or(*[fact.subs(symbol, arg) for arg in expr.args])


def exactlyonearg(symbol, fact, expr):
    """
    Apply exactly one argument of the expression to the fact structure.

    Parameters
    ==========

    symbol : Symbol
        A placeholder symbol.

    fact : Boolean
        Resulting ``Boolean`` expression.

    expr : Expr

    Examples
    ========

    >>> from sympy import Q
    >>> from sympy.assumptions.sathandlers import exactlyonearg
    >>> from sympy.abc import x, y
    >>> exactlyonearg(x, Q.positive(x), x*y)
    (Q.positive(x) & ~Q.positive(y)) | (Q.positive(y) & ~Q.positive(x))

    """
    pred_args = [fact.subs(symbol, arg) for arg in expr.args]
    res = Or(*[And(pred_args[i], *[~lit for lit in pred_args[:i] +
        pred_args[i+1:]]) for i in range(len(pred_args))])
    return res


### Fact registry ###

class ClassFactRegistry:
    """
    Register handlers against classes.

    Explanation
    ===========

    ``register`` method registers the handler function for a class. Here,
    handler function should return a single fact. ``multiregister`` method
    registers the handler function for multiple classes. Here, handler function
    should return a container of multiple facts.

    ``registry(expr)`` returns a set of facts for *expr*.

    Examples
    ========

    Here, we register the facts for ``Abs``.

    >>> from sympy import Abs, Equivalent, Q
    >>> from sympy.assumptions.sathandlers import ClassFactRegistry
    >>> reg = ClassFactRegistry()
    >>> @reg.register(Abs)
    ... def f1(expr):
    ...     return Q.nonnegative(expr)
    >>> @reg.register(Abs)
    ... def f2(expr):
    ...     arg = expr.args[0]
    ...     return Equivalent(~Q.zero(arg), ~Q.zero(expr))

    Calling the registry with expression returns the defined facts for the
    expression.

    >>> from sympy.abc import x
    >>> reg(Abs(x))
    {Q.nonnegative(Abs(x)), Equivalent(~Q.zero(x), ~Q.zero(Abs(x)))}

    Multiple facts can be registered at once by ``multiregister`` method.

    >>> reg2 = ClassFactRegistry()
    >>> @reg2.multiregister(Abs)
    ... def _(expr):
    ...     arg = expr.args[0]
    ...     return [Q.even(arg) >> Q.even(expr), Q.odd(arg) >> Q.odd(expr)]
    >>> reg2(Abs(x))
    {Implies(Q.even(x), Q.even(Abs(x))), Implies(Q.odd(x), Q.odd(Abs(x)))}

    """
    def __init__(self):
        self.singlefacts = defaultdict(frozenset)
        self.multifacts = defaultdict(frozenset)

    def register(self, cls):
        def _(func):
            self.singlefacts[cls] |= {func}
            return func
        return _

    def multiregister(self, *classes):
        def _(func):
            for cls in classes:
                self.multifacts[cls] |= {func}
            return func
        return _

    def __getitem__(self, key):
        ret1 = self.singlefacts[key]
        for k in self.singlefacts:
            if issubclass(key, k):
                ret1 |= self.singlefacts[k]

        ret2 = self.multifacts[key]
        for k in self.multifacts:
            if issubclass(key, k):
                ret2 |= self.multifacts[k]

        return ret1, ret2

    def __call__(self, expr):
        ret = set()

        handlers1, handlers2 = self[type(expr)]

        ret.update(h(expr) for h in handlers1)
        for h in handlers2:
            ret.update(h(expr))
        return ret

class_fact_registry = ClassFactRegistry()



### Class fact registration ###

x = Symbol('x')

## Abs ##

@class_fact_registry.multiregister(Abs)
def _(expr):
    arg = expr.args[0]
    return [Q.nonnegative(expr),
            Equivalent(~Q.zero(arg), ~Q.zero(expr)),
            Q.even(arg) >> Q.even(expr),
            Q.odd(arg) >> Q.odd(expr),
            Q.integer(arg) >> Q.integer(expr),
            ]


### Add ##

@class_fact_registry.multiregister(Add)
def _(expr):
    return [allargs(x, Q.positive(x), expr) >> Q.positive(expr),
            allargs(x, Q.negative(x), expr) >> Q.negative(expr),
            allargs(x, Q.real(x), expr) >> Q.real(expr),
            allargs(x, Q.rational(x), expr) >> Q.rational(expr),
            allargs(x, Q.integer(x), expr) >> Q.integer(expr),
            exactlyonearg(x, ~Q.integer(x), expr) >> ~Q.integer(expr),
            ]

@class_fact_registry.register(Add)
def _(expr):
    allargs_real = allargs(x, Q.real(x), expr)
    onearg_irrational = exactlyonearg(x, Q.irrational(x), expr)
    return Implies(allargs_real, Implies(onearg_irrational, Q.irrational(expr)))


### Mul ###

@class_fact_registry.multiregister(Mul)
def _(expr):
    return [Equivalent(Q.zero(expr), anyarg(x, Q.zero(x), expr)),
            allargs(x, Q.positive(x), expr) >> Q.positive(expr),
            allargs(x, Q.real(x), expr) >> Q.real(expr),
            allargs(x, Q.rational(x), expr) >> Q.rational(expr),
            allargs(x, Q.integer(x), expr) >> Q.integer(expr),
            exactlyonearg(x, ~Q.rational(x), expr) >> ~Q.integer(expr),
            allargs(x, Q.commutative(x), expr) >> Q.commutative(expr),
            ]

@class_fact_registry.register(Mul)
def _(expr):
    # Implicitly assumes Mul has more than one arg
    # Would be allargs(x, Q.prime(x) | Q.composite(x)) except 1 is composite
    # More advanced prime assumptions will require inequalities, as 1 provides
    # a corner case.
    allargs_prime = allargs(x, Q.prime(x), expr)
    return Implies(allargs_prime, ~Q.prime(expr))

@class_fact_registry.register(Mul)
def _(expr):
    # General Case: Odd number of imaginary args implies mul is imaginary(To be implemented)
    allargs_imag_or_real = allargs(x, Q.imaginary(x) | Q.real(x), expr)
    onearg_imaginary = exactlyonearg(x, Q.imaginary(x), expr)
    return Implies(allargs_imag_or_real, Implies(onearg_imaginary, Q.imaginary(expr)))

@class_fact_registry.register(Mul)
def _(expr):
    allargs_real = allargs(x, Q.real(x), expr)
    onearg_irrational = exactlyonearg(x, Q.irrational(x), expr)
    return Implies(allargs_real, Implies(onearg_irrational, Q.irrational(expr)))

@class_fact_registry.register(Mul)
def _(expr):
    # Including the integer qualification means we don't need to add any facts
    # for odd, since the assumptions already know that every integer is
    # exactly one of even or odd.
    allargs_integer = allargs(x, Q.integer(x), expr)
    anyarg_even = anyarg(x, Q.even(x), expr)
    return Implies(allargs_integer, Equivalent(anyarg_even, Q.even(expr)))


### MatMul ###

@class_fact_registry.register(MatMul)
def _(expr):
    allargs_square = allargs(x, Q.square(x), expr)
    allargs_invertible = allargs(x, Q.invertible(x), expr)
    return Implies(allargs_square, Equivalent(Q.invertible(expr), allargs_invertible))


### Pow ###

@class_fact_registry.multiregister(Pow)
def _(expr):
    base, exp = expr.base, expr.exp
    return [
        (Q.real(base) & Q.even(exp) & Q.nonnegative(exp)) >> Q.nonnegative(expr),
        (Q.nonnegative(base) & Q.odd(exp) & Q.nonnegative(exp)) >> Q.nonnegative(expr),
        (Q.nonpositive(base) & Q.odd(exp) & Q.nonnegative(exp)) >> Q.nonpositive(expr),
        Equivalent(Q.zero(expr), Q.zero(base) & Q.positive(exp))
    ]


### Numbers ###

_old_assump_getters = {
    Q.positive: lambda o: o.is_positive,
    Q.zero: lambda o: o.is_zero,
    Q.negative: lambda o: o.is_negative,
    Q.rational: lambda o: o.is_rational,
    Q.irrational: lambda o: o.is_irrational,
    Q.even: lambda o: o.is_even,
    Q.odd: lambda o: o.is_odd,
    Q.imaginary: lambda o: o.is_imaginary,
    Q.prime: lambda o: o.is_prime,
    Q.composite: lambda o: o.is_composite,
}

@class_fact_registry.multiregister(Number, NumberSymbol, ImaginaryUnit)
def _(expr):
    ret = []
    for p, getter in _old_assump_getters.items():
        pred = p(expr)
        prop = getter(expr)
        if prop is not None:
            ret.append(Equivalent(pred, prop))
    return ret