File size: 7,160 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
"""
Module for mathematical equality [1] and inequalities [2].

The purpose of this module is to provide the instances which represent the
binary predicates in order to combine the relationals into logical inference
system. Objects such as ``Q.eq``, ``Q.lt`` should remain internal to
assumptions module, and user must use the classes such as :obj:`~.Eq()`,
:obj:`~.Lt()` instead to construct the relational expressions.

References
==========

.. [1] https://en.wikipedia.org/wiki/Equality_(mathematics)
.. [2] https://en.wikipedia.org/wiki/Inequality_(mathematics)
"""
from sympy.assumptions import Q
from sympy.core.relational import is_eq, is_neq, is_gt, is_ge, is_lt, is_le

from .binrel import BinaryRelation

__all__ = ['EqualityPredicate', 'UnequalityPredicate', 'StrictGreaterThanPredicate',
    'GreaterThanPredicate', 'StrictLessThanPredicate', 'LessThanPredicate']


class EqualityPredicate(BinaryRelation):
    """
    Binary predicate for $=$.

    The purpose of this class is to provide the instance which represent
    the equality predicate in order to allow the logical inference.
    This class must remain internal to assumptions module and user must
    use :obj:`~.Eq()` instead to construct the equality expression.

    Evaluating this predicate to ``True`` or ``False`` is done by
    :func:`~.core.relational.is_eq()`

    Examples
    ========

    >>> from sympy import ask, Q
    >>> Q.eq(0, 0)
    Q.eq(0, 0)
    >>> ask(_)
    True

    See Also
    ========

    sympy.core.relational.Eq

    """
    is_reflexive = True
    is_symmetric = True

    name = 'eq'
    handler = None  # Do not allow dispatching by this predicate

    @property
    def negated(self):
        return Q.ne

    def eval(self, args, assumptions=True):
        if assumptions == True:
            # default assumptions for is_eq is None
            assumptions = None
        return is_eq(*args, assumptions)


class UnequalityPredicate(BinaryRelation):
    r"""
    Binary predicate for $\neq$.

    The purpose of this class is to provide the instance which represent
    the inequation predicate in order to allow the logical inference.
    This class must remain internal to assumptions module and user must
    use :obj:`~.Ne()` instead to construct the inequation expression.

    Evaluating this predicate to ``True`` or ``False`` is done by
    :func:`~.core.relational.is_neq()`

    Examples
    ========

    >>> from sympy import ask, Q
    >>> Q.ne(0, 0)
    Q.ne(0, 0)
    >>> ask(_)
    False

    See Also
    ========

    sympy.core.relational.Ne

    """
    is_reflexive = False
    is_symmetric = True

    name = 'ne'
    handler = None

    @property
    def negated(self):
        return Q.eq

    def eval(self, args, assumptions=True):
        if assumptions == True:
            # default assumptions for is_neq is None
            assumptions = None
        return is_neq(*args, assumptions)


class StrictGreaterThanPredicate(BinaryRelation):
    """
    Binary predicate for $>$.

    The purpose of this class is to provide the instance which represent
    the ">" predicate in order to allow the logical inference.
    This class must remain internal to assumptions module and user must
    use :obj:`~.Gt()` instead to construct the equality expression.

    Evaluating this predicate to ``True`` or ``False`` is done by
    :func:`~.core.relational.is_gt()`

    Examples
    ========

    >>> from sympy import ask, Q
    >>> Q.gt(0, 0)
    Q.gt(0, 0)
    >>> ask(_)
    False

    See Also
    ========

    sympy.core.relational.Gt

    """
    is_reflexive = False
    is_symmetric = False

    name = 'gt'
    handler = None

    @property
    def reversed(self):
        return Q.lt

    @property
    def negated(self):
        return Q.le

    def eval(self, args, assumptions=True):
        if assumptions == True:
            # default assumptions for is_gt is None
            assumptions = None
        return is_gt(*args, assumptions)


class GreaterThanPredicate(BinaryRelation):
    """
    Binary predicate for $>=$.

    The purpose of this class is to provide the instance which represent
    the ">=" predicate in order to allow the logical inference.
    This class must remain internal to assumptions module and user must
    use :obj:`~.Ge()` instead to construct the equality expression.

    Evaluating this predicate to ``True`` or ``False`` is done by
    :func:`~.core.relational.is_ge()`

    Examples
    ========

    >>> from sympy import ask, Q
    >>> Q.ge(0, 0)
    Q.ge(0, 0)
    >>> ask(_)
    True

    See Also
    ========

    sympy.core.relational.Ge

    """
    is_reflexive = True
    is_symmetric = False

    name = 'ge'
    handler = None

    @property
    def reversed(self):
        return Q.le

    @property
    def negated(self):
        return Q.lt

    def eval(self, args, assumptions=True):
        if assumptions == True:
            # default assumptions for is_ge is None
            assumptions = None
        return is_ge(*args, assumptions)


class StrictLessThanPredicate(BinaryRelation):
    """
    Binary predicate for $<$.

    The purpose of this class is to provide the instance which represent
    the "<" predicate in order to allow the logical inference.
    This class must remain internal to assumptions module and user must
    use :obj:`~.Lt()` instead to construct the equality expression.

    Evaluating this predicate to ``True`` or ``False`` is done by
    :func:`~.core.relational.is_lt()`

    Examples
    ========

    >>> from sympy import ask, Q
    >>> Q.lt(0, 0)
    Q.lt(0, 0)
    >>> ask(_)
    False

    See Also
    ========

    sympy.core.relational.Lt

    """
    is_reflexive = False
    is_symmetric = False

    name = 'lt'
    handler = None

    @property
    def reversed(self):
        return Q.gt

    @property
    def negated(self):
        return Q.ge

    def eval(self, args, assumptions=True):
        if assumptions == True:
            # default assumptions for is_lt is None
            assumptions = None
        return is_lt(*args, assumptions)


class LessThanPredicate(BinaryRelation):
    """
    Binary predicate for $<=$.

    The purpose of this class is to provide the instance which represent
    the "<=" predicate in order to allow the logical inference.
    This class must remain internal to assumptions module and user must
    use :obj:`~.Le()` instead to construct the equality expression.

    Evaluating this predicate to ``True`` or ``False`` is done by
    :func:`~.core.relational.is_le()`

    Examples
    ========

    >>> from sympy import ask, Q
    >>> Q.le(0, 0)
    Q.le(0, 0)
    >>> ask(_)
    True

    See Also
    ========

    sympy.core.relational.Le

    """
    is_reflexive = True
    is_symmetric = False

    name = 'le'
    handler = None

    @property
    def reversed(self):
        return Q.ge

    @property
    def negated(self):
        return Q.gt

    def eval(self, args, assumptions=True):
        if assumptions == True:
            # default assumptions for is_le is None
            assumptions = None
        return is_le(*args, assumptions)