File size: 11,950 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
from __future__ import annotations
from typing import Callable

from sympy.core import S, Add, Expr, Basic, Mul, Pow, Rational
from sympy.core.logic import fuzzy_not
from sympy.logic.boolalg import Boolean

from sympy.assumptions import ask, Q  # type: ignore


def refine(expr, assumptions=True):
    """
    Simplify an expression using assumptions.

    Explanation
    ===========

    Unlike :func:`~.simplify()` which performs structural simplification
    without any assumption, this function transforms the expression into
    the form which is only valid under certain assumptions. Note that
    ``simplify()`` is generally not done in refining process.

    Refining boolean expression involves reducing it to ``S.true`` or
    ``S.false``. Unlike :func:`~.ask()`, the expression will not be reduced
    if the truth value cannot be determined.

    Examples
    ========

    >>> from sympy import refine, sqrt, Q
    >>> from sympy.abc import x
    >>> refine(sqrt(x**2), Q.real(x))
    Abs(x)
    >>> refine(sqrt(x**2), Q.positive(x))
    x

    >>> refine(Q.real(x), Q.positive(x))
    True
    >>> refine(Q.positive(x), Q.real(x))
    Q.positive(x)

    See Also
    ========

    sympy.simplify.simplify.simplify : Structural simplification without assumptions.
    sympy.assumptions.ask.ask : Query for boolean expressions using assumptions.
    """
    if not isinstance(expr, Basic):
        return expr

    if not expr.is_Atom:
        args = [refine(arg, assumptions) for arg in expr.args]
        # TODO: this will probably not work with Integral or Polynomial
        expr = expr.func(*args)
    if hasattr(expr, '_eval_refine'):
        ref_expr = expr._eval_refine(assumptions)
        if ref_expr is not None:
            return ref_expr
    name = expr.__class__.__name__
    handler = handlers_dict.get(name, None)
    if handler is None:
        return expr
    new_expr = handler(expr, assumptions)
    if (new_expr is None) or (expr == new_expr):
        return expr
    if not isinstance(new_expr, Expr):
        return new_expr
    return refine(new_expr, assumptions)


def refine_abs(expr, assumptions):
    """
    Handler for the absolute value.

    Examples
    ========

    >>> from sympy import Q, Abs
    >>> from sympy.assumptions.refine import refine_abs
    >>> from sympy.abc import x
    >>> refine_abs(Abs(x), Q.real(x))
    >>> refine_abs(Abs(x), Q.positive(x))
    x
    >>> refine_abs(Abs(x), Q.negative(x))
    -x

    """
    from sympy.functions.elementary.complexes import Abs
    arg = expr.args[0]
    if ask(Q.real(arg), assumptions) and \
            fuzzy_not(ask(Q.negative(arg), assumptions)):
        # if it's nonnegative
        return arg
    if ask(Q.negative(arg), assumptions):
        return -arg
    # arg is Mul
    if isinstance(arg, Mul):
        r = [refine(abs(a), assumptions) for a in arg.args]
        non_abs = []
        in_abs = []
        for i in r:
            if isinstance(i, Abs):
                in_abs.append(i.args[0])
            else:
                non_abs.append(i)
        return Mul(*non_abs) * Abs(Mul(*in_abs))


def refine_Pow(expr, assumptions):
    """
    Handler for instances of Pow.

    Examples
    ========

    >>> from sympy import Q
    >>> from sympy.assumptions.refine import refine_Pow
    >>> from sympy.abc import x,y,z
    >>> refine_Pow((-1)**x, Q.real(x))
    >>> refine_Pow((-1)**x, Q.even(x))
    1
    >>> refine_Pow((-1)**x, Q.odd(x))
    -1

    For powers of -1, even parts of the exponent can be simplified:

    >>> refine_Pow((-1)**(x+y), Q.even(x))
    (-1)**y
    >>> refine_Pow((-1)**(x+y+z), Q.odd(x) & Q.odd(z))
    (-1)**y
    >>> refine_Pow((-1)**(x+y+2), Q.odd(x))
    (-1)**(y + 1)
    >>> refine_Pow((-1)**(x+3), True)
    (-1)**(x + 1)

    """
    from sympy.functions.elementary.complexes import Abs
    from sympy.functions import sign
    if isinstance(expr.base, Abs):
        if ask(Q.real(expr.base.args[0]), assumptions) and \
                ask(Q.even(expr.exp), assumptions):
            return expr.base.args[0] ** expr.exp
    if ask(Q.real(expr.base), assumptions):
        if expr.base.is_number:
            if ask(Q.even(expr.exp), assumptions):
                return abs(expr.base) ** expr.exp
            if ask(Q.odd(expr.exp), assumptions):
                return sign(expr.base) * abs(expr.base) ** expr.exp
        if isinstance(expr.exp, Rational):
            if isinstance(expr.base, Pow):
                return abs(expr.base.base) ** (expr.base.exp * expr.exp)

        if expr.base is S.NegativeOne:
            if expr.exp.is_Add:

                old = expr

                # For powers of (-1) we can remove
                #  - even terms
                #  - pairs of odd terms
                #  - a single odd term + 1
                #  - A numerical constant N can be replaced with mod(N,2)

                coeff, terms = expr.exp.as_coeff_add()
                terms = set(terms)
                even_terms = set()
                odd_terms = set()
                initial_number_of_terms = len(terms)

                for t in terms:
                    if ask(Q.even(t), assumptions):
                        even_terms.add(t)
                    elif ask(Q.odd(t), assumptions):
                        odd_terms.add(t)

                terms -= even_terms
                if len(odd_terms) % 2:
                    terms -= odd_terms
                    new_coeff = (coeff + S.One) % 2
                else:
                    terms -= odd_terms
                    new_coeff = coeff % 2

                if new_coeff != coeff or len(terms) < initial_number_of_terms:
                    terms.add(new_coeff)
                    expr = expr.base**(Add(*terms))

                # Handle (-1)**((-1)**n/2 + m/2)
                e2 = 2*expr.exp
                if ask(Q.even(e2), assumptions):
                    if e2.could_extract_minus_sign():
                        e2 *= expr.base
                if e2.is_Add:
                    i, p = e2.as_two_terms()
                    if p.is_Pow and p.base is S.NegativeOne:
                        if ask(Q.integer(p.exp), assumptions):
                            i = (i + 1)/2
                            if ask(Q.even(i), assumptions):
                                return expr.base**p.exp
                            elif ask(Q.odd(i), assumptions):
                                return expr.base**(p.exp + 1)
                            else:
                                return expr.base**(p.exp + i)

                if old != expr:
                    return expr


def refine_atan2(expr, assumptions):
    """
    Handler for the atan2 function.

    Examples
    ========

    >>> from sympy import Q, atan2
    >>> from sympy.assumptions.refine import refine_atan2
    >>> from sympy.abc import x, y
    >>> refine_atan2(atan2(y,x), Q.real(y) & Q.positive(x))
    atan(y/x)
    >>> refine_atan2(atan2(y,x), Q.negative(y) & Q.negative(x))
    atan(y/x) - pi
    >>> refine_atan2(atan2(y,x), Q.positive(y) & Q.negative(x))
    atan(y/x) + pi
    >>> refine_atan2(atan2(y,x), Q.zero(y) & Q.negative(x))
    pi
    >>> refine_atan2(atan2(y,x), Q.positive(y) & Q.zero(x))
    pi/2
    >>> refine_atan2(atan2(y,x), Q.negative(y) & Q.zero(x))
    -pi/2
    >>> refine_atan2(atan2(y,x), Q.zero(y) & Q.zero(x))
    nan
    """
    from sympy.functions.elementary.trigonometric import atan
    y, x = expr.args
    if ask(Q.real(y) & Q.positive(x), assumptions):
        return atan(y / x)
    elif ask(Q.negative(y) & Q.negative(x), assumptions):
        return atan(y / x) - S.Pi
    elif ask(Q.positive(y) & Q.negative(x), assumptions):
        return atan(y / x) + S.Pi
    elif ask(Q.zero(y) & Q.negative(x), assumptions):
        return S.Pi
    elif ask(Q.positive(y) & Q.zero(x), assumptions):
        return S.Pi/2
    elif ask(Q.negative(y) & Q.zero(x), assumptions):
        return -S.Pi/2
    elif ask(Q.zero(y) & Q.zero(x), assumptions):
        return S.NaN
    else:
        return expr


def refine_re(expr, assumptions):
    """
    Handler for real part.

    Examples
    ========

    >>> from sympy.assumptions.refine import refine_re
    >>> from sympy import Q, re
    >>> from sympy.abc import x
    >>> refine_re(re(x), Q.real(x))
    x
    >>> refine_re(re(x), Q.imaginary(x))
    0
    """
    arg = expr.args[0]
    if ask(Q.real(arg), assumptions):
        return arg
    if ask(Q.imaginary(arg), assumptions):
        return S.Zero
    return _refine_reim(expr, assumptions)


def refine_im(expr, assumptions):
    """
    Handler for imaginary part.

    Explanation
    ===========

    >>> from sympy.assumptions.refine import refine_im
    >>> from sympy import Q, im
    >>> from sympy.abc import x
    >>> refine_im(im(x), Q.real(x))
    0
    >>> refine_im(im(x), Q.imaginary(x))
    -I*x
    """
    arg = expr.args[0]
    if ask(Q.real(arg), assumptions):
        return S.Zero
    if ask(Q.imaginary(arg), assumptions):
        return - S.ImaginaryUnit * arg
    return _refine_reim(expr, assumptions)

def refine_arg(expr, assumptions):
    """
    Handler for complex argument

    Explanation
    ===========

    >>> from sympy.assumptions.refine import refine_arg
    >>> from sympy import Q, arg
    >>> from sympy.abc import x
    >>> refine_arg(arg(x), Q.positive(x))
    0
    >>> refine_arg(arg(x), Q.negative(x))
    pi
    """
    rg = expr.args[0]
    if ask(Q.positive(rg), assumptions):
        return S.Zero
    if ask(Q.negative(rg), assumptions):
        return S.Pi
    return None


def _refine_reim(expr, assumptions):
    # Helper function for refine_re & refine_im
    expanded = expr.expand(complex = True)
    if expanded != expr:
        refined = refine(expanded, assumptions)
        if refined != expanded:
            return refined
    # Best to leave the expression as is
    return None


def refine_sign(expr, assumptions):
    """
    Handler for sign.

    Examples
    ========

    >>> from sympy.assumptions.refine import refine_sign
    >>> from sympy import Symbol, Q, sign, im
    >>> x = Symbol('x', real = True)
    >>> expr = sign(x)
    >>> refine_sign(expr, Q.positive(x) & Q.nonzero(x))
    1
    >>> refine_sign(expr, Q.negative(x) & Q.nonzero(x))
    -1
    >>> refine_sign(expr, Q.zero(x))
    0
    >>> y = Symbol('y', imaginary = True)
    >>> expr = sign(y)
    >>> refine_sign(expr, Q.positive(im(y)))
    I
    >>> refine_sign(expr, Q.negative(im(y)))
    -I
    """
    arg = expr.args[0]
    if ask(Q.zero(arg), assumptions):
        return S.Zero
    if ask(Q.real(arg)):
        if ask(Q.positive(arg), assumptions):
            return S.One
        if ask(Q.negative(arg), assumptions):
            return S.NegativeOne
    if ask(Q.imaginary(arg)):
        arg_re, arg_im = arg.as_real_imag()
        if ask(Q.positive(arg_im), assumptions):
            return S.ImaginaryUnit
        if ask(Q.negative(arg_im), assumptions):
            return -S.ImaginaryUnit
    return expr


def refine_matrixelement(expr, assumptions):
    """
    Handler for symmetric part.

    Examples
    ========

    >>> from sympy.assumptions.refine import refine_matrixelement
    >>> from sympy import MatrixSymbol, Q
    >>> X = MatrixSymbol('X', 3, 3)
    >>> refine_matrixelement(X[0, 1], Q.symmetric(X))
    X[0, 1]
    >>> refine_matrixelement(X[1, 0], Q.symmetric(X))
    X[0, 1]
    """
    from sympy.matrices.expressions.matexpr import MatrixElement
    matrix, i, j = expr.args
    if ask(Q.symmetric(matrix), assumptions):
        if (i - j).could_extract_minus_sign():
            return expr
        return MatrixElement(matrix, j, i)

handlers_dict: dict[str, Callable[[Expr, Boolean], Expr]] = {
    'Abs': refine_abs,
    'Pow': refine_Pow,
    'atan2': refine_atan2,
    're': refine_re,
    'im': refine_im,
    'arg': refine_arg,
    'sign': refine_sign,
    'MatrixElement': refine_matrixelement
}