Spaces:
Sleeping
Sleeping
File size: 9,238 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
from sympy.assumptions import Predicate
from sympy.multipledispatch import Dispatcher
class IntegerPredicate(Predicate):
"""
Integer predicate.
Explanation
===========
``Q.integer(x)`` is true iff ``x`` belongs to the set of integer
numbers.
Examples
========
>>> from sympy import Q, ask, S
>>> ask(Q.integer(5))
True
>>> ask(Q.integer(S(1)/2))
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Integer
"""
name = 'integer'
handler = Dispatcher(
"IntegerHandler",
doc=("Handler for Q.integer.\n\n"
"Test that an expression belongs to the field of integer numbers.")
)
class NonIntegerPredicate(Predicate):
"""
Non-integer extended real predicate.
"""
name = 'noninteger'
handler = Dispatcher(
"NonIntegerHandler",
doc=("Handler for Q.noninteger.\n\n"
"Test that an expression is a non-integer extended real number.")
)
class RationalPredicate(Predicate):
"""
Rational number predicate.
Explanation
===========
``Q.rational(x)`` is true iff ``x`` belongs to the set of
rational numbers.
Examples
========
>>> from sympy import ask, Q, pi, S
>>> ask(Q.rational(0))
True
>>> ask(Q.rational(S(1)/2))
True
>>> ask(Q.rational(pi))
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Rational_number
"""
name = 'rational'
handler = Dispatcher(
"RationalHandler",
doc=("Handler for Q.rational.\n\n"
"Test that an expression belongs to the field of rational numbers.")
)
class IrrationalPredicate(Predicate):
"""
Irrational number predicate.
Explanation
===========
``Q.irrational(x)`` is true iff ``x`` is any real number that
cannot be expressed as a ratio of integers.
Examples
========
>>> from sympy import ask, Q, pi, S, I
>>> ask(Q.irrational(0))
False
>>> ask(Q.irrational(S(1)/2))
False
>>> ask(Q.irrational(pi))
True
>>> ask(Q.irrational(I))
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Irrational_number
"""
name = 'irrational'
handler = Dispatcher(
"IrrationalHandler",
doc=("Handler for Q.irrational.\n\n"
"Test that an expression is irrational numbers.")
)
class RealPredicate(Predicate):
r"""
Real number predicate.
Explanation
===========
``Q.real(x)`` is true iff ``x`` is a real number, i.e., it is in the
interval `(-\infty, \infty)`. Note that, in particular the
infinities are not real. Use ``Q.extended_real`` if you want to
consider those as well.
A few important facts about reals:
- Every real number is positive, negative, or zero. Furthermore,
because these sets are pairwise disjoint, each real number is
exactly one of those three.
- Every real number is also complex.
- Every real number is finite.
- Every real number is either rational or irrational.
- Every real number is either algebraic or transcendental.
- The facts ``Q.negative``, ``Q.zero``, ``Q.positive``,
``Q.nonnegative``, ``Q.nonpositive``, ``Q.nonzero``,
``Q.integer``, ``Q.rational``, and ``Q.irrational`` all imply
``Q.real``, as do all facts that imply those facts.
- The facts ``Q.algebraic``, and ``Q.transcendental`` do not imply
``Q.real``; they imply ``Q.complex``. An algebraic or
transcendental number may or may not be real.
- The "non" facts (i.e., ``Q.nonnegative``, ``Q.nonzero``,
``Q.nonpositive`` and ``Q.noninteger``) are not equivalent to
not the fact, but rather, not the fact *and* ``Q.real``.
For example, ``Q.nonnegative`` means ``~Q.negative & Q.real``.
So for example, ``I`` is not nonnegative, nonzero, or
nonpositive.
Examples
========
>>> from sympy import Q, ask, symbols
>>> x = symbols('x')
>>> ask(Q.real(x), Q.positive(x))
True
>>> ask(Q.real(0))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Real_number
"""
name = 'real'
handler = Dispatcher(
"RealHandler",
doc=("Handler for Q.real.\n\n"
"Test that an expression belongs to the field of real numbers.")
)
class ExtendedRealPredicate(Predicate):
r"""
Extended real predicate.
Explanation
===========
``Q.extended_real(x)`` is true iff ``x`` is a real number or
`\{-\infty, \infty\}`.
See documentation of ``Q.real`` for more information about related
facts.
Examples
========
>>> from sympy import ask, Q, oo, I
>>> ask(Q.extended_real(1))
True
>>> ask(Q.extended_real(I))
False
>>> ask(Q.extended_real(oo))
True
"""
name = 'extended_real'
handler = Dispatcher(
"ExtendedRealHandler",
doc=("Handler for Q.extended_real.\n\n"
"Test that an expression belongs to the field of extended real\n"
"numbers, that is real numbers union {Infinity, -Infinity}.")
)
class HermitianPredicate(Predicate):
"""
Hermitian predicate.
Explanation
===========
``ask(Q.hermitian(x))`` is true iff ``x`` belongs to the set of
Hermitian operators.
References
==========
.. [1] https://mathworld.wolfram.com/HermitianOperator.html
"""
# TODO: Add examples
name = 'hermitian'
handler = Dispatcher(
"HermitianHandler",
doc=("Handler for Q.hermitian.\n\n"
"Test that an expression belongs to the field of Hermitian operators.")
)
class ComplexPredicate(Predicate):
"""
Complex number predicate.
Explanation
===========
``Q.complex(x)`` is true iff ``x`` belongs to the set of complex
numbers. Note that every complex number is finite.
Examples
========
>>> from sympy import Q, Symbol, ask, I, oo
>>> x = Symbol('x')
>>> ask(Q.complex(0))
True
>>> ask(Q.complex(2 + 3*I))
True
>>> ask(Q.complex(oo))
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Complex_number
"""
name = 'complex'
handler = Dispatcher(
"ComplexHandler",
doc=("Handler for Q.complex.\n\n"
"Test that an expression belongs to the field of complex numbers.")
)
class ImaginaryPredicate(Predicate):
"""
Imaginary number predicate.
Explanation
===========
``Q.imaginary(x)`` is true iff ``x`` can be written as a real
number multiplied by the imaginary unit ``I``. Please note that ``0``
is not considered to be an imaginary number.
Examples
========
>>> from sympy import Q, ask, I
>>> ask(Q.imaginary(3*I))
True
>>> ask(Q.imaginary(2 + 3*I))
False
>>> ask(Q.imaginary(0))
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Imaginary_number
"""
name = 'imaginary'
handler = Dispatcher(
"ImaginaryHandler",
doc=("Handler for Q.imaginary.\n\n"
"Test that an expression belongs to the field of imaginary numbers,\n"
"that is, numbers in the form x*I, where x is real.")
)
class AntihermitianPredicate(Predicate):
"""
Antihermitian predicate.
Explanation
===========
``Q.antihermitian(x)`` is true iff ``x`` belongs to the field of
antihermitian operators, i.e., operators in the form ``x*I``, where
``x`` is Hermitian.
References
==========
.. [1] https://mathworld.wolfram.com/HermitianOperator.html
"""
# TODO: Add examples
name = 'antihermitian'
handler = Dispatcher(
"AntiHermitianHandler",
doc=("Handler for Q.antihermitian.\n\n"
"Test that an expression belongs to the field of anti-Hermitian\n"
"operators, that is, operators in the form x*I, where x is Hermitian.")
)
class AlgebraicPredicate(Predicate):
r"""
Algebraic number predicate.
Explanation
===========
``Q.algebraic(x)`` is true iff ``x`` belongs to the set of
algebraic numbers. ``x`` is algebraic if there is some polynomial
in ``p(x)\in \mathbb\{Q\}[x]`` such that ``p(x) = 0``.
Examples
========
>>> from sympy import ask, Q, sqrt, I, pi
>>> ask(Q.algebraic(sqrt(2)))
True
>>> ask(Q.algebraic(I))
True
>>> ask(Q.algebraic(pi))
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Algebraic_number
"""
name = 'algebraic'
AlgebraicHandler = Dispatcher(
"AlgebraicHandler",
doc="""Handler for Q.algebraic key."""
)
class TranscendentalPredicate(Predicate):
"""
Transcedental number predicate.
Explanation
===========
``Q.transcendental(x)`` is true iff ``x`` belongs to the set of
transcendental numbers. A transcendental number is a real
or complex number that is not algebraic.
"""
# TODO: Add examples
name = 'transcendental'
handler = Dispatcher(
"Transcendental",
doc="""Handler for Q.transcendental key."""
)
|