File size: 9,511 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
from sympy.assumptions import Predicate
from sympy.multipledispatch import Dispatcher


class NegativePredicate(Predicate):
    r"""
    Negative number predicate.

    Explanation
    ===========

    ``Q.negative(x)`` is true iff ``x`` is a real number and :math:`x < 0`, that is,
    it is in the interval :math:`(-\infty, 0)`.  Note in particular that negative
    infinity is not negative.

    A few important facts about negative numbers:

    - Note that ``Q.nonnegative`` and ``~Q.negative`` are *not* the same
        thing. ``~Q.negative(x)`` simply means that ``x`` is not negative,
        whereas ``Q.nonnegative(x)`` means that ``x`` is real and not
        negative, i.e., ``Q.nonnegative(x)`` is logically equivalent to
        ``Q.zero(x) | Q.positive(x)``.  So for example, ``~Q.negative(I)`` is
        true, whereas ``Q.nonnegative(I)`` is false.

    - See the documentation of ``Q.real`` for more information about
        related facts.

    Examples
    ========

    >>> from sympy import Q, ask, symbols, I
    >>> x = symbols('x')
    >>> ask(Q.negative(x), Q.real(x) & ~Q.positive(x) & ~Q.zero(x))
    True
    >>> ask(Q.negative(-1))
    True
    >>> ask(Q.nonnegative(I))
    False
    >>> ask(~Q.negative(I))
    True

    """
    name = 'negative'
    handler = Dispatcher(
        "NegativeHandler",
        doc=("Handler for Q.negative. Test that an expression is strictly less"
        " than zero.")
    )


class NonNegativePredicate(Predicate):
    """
    Nonnegative real number predicate.

    Explanation
    ===========

    ``ask(Q.nonnegative(x))`` is true iff ``x`` belongs to the set of
    positive numbers including zero.

    - Note that ``Q.nonnegative`` and ``~Q.negative`` are *not* the same
        thing. ``~Q.negative(x)`` simply means that ``x`` is not negative,
        whereas ``Q.nonnegative(x)`` means that ``x`` is real and not
        negative, i.e., ``Q.nonnegative(x)`` is logically equivalent to
        ``Q.zero(x) | Q.positive(x)``.  So for example, ``~Q.negative(I)`` is
        true, whereas ``Q.nonnegative(I)`` is false.

    Examples
    ========

    >>> from sympy import Q, ask, I
    >>> ask(Q.nonnegative(1))
    True
    >>> ask(Q.nonnegative(0))
    True
    >>> ask(Q.nonnegative(-1))
    False
    >>> ask(Q.nonnegative(I))
    False
    >>> ask(Q.nonnegative(-I))
    False

    """
    name = 'nonnegative'
    handler = Dispatcher(
        "NonNegativeHandler",
        doc=("Handler for Q.nonnegative.")
    )


class NonZeroPredicate(Predicate):
    """
    Nonzero real number predicate.

    Explanation
    ===========

    ``ask(Q.nonzero(x))`` is true iff ``x`` is real and ``x`` is not zero.  Note in
    particular that ``Q.nonzero(x)`` is false if ``x`` is not real.  Use
    ``~Q.zero(x)`` if you want the negation of being zero without any real
    assumptions.

    A few important facts about nonzero numbers:

    - ``Q.nonzero`` is logically equivalent to ``Q.positive | Q.negative``.

    - See the documentation of ``Q.real`` for more information about
        related facts.

    Examples
    ========

    >>> from sympy import Q, ask, symbols, I, oo
    >>> x = symbols('x')
    >>> print(ask(Q.nonzero(x), ~Q.zero(x)))
    None
    >>> ask(Q.nonzero(x), Q.positive(x))
    True
    >>> ask(Q.nonzero(x), Q.zero(x))
    False
    >>> ask(Q.nonzero(0))
    False
    >>> ask(Q.nonzero(I))
    False
    >>> ask(~Q.zero(I))
    True
    >>> ask(Q.nonzero(oo))
    False

    """
    name = 'nonzero'
    handler = Dispatcher(
        "NonZeroHandler",
        doc=("Handler for key 'nonzero'. Test that an expression is not identically"
        " zero.")
    )


class ZeroPredicate(Predicate):
    """
    Zero number predicate.

    Explanation
    ===========

    ``ask(Q.zero(x))`` is true iff the value of ``x`` is zero.

    Examples
    ========

    >>> from sympy import ask, Q, oo, symbols
    >>> x, y = symbols('x, y')
    >>> ask(Q.zero(0))
    True
    >>> ask(Q.zero(1/oo))
    True
    >>> print(ask(Q.zero(0*oo)))
    None
    >>> ask(Q.zero(1))
    False
    >>> ask(Q.zero(x*y), Q.zero(x) | Q.zero(y))
    True

    """
    name = 'zero'
    handler = Dispatcher(
        "ZeroHandler",
        doc="Handler for key 'zero'."
    )


class NonPositivePredicate(Predicate):
    """
    Nonpositive real number predicate.

    Explanation
    ===========

    ``ask(Q.nonpositive(x))`` is true iff ``x`` belongs to the set of
    negative numbers including zero.

    - Note that ``Q.nonpositive`` and ``~Q.positive`` are *not* the same
        thing. ``~Q.positive(x)`` simply means that ``x`` is not positive,
        whereas ``Q.nonpositive(x)`` means that ``x`` is real and not
        positive, i.e., ``Q.nonpositive(x)`` is logically equivalent to
        `Q.negative(x) | Q.zero(x)``.  So for example, ``~Q.positive(I)`` is
        true, whereas ``Q.nonpositive(I)`` is false.

    Examples
    ========

    >>> from sympy import Q, ask, I

    >>> ask(Q.nonpositive(-1))
    True
    >>> ask(Q.nonpositive(0))
    True
    >>> ask(Q.nonpositive(1))
    False
    >>> ask(Q.nonpositive(I))
    False
    >>> ask(Q.nonpositive(-I))
    False

    """
    name = 'nonpositive'
    handler = Dispatcher(
        "NonPositiveHandler",
        doc="Handler for key 'nonpositive'."
    )


class PositivePredicate(Predicate):
    r"""
    Positive real number predicate.

    Explanation
    ===========

    ``Q.positive(x)`` is true iff ``x`` is real and `x > 0`, that is if ``x``
    is in the interval `(0, \infty)`.  In particular, infinity is not
    positive.

    A few important facts about positive numbers:

    - Note that ``Q.nonpositive`` and ``~Q.positive`` are *not* the same
        thing. ``~Q.positive(x)`` simply means that ``x`` is not positive,
        whereas ``Q.nonpositive(x)`` means that ``x`` is real and not
        positive, i.e., ``Q.nonpositive(x)`` is logically equivalent to
        `Q.negative(x) | Q.zero(x)``.  So for example, ``~Q.positive(I)`` is
        true, whereas ``Q.nonpositive(I)`` is false.

    - See the documentation of ``Q.real`` for more information about
        related facts.

    Examples
    ========

    >>> from sympy import Q, ask, symbols, I
    >>> x = symbols('x')
    >>> ask(Q.positive(x), Q.real(x) & ~Q.negative(x) & ~Q.zero(x))
    True
    >>> ask(Q.positive(1))
    True
    >>> ask(Q.nonpositive(I))
    False
    >>> ask(~Q.positive(I))
    True

    """
    name = 'positive'
    handler = Dispatcher(
        "PositiveHandler",
        doc=("Handler for key 'positive'. Test that an expression is strictly"
        " greater than zero.")
    )


class ExtendedPositivePredicate(Predicate):
    r"""
    Positive extended real number predicate.

    Explanation
    ===========

    ``Q.extended_positive(x)`` is true iff ``x`` is extended real and
    `x > 0`, that is if ``x`` is in the interval `(0, \infty]`.

    Examples
    ========

    >>> from sympy import ask, I, oo, Q
    >>> ask(Q.extended_positive(1))
    True
    >>> ask(Q.extended_positive(oo))
    True
    >>> ask(Q.extended_positive(I))
    False

    """
    name = 'extended_positive'
    handler = Dispatcher("ExtendedPositiveHandler")


class ExtendedNegativePredicate(Predicate):
    r"""
    Negative extended real number predicate.

    Explanation
    ===========

    ``Q.extended_negative(x)`` is true iff ``x`` is extended real and
    `x < 0`, that is if ``x`` is in the interval `[-\infty, 0)`.

    Examples
    ========

    >>> from sympy import ask, I, oo, Q
    >>> ask(Q.extended_negative(-1))
    True
    >>> ask(Q.extended_negative(-oo))
    True
    >>> ask(Q.extended_negative(-I))
    False

    """
    name = 'extended_negative'
    handler = Dispatcher("ExtendedNegativeHandler")


class ExtendedNonZeroPredicate(Predicate):
    """
    Nonzero extended real number predicate.

    Explanation
    ===========

    ``ask(Q.extended_nonzero(x))`` is true iff ``x`` is extended real and
    ``x`` is not zero.

    Examples
    ========

    >>> from sympy import ask, I, oo, Q
    >>> ask(Q.extended_nonzero(-1))
    True
    >>> ask(Q.extended_nonzero(oo))
    True
    >>> ask(Q.extended_nonzero(I))
    False

    """
    name = 'extended_nonzero'
    handler = Dispatcher("ExtendedNonZeroHandler")


class ExtendedNonPositivePredicate(Predicate):
    """
    Nonpositive extended real number predicate.

    Explanation
    ===========

    ``ask(Q.extended_nonpositive(x))`` is true iff ``x`` is extended real and
    ``x`` is not positive.

    Examples
    ========

    >>> from sympy import ask, I, oo, Q
    >>> ask(Q.extended_nonpositive(-1))
    True
    >>> ask(Q.extended_nonpositive(oo))
    False
    >>> ask(Q.extended_nonpositive(0))
    True
    >>> ask(Q.extended_nonpositive(I))
    False

    """
    name = 'extended_nonpositive'
    handler = Dispatcher("ExtendedNonPositiveHandler")


class ExtendedNonNegativePredicate(Predicate):
    """
    Nonnegative extended real number predicate.

    Explanation
    ===========

    ``ask(Q.extended_nonnegative(x))`` is true iff ``x`` is extended real and
    ``x`` is not negative.

    Examples
    ========

    >>> from sympy import ask, I, oo, Q
    >>> ask(Q.extended_nonnegative(-1))
    False
    >>> ask(Q.extended_nonnegative(oo))
    True
    >>> ask(Q.extended_nonnegative(0))
    True
    >>> ask(Q.extended_nonnegative(I))
    False

    """
    name = 'extended_nonnegative'
    handler = Dispatcher("ExtendedNonNegativeHandler")