Spaces:
Sleeping
Sleeping
File size: 23,818 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
"""
Handlers for predicates related to set membership: integer, rational, etc.
"""
from sympy.assumptions import Q, ask
from sympy.core import Add, Basic, Expr, Mul, Pow, S
from sympy.core.numbers import (AlgebraicNumber, ComplexInfinity, Exp1, Float,
GoldenRatio, ImaginaryUnit, Infinity, Integer, NaN, NegativeInfinity,
Number, NumberSymbol, Pi, pi, Rational, TribonacciConstant, E)
from sympy.core.logic import fuzzy_bool
from sympy.functions import (Abs, acos, acot, asin, atan, cos, cot, exp, im,
log, re, sin, tan)
from sympy.core.numbers import I
from sympy.core.relational import Eq
from sympy.functions.elementary.complexes import conjugate
from sympy.matrices import Determinant, MatrixBase, Trace
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.multipledispatch import MDNotImplementedError
from .common import test_closed_group
from ..predicates.sets import (IntegerPredicate, RationalPredicate,
IrrationalPredicate, RealPredicate, ExtendedRealPredicate,
HermitianPredicate, ComplexPredicate, ImaginaryPredicate,
AntihermitianPredicate, AlgebraicPredicate)
# IntegerPredicate
def _IntegerPredicate_number(expr, assumptions):
# helper function
try:
i = int(expr.round())
if not (expr - i).equals(0):
raise TypeError
return True
except TypeError:
return False
@IntegerPredicate.register_many(int, Integer) # type:ignore
def _(expr, assumptions):
return True
@IntegerPredicate.register_many(Exp1, GoldenRatio, ImaginaryUnit, Infinity,
NegativeInfinity, Pi, Rational, TribonacciConstant)
def _(expr, assumptions):
return False
@IntegerPredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_integer
if ret is None:
raise MDNotImplementedError
return ret
@IntegerPredicate.register_many(Add, Pow)
def _(expr, assumptions):
"""
* Integer + Integer -> Integer
* Integer + !Integer -> !Integer
* !Integer + !Integer -> ?
"""
if expr.is_number:
return _IntegerPredicate_number(expr, assumptions)
return test_closed_group(expr, assumptions, Q.integer)
@IntegerPredicate.register(Mul)
def _(expr, assumptions):
"""
* Integer*Integer -> Integer
* Integer*Irrational -> !Integer
* Odd/Even -> !Integer
* Integer*Rational -> ?
"""
if expr.is_number:
return _IntegerPredicate_number(expr, assumptions)
_output = True
for arg in expr.args:
if not ask(Q.integer(arg), assumptions):
if arg.is_Rational:
if arg.q == 2:
return ask(Q.even(2*expr), assumptions)
if ~(arg.q & 1):
return None
elif ask(Q.irrational(arg), assumptions):
if _output:
_output = False
else:
return
else:
return
return _output
@IntegerPredicate.register(Abs)
def _(expr, assumptions):
return ask(Q.integer(expr.args[0]), assumptions)
@IntegerPredicate.register_many(Determinant, MatrixElement, Trace)
def _(expr, assumptions):
return ask(Q.integer_elements(expr.args[0]), assumptions)
# RationalPredicate
@RationalPredicate.register(Rational)
def _(expr, assumptions):
return True
@RationalPredicate.register(Float)
def _(expr, assumptions):
return None
@RationalPredicate.register_many(Exp1, GoldenRatio, ImaginaryUnit, Infinity,
NegativeInfinity, Pi, TribonacciConstant)
def _(expr, assumptions):
return False
@RationalPredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_rational
if ret is None:
raise MDNotImplementedError
return ret
@RationalPredicate.register_many(Add, Mul)
def _(expr, assumptions):
"""
* Rational + Rational -> Rational
* Rational + !Rational -> !Rational
* !Rational + !Rational -> ?
"""
if expr.is_number:
if expr.as_real_imag()[1]:
return False
return test_closed_group(expr, assumptions, Q.rational)
@RationalPredicate.register(Pow)
def _(expr, assumptions):
"""
* Rational ** Integer -> Rational
* Irrational ** Rational -> Irrational
* Rational ** Irrational -> ?
"""
if expr.base == E:
x = expr.exp
if ask(Q.rational(x), assumptions):
return ask(~Q.nonzero(x), assumptions)
return
if ask(Q.integer(expr.exp), assumptions):
return ask(Q.rational(expr.base), assumptions)
elif ask(Q.rational(expr.exp), assumptions):
if ask(Q.prime(expr.base), assumptions):
return False
@RationalPredicate.register_many(asin, atan, cos, sin, tan)
def _(expr, assumptions):
x = expr.args[0]
if ask(Q.rational(x), assumptions):
return ask(~Q.nonzero(x), assumptions)
@RationalPredicate.register(exp)
def _(expr, assumptions):
x = expr.exp
if ask(Q.rational(x), assumptions):
return ask(~Q.nonzero(x), assumptions)
@RationalPredicate.register_many(acot, cot)
def _(expr, assumptions):
x = expr.args[0]
if ask(Q.rational(x), assumptions):
return False
@RationalPredicate.register_many(acos, log)
def _(expr, assumptions):
x = expr.args[0]
if ask(Q.rational(x), assumptions):
return ask(~Q.nonzero(x - 1), assumptions)
# IrrationalPredicate
@IrrationalPredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_irrational
if ret is None:
raise MDNotImplementedError
return ret
@IrrationalPredicate.register(Basic)
def _(expr, assumptions):
_real = ask(Q.real(expr), assumptions)
if _real:
_rational = ask(Q.rational(expr), assumptions)
if _rational is None:
return None
return not _rational
else:
return _real
# RealPredicate
def _RealPredicate_number(expr, assumptions):
# let as_real_imag() work first since the expression may
# be simpler to evaluate
i = expr.as_real_imag()[1].evalf(2)
if i._prec != 1:
return not i
# allow None to be returned if we couldn't show for sure
# that i was 0
@RealPredicate.register_many(Abs, Exp1, Float, GoldenRatio, im, Pi, Rational,
re, TribonacciConstant)
def _(expr, assumptions):
return True
@RealPredicate.register_many(ImaginaryUnit, Infinity, NegativeInfinity)
def _(expr, assumptions):
return False
@RealPredicate.register(Expr)
def _(expr, assumptions):
ret = expr.is_real
if ret is None:
raise MDNotImplementedError
return ret
@RealPredicate.register(Add)
def _(expr, assumptions):
"""
* Real + Real -> Real
* Real + (Complex & !Real) -> !Real
"""
if expr.is_number:
return _RealPredicate_number(expr, assumptions)
return test_closed_group(expr, assumptions, Q.real)
@RealPredicate.register(Mul)
def _(expr, assumptions):
"""
* Real*Real -> Real
* Real*Imaginary -> !Real
* Imaginary*Imaginary -> Real
"""
if expr.is_number:
return _RealPredicate_number(expr, assumptions)
result = True
for arg in expr.args:
if ask(Q.real(arg), assumptions):
pass
elif ask(Q.imaginary(arg), assumptions):
result = result ^ True
else:
break
else:
return result
@RealPredicate.register(Pow)
def _(expr, assumptions):
"""
* Real**Integer -> Real
* Positive**Real -> Real
* Real**(Integer/Even) -> Real if base is nonnegative
* Real**(Integer/Odd) -> Real
* Imaginary**(Integer/Even) -> Real
* Imaginary**(Integer/Odd) -> not Real
* Imaginary**Real -> ? since Real could be 0 (giving real)
or 1 (giving imaginary)
* b**Imaginary -> Real if log(b) is imaginary and b != 0
and exponent != integer multiple of
I*pi/log(b)
* Real**Real -> ? e.g. sqrt(-1) is imaginary and
sqrt(2) is not
"""
if expr.is_number:
return _RealPredicate_number(expr, assumptions)
if expr.base == E:
return ask(
Q.integer(expr.exp/I/pi) | Q.real(expr.exp), assumptions
)
if expr.base.func == exp or (expr.base.is_Pow and expr.base.base == E):
if ask(Q.imaginary(expr.base.exp), assumptions):
if ask(Q.imaginary(expr.exp), assumptions):
return True
# If the i = (exp's arg)/(I*pi) is an integer or half-integer
# multiple of I*pi then 2*i will be an integer. In addition,
# exp(i*I*pi) = (-1)**i so the overall realness of the expr
# can be determined by replacing exp(i*I*pi) with (-1)**i.
i = expr.base.exp/I/pi
if ask(Q.integer(2*i), assumptions):
return ask(Q.real((S.NegativeOne**i)**expr.exp), assumptions)
return
if ask(Q.imaginary(expr.base), assumptions):
if ask(Q.integer(expr.exp), assumptions):
odd = ask(Q.odd(expr.exp), assumptions)
if odd is not None:
return not odd
return
if ask(Q.imaginary(expr.exp), assumptions):
imlog = ask(Q.imaginary(log(expr.base)), assumptions)
if imlog is not None:
# I**i -> real, log(I) is imag;
# (2*I)**i -> complex, log(2*I) is not imag
return imlog
if ask(Q.real(expr.base), assumptions):
if ask(Q.real(expr.exp), assumptions):
if expr.exp.is_Rational and \
ask(Q.even(expr.exp.q), assumptions):
return ask(Q.positive(expr.base), assumptions)
elif ask(Q.integer(expr.exp), assumptions):
return True
elif ask(Q.positive(expr.base), assumptions):
return True
elif ask(Q.negative(expr.base), assumptions):
return False
@RealPredicate.register_many(cos, sin)
def _(expr, assumptions):
if ask(Q.real(expr.args[0]), assumptions):
return True
@RealPredicate.register(exp)
def _(expr, assumptions):
return ask(
Q.integer(expr.exp/I/pi) | Q.real(expr.exp), assumptions
)
@RealPredicate.register(log)
def _(expr, assumptions):
return ask(Q.positive(expr.args[0]), assumptions)
@RealPredicate.register_many(Determinant, MatrixElement, Trace)
def _(expr, assumptions):
return ask(Q.real_elements(expr.args[0]), assumptions)
# ExtendedRealPredicate
@ExtendedRealPredicate.register(object)
def _(expr, assumptions):
return ask(Q.negative_infinite(expr)
| Q.negative(expr)
| Q.zero(expr)
| Q.positive(expr)
| Q.positive_infinite(expr),
assumptions)
@ExtendedRealPredicate.register_many(Infinity, NegativeInfinity)
def _(expr, assumptions):
return True
@ExtendedRealPredicate.register_many(Add, Mul, Pow) # type:ignore
def _(expr, assumptions):
return test_closed_group(expr, assumptions, Q.extended_real)
# HermitianPredicate
@HermitianPredicate.register(object) # type:ignore
def _(expr, assumptions):
if isinstance(expr, MatrixBase):
return None
return ask(Q.real(expr), assumptions)
@HermitianPredicate.register(Add) # type:ignore
def _(expr, assumptions):
"""
* Hermitian + Hermitian -> Hermitian
* Hermitian + !Hermitian -> !Hermitian
"""
if expr.is_number:
raise MDNotImplementedError
return test_closed_group(expr, assumptions, Q.hermitian)
@HermitianPredicate.register(Mul) # type:ignore
def _(expr, assumptions):
"""
As long as there is at most only one noncommutative term:
* Hermitian*Hermitian -> Hermitian
* Hermitian*Antihermitian -> !Hermitian
* Antihermitian*Antihermitian -> Hermitian
"""
if expr.is_number:
raise MDNotImplementedError
nccount = 0
result = True
for arg in expr.args:
if ask(Q.antihermitian(arg), assumptions):
result = result ^ True
elif not ask(Q.hermitian(arg), assumptions):
break
if ask(~Q.commutative(arg), assumptions):
nccount += 1
if nccount > 1:
break
else:
return result
@HermitianPredicate.register(Pow) # type:ignore
def _(expr, assumptions):
"""
* Hermitian**Integer -> Hermitian
"""
if expr.is_number:
raise MDNotImplementedError
if expr.base == E:
if ask(Q.hermitian(expr.exp), assumptions):
return True
raise MDNotImplementedError
if ask(Q.hermitian(expr.base), assumptions):
if ask(Q.integer(expr.exp), assumptions):
return True
raise MDNotImplementedError
@HermitianPredicate.register_many(cos, sin) # type:ignore
def _(expr, assumptions):
if ask(Q.hermitian(expr.args[0]), assumptions):
return True
raise MDNotImplementedError
@HermitianPredicate.register(exp) # type:ignore
def _(expr, assumptions):
if ask(Q.hermitian(expr.exp), assumptions):
return True
raise MDNotImplementedError
@HermitianPredicate.register(MatrixBase) # type:ignore
def _(mat, assumptions):
rows, cols = mat.shape
ret_val = True
for i in range(rows):
for j in range(i, cols):
cond = fuzzy_bool(Eq(mat[i, j], conjugate(mat[j, i])))
if cond is None:
ret_val = None
if cond == False:
return False
if ret_val is None:
raise MDNotImplementedError
return ret_val
# ComplexPredicate
@ComplexPredicate.register_many(Abs, cos, exp, im, ImaginaryUnit, log, Number, # type:ignore
NumberSymbol, re, sin)
def _(expr, assumptions):
return True
@ComplexPredicate.register_many(Infinity, NegativeInfinity) # type:ignore
def _(expr, assumptions):
return False
@ComplexPredicate.register(Expr) # type:ignore
def _(expr, assumptions):
ret = expr.is_complex
if ret is None:
raise MDNotImplementedError
return ret
@ComplexPredicate.register_many(Add, Mul) # type:ignore
def _(expr, assumptions):
return test_closed_group(expr, assumptions, Q.complex)
@ComplexPredicate.register(Pow) # type:ignore
def _(expr, assumptions):
if expr.base == E:
return True
return test_closed_group(expr, assumptions, Q.complex)
@ComplexPredicate.register_many(Determinant, MatrixElement, Trace) # type:ignore
def _(expr, assumptions):
return ask(Q.complex_elements(expr.args[0]), assumptions)
@ComplexPredicate.register(NaN) # type:ignore
def _(expr, assumptions):
return None
# ImaginaryPredicate
def _Imaginary_number(expr, assumptions):
# let as_real_imag() work first since the expression may
# be simpler to evaluate
r = expr.as_real_imag()[0].evalf(2)
if r._prec != 1:
return not r
# allow None to be returned if we couldn't show for sure
# that r was 0
@ImaginaryPredicate.register(ImaginaryUnit) # type:ignore
def _(expr, assumptions):
return True
@ImaginaryPredicate.register(Expr) # type:ignore
def _(expr, assumptions):
ret = expr.is_imaginary
if ret is None:
raise MDNotImplementedError
return ret
@ImaginaryPredicate.register(Add) # type:ignore
def _(expr, assumptions):
"""
* Imaginary + Imaginary -> Imaginary
* Imaginary + Complex -> ?
* Imaginary + Real -> !Imaginary
"""
if expr.is_number:
return _Imaginary_number(expr, assumptions)
reals = 0
for arg in expr.args:
if ask(Q.imaginary(arg), assumptions):
pass
elif ask(Q.real(arg), assumptions):
reals += 1
else:
break
else:
if reals == 0:
return True
if reals in (1, len(expr.args)):
# two reals could sum 0 thus giving an imaginary
return False
@ImaginaryPredicate.register(Mul) # type:ignore
def _(expr, assumptions):
"""
* Real*Imaginary -> Imaginary
* Imaginary*Imaginary -> Real
"""
if expr.is_number:
return _Imaginary_number(expr, assumptions)
result = False
reals = 0
for arg in expr.args:
if ask(Q.imaginary(arg), assumptions):
result = result ^ True
elif not ask(Q.real(arg), assumptions):
break
else:
if reals == len(expr.args):
return False
return result
@ImaginaryPredicate.register(Pow) # type:ignore
def _(expr, assumptions):
"""
* Imaginary**Odd -> Imaginary
* Imaginary**Even -> Real
* b**Imaginary -> !Imaginary if exponent is an integer
multiple of I*pi/log(b)
* Imaginary**Real -> ?
* Positive**Real -> Real
* Negative**Integer -> Real
* Negative**(Integer/2) -> Imaginary
* Negative**Real -> not Imaginary if exponent is not Rational
"""
if expr.is_number:
return _Imaginary_number(expr, assumptions)
if expr.base == E:
a = expr.exp/I/pi
return ask(Q.integer(2*a) & ~Q.integer(a), assumptions)
if expr.base.func == exp or (expr.base.is_Pow and expr.base.base == E):
if ask(Q.imaginary(expr.base.exp), assumptions):
if ask(Q.imaginary(expr.exp), assumptions):
return False
i = expr.base.exp/I/pi
if ask(Q.integer(2*i), assumptions):
return ask(Q.imaginary((S.NegativeOne**i)**expr.exp), assumptions)
if ask(Q.imaginary(expr.base), assumptions):
if ask(Q.integer(expr.exp), assumptions):
odd = ask(Q.odd(expr.exp), assumptions)
if odd is not None:
return odd
return
if ask(Q.imaginary(expr.exp), assumptions):
imlog = ask(Q.imaginary(log(expr.base)), assumptions)
if imlog is not None:
# I**i -> real; (2*I)**i -> complex ==> not imaginary
return False
if ask(Q.real(expr.base) & Q.real(expr.exp), assumptions):
if ask(Q.positive(expr.base), assumptions):
return False
else:
rat = ask(Q.rational(expr.exp), assumptions)
if not rat:
return rat
if ask(Q.integer(expr.exp), assumptions):
return False
else:
half = ask(Q.integer(2*expr.exp), assumptions)
if half:
return ask(Q.negative(expr.base), assumptions)
return half
@ImaginaryPredicate.register(log) # type:ignore
def _(expr, assumptions):
if ask(Q.real(expr.args[0]), assumptions):
if ask(Q.positive(expr.args[0]), assumptions):
return False
return
# XXX it should be enough to do
# return ask(Q.nonpositive(expr.args[0]), assumptions)
# but ask(Q.nonpositive(exp(x)), Q.imaginary(x)) -> None;
# it should return True since exp(x) will be either 0 or complex
if expr.args[0].func == exp or (expr.args[0].is_Pow and expr.args[0].base == E):
if expr.args[0].exp in [I, -I]:
return True
im = ask(Q.imaginary(expr.args[0]), assumptions)
if im is False:
return False
@ImaginaryPredicate.register(exp) # type:ignore
def _(expr, assumptions):
a = expr.exp/I/pi
return ask(Q.integer(2*a) & ~Q.integer(a), assumptions)
@ImaginaryPredicate.register_many(Number, NumberSymbol) # type:ignore
def _(expr, assumptions):
return not (expr.as_real_imag()[1] == 0)
@ImaginaryPredicate.register(NaN) # type:ignore
def _(expr, assumptions):
return None
# AntihermitianPredicate
@AntihermitianPredicate.register(object) # type:ignore
def _(expr, assumptions):
if isinstance(expr, MatrixBase):
return None
if ask(Q.zero(expr), assumptions):
return True
return ask(Q.imaginary(expr), assumptions)
@AntihermitianPredicate.register(Add) # type:ignore
def _(expr, assumptions):
"""
* Antihermitian + Antihermitian -> Antihermitian
* Antihermitian + !Antihermitian -> !Antihermitian
"""
if expr.is_number:
raise MDNotImplementedError
return test_closed_group(expr, assumptions, Q.antihermitian)
@AntihermitianPredicate.register(Mul) # type:ignore
def _(expr, assumptions):
"""
As long as there is at most only one noncommutative term:
* Hermitian*Hermitian -> !Antihermitian
* Hermitian*Antihermitian -> Antihermitian
* Antihermitian*Antihermitian -> !Antihermitian
"""
if expr.is_number:
raise MDNotImplementedError
nccount = 0
result = False
for arg in expr.args:
if ask(Q.antihermitian(arg), assumptions):
result = result ^ True
elif not ask(Q.hermitian(arg), assumptions):
break
if ask(~Q.commutative(arg), assumptions):
nccount += 1
if nccount > 1:
break
else:
return result
@AntihermitianPredicate.register(Pow) # type:ignore
def _(expr, assumptions):
"""
* Hermitian**Integer -> !Antihermitian
* Antihermitian**Even -> !Antihermitian
* Antihermitian**Odd -> Antihermitian
"""
if expr.is_number:
raise MDNotImplementedError
if ask(Q.hermitian(expr.base), assumptions):
if ask(Q.integer(expr.exp), assumptions):
return False
elif ask(Q.antihermitian(expr.base), assumptions):
if ask(Q.even(expr.exp), assumptions):
return False
elif ask(Q.odd(expr.exp), assumptions):
return True
raise MDNotImplementedError
@AntihermitianPredicate.register(MatrixBase) # type:ignore
def _(mat, assumptions):
rows, cols = mat.shape
ret_val = True
for i in range(rows):
for j in range(i, cols):
cond = fuzzy_bool(Eq(mat[i, j], -conjugate(mat[j, i])))
if cond is None:
ret_val = None
if cond == False:
return False
if ret_val is None:
raise MDNotImplementedError
return ret_val
# AlgebraicPredicate
@AlgebraicPredicate.register_many(AlgebraicNumber, Float, GoldenRatio, # type:ignore
ImaginaryUnit, TribonacciConstant)
def _(expr, assumptions):
return True
@AlgebraicPredicate.register_many(ComplexInfinity, Exp1, Infinity, # type:ignore
NegativeInfinity, Pi)
def _(expr, assumptions):
return False
@AlgebraicPredicate.register_many(Add, Mul) # type:ignore
def _(expr, assumptions):
return test_closed_group(expr, assumptions, Q.algebraic)
@AlgebraicPredicate.register(Pow) # type:ignore
def _(expr, assumptions):
if expr.base == E:
if ask(Q.algebraic(expr.exp), assumptions):
return ask(~Q.nonzero(expr.exp), assumptions)
return
return expr.exp.is_Rational and ask(Q.algebraic(expr.base), assumptions)
@AlgebraicPredicate.register(Rational) # type:ignore
def _(expr, assumptions):
return expr.q != 0
@AlgebraicPredicate.register_many(asin, atan, cos, sin, tan) # type:ignore
def _(expr, assumptions):
x = expr.args[0]
if ask(Q.algebraic(x), assumptions):
return ask(~Q.nonzero(x), assumptions)
@AlgebraicPredicate.register(exp) # type:ignore
def _(expr, assumptions):
x = expr.exp
if ask(Q.algebraic(x), assumptions):
return ask(~Q.nonzero(x), assumptions)
@AlgebraicPredicate.register_many(acot, cot) # type:ignore
def _(expr, assumptions):
x = expr.args[0]
if ask(Q.algebraic(x), assumptions):
return False
@AlgebraicPredicate.register_many(acos, log) # type:ignore
def _(expr, assumptions):
x = expr.args[0]
if ask(Q.algebraic(x), assumptions):
return ask(~Q.nonzero(x - 1), assumptions)
|