File size: 23,818 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
"""
Handlers for predicates related to set membership: integer, rational, etc.
"""

from sympy.assumptions import Q, ask
from sympy.core import Add, Basic, Expr, Mul, Pow, S
from sympy.core.numbers import (AlgebraicNumber, ComplexInfinity, Exp1, Float,
    GoldenRatio, ImaginaryUnit, Infinity, Integer, NaN, NegativeInfinity,
    Number, NumberSymbol, Pi, pi, Rational, TribonacciConstant, E)
from sympy.core.logic import fuzzy_bool
from sympy.functions import (Abs, acos, acot, asin, atan, cos, cot, exp, im,
    log, re, sin, tan)
from sympy.core.numbers import I
from sympy.core.relational import Eq
from sympy.functions.elementary.complexes import conjugate
from sympy.matrices import Determinant, MatrixBase, Trace
from sympy.matrices.expressions.matexpr import MatrixElement

from sympy.multipledispatch import MDNotImplementedError

from .common import test_closed_group
from ..predicates.sets import (IntegerPredicate, RationalPredicate,
    IrrationalPredicate, RealPredicate, ExtendedRealPredicate,
    HermitianPredicate, ComplexPredicate, ImaginaryPredicate,
    AntihermitianPredicate, AlgebraicPredicate)


# IntegerPredicate

def _IntegerPredicate_number(expr, assumptions):
    # helper function
        try:
            i = int(expr.round())
            if not (expr - i).equals(0):
                raise TypeError
            return True
        except TypeError:
            return False

@IntegerPredicate.register_many(int, Integer) # type:ignore
def _(expr, assumptions):
    return True

@IntegerPredicate.register_many(Exp1, GoldenRatio, ImaginaryUnit, Infinity,
        NegativeInfinity, Pi, Rational, TribonacciConstant)
def _(expr, assumptions):
    return False

@IntegerPredicate.register(Expr)
def _(expr, assumptions):
    ret = expr.is_integer
    if ret is None:
        raise MDNotImplementedError
    return ret

@IntegerPredicate.register_many(Add, Pow)
def _(expr, assumptions):
    """
    * Integer + Integer       -> Integer
    * Integer + !Integer      -> !Integer
    * !Integer + !Integer -> ?
    """
    if expr.is_number:
        return _IntegerPredicate_number(expr, assumptions)
    return test_closed_group(expr, assumptions, Q.integer)

@IntegerPredicate.register(Mul)
def _(expr, assumptions):
    """
    * Integer*Integer      -> Integer
    * Integer*Irrational   -> !Integer
    * Odd/Even             -> !Integer
    * Integer*Rational     -> ?
    """
    if expr.is_number:
        return _IntegerPredicate_number(expr, assumptions)
    _output = True
    for arg in expr.args:
        if not ask(Q.integer(arg), assumptions):
            if arg.is_Rational:
                if arg.q == 2:
                    return ask(Q.even(2*expr), assumptions)
                if ~(arg.q & 1):
                    return None
            elif ask(Q.irrational(arg), assumptions):
                if _output:
                    _output = False
                else:
                    return
            else:
                return

    return _output

@IntegerPredicate.register(Abs)
def _(expr, assumptions):
    return ask(Q.integer(expr.args[0]), assumptions)

@IntegerPredicate.register_many(Determinant, MatrixElement, Trace)
def _(expr, assumptions):
    return ask(Q.integer_elements(expr.args[0]), assumptions)


# RationalPredicate

@RationalPredicate.register(Rational)
def _(expr, assumptions):
    return True

@RationalPredicate.register(Float)
def _(expr, assumptions):
    return None

@RationalPredicate.register_many(Exp1, GoldenRatio, ImaginaryUnit, Infinity,
    NegativeInfinity, Pi, TribonacciConstant)
def _(expr, assumptions):
    return False

@RationalPredicate.register(Expr)
def _(expr, assumptions):
    ret = expr.is_rational
    if ret is None:
        raise MDNotImplementedError
    return ret

@RationalPredicate.register_many(Add, Mul)
def _(expr, assumptions):
    """
    * Rational + Rational     -> Rational
    * Rational + !Rational    -> !Rational
    * !Rational + !Rational   -> ?
    """
    if expr.is_number:
        if expr.as_real_imag()[1]:
            return False
    return test_closed_group(expr, assumptions, Q.rational)

@RationalPredicate.register(Pow)
def _(expr, assumptions):
    """
    * Rational ** Integer      -> Rational
    * Irrational ** Rational   -> Irrational
    * Rational ** Irrational   -> ?
    """
    if expr.base == E:
        x = expr.exp
        if ask(Q.rational(x), assumptions):
            return ask(~Q.nonzero(x), assumptions)
        return

    if ask(Q.integer(expr.exp), assumptions):
        return ask(Q.rational(expr.base), assumptions)
    elif ask(Q.rational(expr.exp), assumptions):
        if ask(Q.prime(expr.base), assumptions):
            return False

@RationalPredicate.register_many(asin, atan, cos, sin, tan)
def _(expr, assumptions):
    x = expr.args[0]
    if ask(Q.rational(x), assumptions):
        return ask(~Q.nonzero(x), assumptions)

@RationalPredicate.register(exp)
def _(expr, assumptions):
    x = expr.exp
    if ask(Q.rational(x), assumptions):
        return ask(~Q.nonzero(x), assumptions)

@RationalPredicate.register_many(acot, cot)
def _(expr, assumptions):
    x = expr.args[0]
    if ask(Q.rational(x), assumptions):
        return False

@RationalPredicate.register_many(acos, log)
def _(expr, assumptions):
    x = expr.args[0]
    if ask(Q.rational(x), assumptions):
        return ask(~Q.nonzero(x - 1), assumptions)


# IrrationalPredicate

@IrrationalPredicate.register(Expr)
def _(expr, assumptions):
    ret = expr.is_irrational
    if ret is None:
        raise MDNotImplementedError
    return ret

@IrrationalPredicate.register(Basic)
def _(expr, assumptions):
    _real = ask(Q.real(expr), assumptions)
    if _real:
        _rational = ask(Q.rational(expr), assumptions)
        if _rational is None:
            return None
        return not _rational
    else:
        return _real


# RealPredicate

def _RealPredicate_number(expr, assumptions):
    # let as_real_imag() work first since the expression may
    # be simpler to evaluate
    i = expr.as_real_imag()[1].evalf(2)
    if i._prec != 1:
        return not i
    # allow None to be returned if we couldn't show for sure
    # that i was 0

@RealPredicate.register_many(Abs, Exp1, Float, GoldenRatio, im, Pi, Rational,
    re, TribonacciConstant)
def _(expr, assumptions):
    return True

@RealPredicate.register_many(ImaginaryUnit, Infinity, NegativeInfinity)
def _(expr, assumptions):
    return False

@RealPredicate.register(Expr)
def _(expr, assumptions):
    ret = expr.is_real
    if ret is None:
        raise MDNotImplementedError
    return ret

@RealPredicate.register(Add)
def _(expr, assumptions):
    """
    * Real + Real              -> Real
    * Real + (Complex & !Real) -> !Real
    """
    if expr.is_number:
        return _RealPredicate_number(expr, assumptions)
    return test_closed_group(expr, assumptions, Q.real)

@RealPredicate.register(Mul)
def _(expr, assumptions):
    """
    * Real*Real               -> Real
    * Real*Imaginary          -> !Real
    * Imaginary*Imaginary     -> Real
    """
    if expr.is_number:
        return _RealPredicate_number(expr, assumptions)
    result = True
    for arg in expr.args:
        if ask(Q.real(arg), assumptions):
            pass
        elif ask(Q.imaginary(arg), assumptions):
            result = result ^ True
        else:
            break
    else:
        return result

@RealPredicate.register(Pow)
def _(expr, assumptions):
    """
    * Real**Integer              -> Real
    * Positive**Real             -> Real
    * Real**(Integer/Even)       -> Real if base is nonnegative
    * Real**(Integer/Odd)        -> Real
    * Imaginary**(Integer/Even)  -> Real
    * Imaginary**(Integer/Odd)   -> not Real
    * Imaginary**Real            -> ? since Real could be 0 (giving real)
                                    or 1 (giving imaginary)
    * b**Imaginary               -> Real if log(b) is imaginary and b != 0
                                    and exponent != integer multiple of
                                    I*pi/log(b)
    * Real**Real                 -> ? e.g. sqrt(-1) is imaginary and
                                    sqrt(2) is not
    """
    if expr.is_number:
        return _RealPredicate_number(expr, assumptions)

    if expr.base == E:
        return ask(
            Q.integer(expr.exp/I/pi) | Q.real(expr.exp), assumptions
        )

    if expr.base.func == exp or (expr.base.is_Pow and expr.base.base == E):
        if ask(Q.imaginary(expr.base.exp), assumptions):
            if ask(Q.imaginary(expr.exp), assumptions):
                return True
        # If the i = (exp's arg)/(I*pi) is an integer or half-integer
        # multiple of I*pi then 2*i will be an integer. In addition,
        # exp(i*I*pi) = (-1)**i so the overall realness of the expr
        # can be determined by replacing exp(i*I*pi) with (-1)**i.
        i = expr.base.exp/I/pi
        if ask(Q.integer(2*i), assumptions):
            return ask(Q.real((S.NegativeOne**i)**expr.exp), assumptions)
        return

    if ask(Q.imaginary(expr.base), assumptions):
        if ask(Q.integer(expr.exp), assumptions):
            odd = ask(Q.odd(expr.exp), assumptions)
            if odd is not None:
                return not odd
            return

    if ask(Q.imaginary(expr.exp), assumptions):
        imlog = ask(Q.imaginary(log(expr.base)), assumptions)
        if imlog is not None:
            # I**i -> real, log(I) is imag;
            # (2*I)**i -> complex, log(2*I) is not imag
            return imlog

    if ask(Q.real(expr.base), assumptions):
        if ask(Q.real(expr.exp), assumptions):
            if expr.exp.is_Rational and \
                    ask(Q.even(expr.exp.q), assumptions):
                return ask(Q.positive(expr.base), assumptions)
            elif ask(Q.integer(expr.exp), assumptions):
                return True
            elif ask(Q.positive(expr.base), assumptions):
                return True
            elif ask(Q.negative(expr.base), assumptions):
                return False

@RealPredicate.register_many(cos, sin)
def _(expr, assumptions):
    if ask(Q.real(expr.args[0]), assumptions):
            return True

@RealPredicate.register(exp)
def _(expr, assumptions):
    return ask(
        Q.integer(expr.exp/I/pi) | Q.real(expr.exp), assumptions
    )

@RealPredicate.register(log)
def _(expr, assumptions):
    return ask(Q.positive(expr.args[0]), assumptions)

@RealPredicate.register_many(Determinant, MatrixElement, Trace)
def _(expr, assumptions):
    return ask(Q.real_elements(expr.args[0]), assumptions)


# ExtendedRealPredicate

@ExtendedRealPredicate.register(object)
def _(expr, assumptions):
    return ask(Q.negative_infinite(expr)
               | Q.negative(expr)
               | Q.zero(expr)
               | Q.positive(expr)
               | Q.positive_infinite(expr),
            assumptions)

@ExtendedRealPredicate.register_many(Infinity, NegativeInfinity)
def _(expr, assumptions):
    return True

@ExtendedRealPredicate.register_many(Add, Mul, Pow) # type:ignore
def _(expr, assumptions):
    return test_closed_group(expr, assumptions, Q.extended_real)


# HermitianPredicate

@HermitianPredicate.register(object) # type:ignore
def _(expr, assumptions):
    if isinstance(expr, MatrixBase):
        return None
    return ask(Q.real(expr), assumptions)

@HermitianPredicate.register(Add) # type:ignore
def _(expr, assumptions):
    """
    * Hermitian + Hermitian  -> Hermitian
    * Hermitian + !Hermitian -> !Hermitian
    """
    if expr.is_number:
        raise MDNotImplementedError
    return test_closed_group(expr, assumptions, Q.hermitian)

@HermitianPredicate.register(Mul) # type:ignore
def _(expr, assumptions):
    """
    As long as there is at most only one noncommutative term:

    * Hermitian*Hermitian         -> Hermitian
    * Hermitian*Antihermitian     -> !Hermitian
    * Antihermitian*Antihermitian -> Hermitian
    """
    if expr.is_number:
        raise MDNotImplementedError
    nccount = 0
    result = True
    for arg in expr.args:
        if ask(Q.antihermitian(arg), assumptions):
            result = result ^ True
        elif not ask(Q.hermitian(arg), assumptions):
            break
        if ask(~Q.commutative(arg), assumptions):
            nccount += 1
            if nccount > 1:
                break
    else:
        return result

@HermitianPredicate.register(Pow) # type:ignore
def _(expr, assumptions):
    """
    * Hermitian**Integer -> Hermitian
    """
    if expr.is_number:
        raise MDNotImplementedError
    if expr.base == E:
        if ask(Q.hermitian(expr.exp), assumptions):
            return True
        raise MDNotImplementedError
    if ask(Q.hermitian(expr.base), assumptions):
        if ask(Q.integer(expr.exp), assumptions):
            return True
    raise MDNotImplementedError

@HermitianPredicate.register_many(cos, sin) # type:ignore
def _(expr, assumptions):
    if ask(Q.hermitian(expr.args[0]), assumptions):
        return True
    raise MDNotImplementedError

@HermitianPredicate.register(exp) # type:ignore
def _(expr, assumptions):
    if ask(Q.hermitian(expr.exp), assumptions):
        return True
    raise MDNotImplementedError

@HermitianPredicate.register(MatrixBase) # type:ignore
def _(mat, assumptions):
    rows, cols = mat.shape
    ret_val = True
    for i in range(rows):
        for j in range(i, cols):
            cond = fuzzy_bool(Eq(mat[i, j], conjugate(mat[j, i])))
            if cond is None:
                ret_val = None
            if cond == False:
                return False
    if ret_val is None:
        raise MDNotImplementedError
    return ret_val


# ComplexPredicate

@ComplexPredicate.register_many(Abs, cos, exp, im, ImaginaryUnit, log, Number, # type:ignore
    NumberSymbol, re, sin)
def _(expr, assumptions):
    return True

@ComplexPredicate.register_many(Infinity, NegativeInfinity) # type:ignore
def _(expr, assumptions):
    return False

@ComplexPredicate.register(Expr) # type:ignore
def _(expr, assumptions):
    ret = expr.is_complex
    if ret is None:
        raise MDNotImplementedError
    return ret

@ComplexPredicate.register_many(Add, Mul) # type:ignore
def _(expr, assumptions):
    return test_closed_group(expr, assumptions, Q.complex)

@ComplexPredicate.register(Pow) # type:ignore
def _(expr, assumptions):
    if expr.base == E:
        return True
    return test_closed_group(expr, assumptions, Q.complex)

@ComplexPredicate.register_many(Determinant, MatrixElement, Trace) # type:ignore
def _(expr, assumptions):
    return ask(Q.complex_elements(expr.args[0]), assumptions)

@ComplexPredicate.register(NaN) # type:ignore
def _(expr, assumptions):
    return None


# ImaginaryPredicate

def _Imaginary_number(expr, assumptions):
    # let as_real_imag() work first since the expression may
    # be simpler to evaluate
    r = expr.as_real_imag()[0].evalf(2)
    if r._prec != 1:
        return not r
    # allow None to be returned if we couldn't show for sure
    # that r was 0

@ImaginaryPredicate.register(ImaginaryUnit) # type:ignore
def _(expr, assumptions):
    return True

@ImaginaryPredicate.register(Expr) # type:ignore
def _(expr, assumptions):
    ret = expr.is_imaginary
    if ret is None:
        raise MDNotImplementedError
    return ret

@ImaginaryPredicate.register(Add) # type:ignore
def _(expr, assumptions):
    """
    * Imaginary + Imaginary -> Imaginary
    * Imaginary + Complex   -> ?
    * Imaginary + Real      -> !Imaginary
    """
    if expr.is_number:
        return _Imaginary_number(expr, assumptions)

    reals = 0
    for arg in expr.args:
        if ask(Q.imaginary(arg), assumptions):
            pass
        elif ask(Q.real(arg), assumptions):
            reals += 1
        else:
            break
    else:
        if reals == 0:
            return True
        if reals in (1, len(expr.args)):
            # two reals could sum 0 thus giving an imaginary
            return False

@ImaginaryPredicate.register(Mul) # type:ignore
def _(expr, assumptions):
    """
    * Real*Imaginary      -> Imaginary
    * Imaginary*Imaginary -> Real
    """
    if expr.is_number:
        return _Imaginary_number(expr, assumptions)
    result = False
    reals = 0
    for arg in expr.args:
        if ask(Q.imaginary(arg), assumptions):
            result = result ^ True
        elif not ask(Q.real(arg), assumptions):
            break
    else:
        if reals == len(expr.args):
            return False
        return result

@ImaginaryPredicate.register(Pow) # type:ignore
def _(expr, assumptions):
    """
    * Imaginary**Odd        -> Imaginary
    * Imaginary**Even       -> Real
    * b**Imaginary          -> !Imaginary if exponent is an integer
                               multiple of I*pi/log(b)
    * Imaginary**Real       -> ?
    * Positive**Real        -> Real
    * Negative**Integer     -> Real
    * Negative**(Integer/2) -> Imaginary
    * Negative**Real        -> not Imaginary if exponent is not Rational
    """
    if expr.is_number:
        return _Imaginary_number(expr, assumptions)

    if expr.base == E:
        a = expr.exp/I/pi
        return ask(Q.integer(2*a) & ~Q.integer(a), assumptions)

    if expr.base.func == exp or (expr.base.is_Pow and expr.base.base == E):
        if ask(Q.imaginary(expr.base.exp), assumptions):
            if ask(Q.imaginary(expr.exp), assumptions):
                return False
            i = expr.base.exp/I/pi
            if ask(Q.integer(2*i), assumptions):
                return ask(Q.imaginary((S.NegativeOne**i)**expr.exp), assumptions)

    if ask(Q.imaginary(expr.base), assumptions):
        if ask(Q.integer(expr.exp), assumptions):
            odd = ask(Q.odd(expr.exp), assumptions)
            if odd is not None:
                return odd
            return

    if ask(Q.imaginary(expr.exp), assumptions):
        imlog = ask(Q.imaginary(log(expr.base)), assumptions)
        if imlog is not None:
            # I**i -> real; (2*I)**i -> complex ==> not imaginary
            return False

    if ask(Q.real(expr.base) & Q.real(expr.exp), assumptions):
        if ask(Q.positive(expr.base), assumptions):
            return False
        else:
            rat = ask(Q.rational(expr.exp), assumptions)
            if not rat:
                return rat
            if ask(Q.integer(expr.exp), assumptions):
                return False
            else:
                half = ask(Q.integer(2*expr.exp), assumptions)
                if half:
                    return ask(Q.negative(expr.base), assumptions)
                return half

@ImaginaryPredicate.register(log) # type:ignore
def _(expr, assumptions):
    if ask(Q.real(expr.args[0]), assumptions):
        if ask(Q.positive(expr.args[0]), assumptions):
            return False
        return
    # XXX it should be enough to do
    # return ask(Q.nonpositive(expr.args[0]), assumptions)
    # but ask(Q.nonpositive(exp(x)), Q.imaginary(x)) -> None;
    # it should return True since exp(x) will be either 0 or complex
    if expr.args[0].func == exp or (expr.args[0].is_Pow and expr.args[0].base == E):
        if expr.args[0].exp in [I, -I]:
            return True
    im = ask(Q.imaginary(expr.args[0]), assumptions)
    if im is False:
        return False

@ImaginaryPredicate.register(exp) # type:ignore
def _(expr, assumptions):
    a = expr.exp/I/pi
    return ask(Q.integer(2*a) & ~Q.integer(a), assumptions)

@ImaginaryPredicate.register_many(Number, NumberSymbol) # type:ignore
def _(expr, assumptions):
    return not (expr.as_real_imag()[1] == 0)

@ImaginaryPredicate.register(NaN) # type:ignore
def _(expr, assumptions):
    return None


# AntihermitianPredicate

@AntihermitianPredicate.register(object) # type:ignore
def _(expr, assumptions):
    if isinstance(expr, MatrixBase):
        return None
    if ask(Q.zero(expr), assumptions):
        return True
    return ask(Q.imaginary(expr), assumptions)

@AntihermitianPredicate.register(Add) # type:ignore
def _(expr, assumptions):
    """
    * Antihermitian + Antihermitian  -> Antihermitian
    * Antihermitian + !Antihermitian -> !Antihermitian
    """
    if expr.is_number:
        raise MDNotImplementedError
    return test_closed_group(expr, assumptions, Q.antihermitian)

@AntihermitianPredicate.register(Mul) # type:ignore
def _(expr, assumptions):
    """
    As long as there is at most only one noncommutative term:

    * Hermitian*Hermitian         -> !Antihermitian
    * Hermitian*Antihermitian     -> Antihermitian
    * Antihermitian*Antihermitian -> !Antihermitian
    """
    if expr.is_number:
        raise MDNotImplementedError
    nccount = 0
    result = False
    for arg in expr.args:
        if ask(Q.antihermitian(arg), assumptions):
            result = result ^ True
        elif not ask(Q.hermitian(arg), assumptions):
            break
        if ask(~Q.commutative(arg), assumptions):
            nccount += 1
            if nccount > 1:
                break
    else:
        return result

@AntihermitianPredicate.register(Pow) # type:ignore
def _(expr, assumptions):
    """
    * Hermitian**Integer  -> !Antihermitian
    * Antihermitian**Even -> !Antihermitian
    * Antihermitian**Odd  -> Antihermitian
    """
    if expr.is_number:
        raise MDNotImplementedError
    if ask(Q.hermitian(expr.base), assumptions):
        if ask(Q.integer(expr.exp), assumptions):
            return False
    elif ask(Q.antihermitian(expr.base), assumptions):
        if ask(Q.even(expr.exp), assumptions):
            return False
        elif ask(Q.odd(expr.exp), assumptions):
            return True
    raise MDNotImplementedError

@AntihermitianPredicate.register(MatrixBase) # type:ignore
def _(mat, assumptions):
    rows, cols = mat.shape
    ret_val = True
    for i in range(rows):
        for j in range(i, cols):
            cond = fuzzy_bool(Eq(mat[i, j], -conjugate(mat[j, i])))
            if cond is None:
                ret_val = None
            if cond == False:
                return False
    if ret_val is None:
        raise MDNotImplementedError
    return ret_val


# AlgebraicPredicate

@AlgebraicPredicate.register_many(AlgebraicNumber, Float, GoldenRatio, # type:ignore
    ImaginaryUnit, TribonacciConstant)
def _(expr, assumptions):
    return True

@AlgebraicPredicate.register_many(ComplexInfinity, Exp1, Infinity, # type:ignore
    NegativeInfinity, Pi)
def _(expr, assumptions):
    return False

@AlgebraicPredicate.register_many(Add, Mul) # type:ignore
def _(expr, assumptions):
    return test_closed_group(expr, assumptions, Q.algebraic)

@AlgebraicPredicate.register(Pow) # type:ignore
def _(expr, assumptions):
    if expr.base == E:
        if ask(Q.algebraic(expr.exp), assumptions):
            return ask(~Q.nonzero(expr.exp), assumptions)
        return
    return expr.exp.is_Rational and ask(Q.algebraic(expr.base), assumptions)

@AlgebraicPredicate.register(Rational) # type:ignore
def _(expr, assumptions):
    return expr.q != 0

@AlgebraicPredicate.register_many(asin, atan, cos, sin, tan) # type:ignore
def _(expr, assumptions):
    x = expr.args[0]
    if ask(Q.algebraic(x), assumptions):
        return ask(~Q.nonzero(x), assumptions)

@AlgebraicPredicate.register(exp) # type:ignore
def _(expr, assumptions):
    x = expr.exp
    if ask(Q.algebraic(x), assumptions):
        return ask(~Q.nonzero(x), assumptions)

@AlgebraicPredicate.register_many(acot, cot) # type:ignore
def _(expr, assumptions):
    x = expr.args[0]
    if ask(Q.algebraic(x), assumptions):
        return False

@AlgebraicPredicate.register_many(acos, log) # type:ignore
def _(expr, assumptions):
    x = expr.args[0]
    if ask(Q.algebraic(x), assumptions):
        return ask(~Q.nonzero(x - 1), assumptions)