File size: 7,267 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
"""
Handlers for keys related to number theory: prime, even, odd, etc.
"""

from sympy.assumptions import Q, ask
from sympy.core import Add, Basic, Expr, Float, Mul, Pow, S
from sympy.core.numbers import (ImaginaryUnit, Infinity, Integer, NaN,
    NegativeInfinity, NumberSymbol, Rational, int_valued)
from sympy.functions import Abs, im, re
from sympy.ntheory import isprime

from sympy.multipledispatch import MDNotImplementedError

from ..predicates.ntheory import (PrimePredicate, CompositePredicate,
    EvenPredicate, OddPredicate)


# PrimePredicate

def _PrimePredicate_number(expr, assumptions):
    # helper method
    exact = not expr.atoms(Float)
    try:
        i = int(expr.round())
        if (expr - i).equals(0) is False:
            raise TypeError
    except TypeError:
        return False
    if exact:
        return isprime(i)
    # when not exact, we won't give a True or False
    # since the number represents an approximate value

@PrimePredicate.register(Expr)
def _(expr, assumptions):
    ret = expr.is_prime
    if ret is None:
        raise MDNotImplementedError
    return ret

@PrimePredicate.register(Basic)
def _(expr, assumptions):
    if expr.is_number:
        return _PrimePredicate_number(expr, assumptions)

@PrimePredicate.register(Mul)
def _(expr, assumptions):
    if expr.is_number:
        return _PrimePredicate_number(expr, assumptions)
    for arg in expr.args:
        if not ask(Q.integer(arg), assumptions):
            return None
    for arg in expr.args:
        if arg.is_number and arg.is_composite:
            return False

@PrimePredicate.register(Pow)
def _(expr, assumptions):
    """
    Integer**Integer     -> !Prime
    """
    if expr.is_number:
        return _PrimePredicate_number(expr, assumptions)
    if ask(Q.integer(expr.exp), assumptions) and \
            ask(Q.integer(expr.base), assumptions):
        return False

@PrimePredicate.register(Integer)
def _(expr, assumptions):
    return isprime(expr)

@PrimePredicate.register_many(Rational, Infinity, NegativeInfinity, ImaginaryUnit)
def _(expr, assumptions):
    return False

@PrimePredicate.register(Float)
def _(expr, assumptions):
    return _PrimePredicate_number(expr, assumptions)

@PrimePredicate.register(NumberSymbol)
def _(expr, assumptions):
    return _PrimePredicate_number(expr, assumptions)

@PrimePredicate.register(NaN)
def _(expr, assumptions):
    return None


# CompositePredicate

@CompositePredicate.register(Expr)
def _(expr, assumptions):
    ret = expr.is_composite
    if ret is None:
        raise MDNotImplementedError
    return ret

@CompositePredicate.register(Basic)
def _(expr, assumptions):
    _positive = ask(Q.positive(expr), assumptions)
    if _positive:
        _integer = ask(Q.integer(expr), assumptions)
        if _integer:
            _prime = ask(Q.prime(expr), assumptions)
            if _prime is None:
                return
            # Positive integer which is not prime is not
            # necessarily composite
            if expr.equals(1):
                return False
            return not _prime
        else:
            return _integer
    else:
        return _positive


# EvenPredicate

def _EvenPredicate_number(expr, assumptions):
    # helper method
    if isinstance(expr, (float, Float)):
        if int_valued(expr):
            return None
        return False
    try:
        i = int(expr.round())
    except TypeError:
        return False
    if not (expr - i).equals(0):
        return False
    return i % 2 == 0

@EvenPredicate.register(Expr)
def _(expr, assumptions):
    ret = expr.is_even
    if ret is None:
        raise MDNotImplementedError
    return ret

@EvenPredicate.register(Basic)
def _(expr, assumptions):
    if expr.is_number:
        return _EvenPredicate_number(expr, assumptions)

@EvenPredicate.register(Mul)
def _(expr, assumptions):
    """
    Even * Integer    -> Even
    Even * Odd        -> Even
    Integer * Odd     -> ?
    Odd * Odd         -> Odd
    Even * Even       -> Even
    Integer * Integer -> Even if Integer + Integer = Odd
    otherwise         -> ?
    """
    if expr.is_number:
        return _EvenPredicate_number(expr, assumptions)
    even, odd, irrational, acc = False, 0, False, 1
    for arg in expr.args:
        # check for all integers and at least one even
        if ask(Q.integer(arg), assumptions):
            if ask(Q.even(arg), assumptions):
                even = True
            elif ask(Q.odd(arg), assumptions):
                odd += 1
            elif not even and acc != 1:
                if ask(Q.odd(acc + arg), assumptions):
                    even = True
        elif ask(Q.irrational(arg), assumptions):
            # one irrational makes the result False
            # two makes it undefined
            if irrational:
                break
            irrational = True
        else:
            break
        acc = arg
    else:
        if irrational:
            return False
        if even:
            return True
        if odd == len(expr.args):
            return False

@EvenPredicate.register(Add)
def _(expr, assumptions):
    """
    Even + Odd  -> Odd
    Even + Even -> Even
    Odd  + Odd  -> Even

    """
    if expr.is_number:
        return _EvenPredicate_number(expr, assumptions)
    _result = True
    for arg in expr.args:
        if ask(Q.even(arg), assumptions):
            pass
        elif ask(Q.odd(arg), assumptions):
            _result = not _result
        else:
            break
    else:
        return _result

@EvenPredicate.register(Pow)
def _(expr, assumptions):
    if expr.is_number:
        return _EvenPredicate_number(expr, assumptions)
    if ask(Q.integer(expr.exp), assumptions):
        if ask(Q.positive(expr.exp), assumptions):
            return ask(Q.even(expr.base), assumptions)
        elif ask(~Q.negative(expr.exp) & Q.odd(expr.base), assumptions):
            return False
        elif expr.base is S.NegativeOne:
            return False

@EvenPredicate.register(Integer)
def _(expr, assumptions):
    return not bool(expr.p & 1)

@EvenPredicate.register_many(Rational, Infinity, NegativeInfinity, ImaginaryUnit)
def _(expr, assumptions):
    return False

@EvenPredicate.register(NumberSymbol)
def _(expr, assumptions):
    return _EvenPredicate_number(expr, assumptions)

@EvenPredicate.register(Abs)
def _(expr, assumptions):
    if ask(Q.real(expr.args[0]), assumptions):
        return ask(Q.even(expr.args[0]), assumptions)

@EvenPredicate.register(re)
def _(expr, assumptions):
    if ask(Q.real(expr.args[0]), assumptions):
        return ask(Q.even(expr.args[0]), assumptions)

@EvenPredicate.register(im)
def _(expr, assumptions):
    if ask(Q.real(expr.args[0]), assumptions):
        return True

@EvenPredicate.register(NaN)
def _(expr, assumptions):
    return None


# OddPredicate

@OddPredicate.register(Expr)
def _(expr, assumptions):
    ret = expr.is_odd
    if ret is None:
        raise MDNotImplementedError
    return ret

@OddPredicate.register(Basic)
def _(expr, assumptions):
    _integer = ask(Q.integer(expr), assumptions)
    if _integer:
        _even = ask(Q.even(expr), assumptions)
        if _even is None:
            return None
        return not _even
    return _integer