File size: 7,198 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
"""
This module contains query handlers responsible for calculus queries:
infinitesimal, finite, etc.
"""

from sympy.assumptions import Q, ask
from sympy.core import Add, Mul, Pow, Symbol
from sympy.core.numbers import (NegativeInfinity, GoldenRatio,
    Infinity, Exp1, ComplexInfinity, ImaginaryUnit, NaN, Number, Pi, E,
    TribonacciConstant)
from sympy.functions import cos, exp, log, sign, sin
from sympy.logic.boolalg import conjuncts

from ..predicates.calculus import (FinitePredicate, InfinitePredicate,
    PositiveInfinitePredicate, NegativeInfinitePredicate)


# FinitePredicate


@FinitePredicate.register(Symbol)
def _(expr, assumptions):
    """
    Handles Symbol.
    """
    if expr.is_finite is not None:
        return expr.is_finite
    if Q.finite(expr) in conjuncts(assumptions):
        return True
    return None

@FinitePredicate.register(Add)
def _(expr, assumptions):
    """
    Return True if expr is bounded, False if not and None if unknown.

    Truth Table:

    +-------+-----+-----------+-----------+
    |       |     |           |           |
    |       |  B  |     U     |     ?     |
    |       |     |           |           |
    +-------+-----+---+---+---+---+---+---+
    |       |     |   |   |   |   |   |   |
    |       |     |'+'|'-'|'x'|'+'|'-'|'x'|
    |       |     |   |   |   |   |   |   |
    +-------+-----+---+---+---+---+---+---+
    |       |     |           |           |
    |   B   |  B  |     U     |     ?     |
    |       |     |           |           |
    +---+---+-----+---+---+---+---+---+---+
    |   |   |     |   |   |   |   |   |   |
    |   |'+'|     | U | ? | ? | U | ? | ? |
    |   |   |     |   |   |   |   |   |   |
    |   +---+-----+---+---+---+---+---+---+
    |   |   |     |   |   |   |   |   |   |
    | U |'-'|     | ? | U | ? | ? | U | ? |
    |   |   |     |   |   |   |   |   |   |
    |   +---+-----+---+---+---+---+---+---+
    |   |   |     |           |           |
    |   |'x'|     |     ?     |     ?     |
    |   |   |     |           |           |
    +---+---+-----+---+---+---+---+---+---+
    |       |     |           |           |
    |   ?   |     |           |     ?     |
    |       |     |           |           |
    +-------+-----+-----------+---+---+---+

        * 'B' = Bounded

        * 'U' = Unbounded

        * '?' = unknown boundedness

        * '+' = positive sign

        * '-' = negative sign

        * 'x' = sign unknown

        * All Bounded -> True

        * 1 Unbounded and the rest Bounded -> False

        * >1 Unbounded, all with same known sign -> False

        * Any Unknown and unknown sign -> None

        * Else -> None

    When the signs are not the same you can have an undefined
    result as in oo - oo, hence 'bounded' is also undefined.
    """
    sign = -1  # sign of unknown or infinite
    result = True
    for arg in expr.args:
        _bounded = ask(Q.finite(arg), assumptions)
        if _bounded:
            continue
        s = ask(Q.extended_positive(arg), assumptions)
        # if there has been more than one sign or if the sign of this arg
        # is None and Bounded is None or there was already
        # an unknown sign, return None
        if sign != -1 and s != sign or \
                s is None and None in (_bounded, sign):
            return None
        else:
            sign = s
        # once False, do not change
        if result is not False:
            result = _bounded
    return result

@FinitePredicate.register(Mul)
def _(expr, assumptions):
    """
    Return True if expr is bounded, False if not and None if unknown.

    Truth Table:

    +---+---+---+--------+
    |   |   |   |        |
    |   | B | U |   ?    |
    |   |   |   |        |
    +---+---+---+---+----+
    |   |   |   |   |    |
    |   |   |   | s | /s |
    |   |   |   |   |    |
    +---+---+---+---+----+
    |   |   |   |        |
    | B | B | U |   ?    |
    |   |   |   |        |
    +---+---+---+---+----+
    |   |   |   |   |    |
    | U |   | U | U | ?  |
    |   |   |   |   |    |
    +---+---+---+---+----+
    |   |   |   |        |
    | ? |   |   |   ?    |
    |   |   |   |        |
    +---+---+---+---+----+

        * B = Bounded

        * U = Unbounded

        * ? = unknown boundedness

        * s = signed (hence nonzero)

        * /s = not signed
    """
    result = True
    for arg in expr.args:
        _bounded = ask(Q.finite(arg), assumptions)
        if _bounded:
            continue
        elif _bounded is None:
            if result is None:
                return None
            if ask(Q.extended_nonzero(arg), assumptions) is None:
                return None
            if result is not False:
                result = None
        else:
            result = False
    return result

@FinitePredicate.register(Pow)
def _(expr, assumptions):
    """
    * Unbounded ** NonZero -> Unbounded

    * Bounded ** Bounded -> Bounded

    * Abs()<=1 ** Positive -> Bounded

    * Abs()>=1 ** Negative -> Bounded

    * Otherwise unknown
    """
    if expr.base == E:
        return ask(Q.finite(expr.exp), assumptions)

    base_bounded = ask(Q.finite(expr.base), assumptions)
    exp_bounded = ask(Q.finite(expr.exp), assumptions)
    if base_bounded is None and exp_bounded is None:  # Common Case
        return None
    if base_bounded is False and ask(Q.extended_nonzero(expr.exp), assumptions):
        return False
    if base_bounded and exp_bounded:
        return True
    if (abs(expr.base) <= 1) == True and ask(Q.extended_positive(expr.exp), assumptions):
        return True
    if (abs(expr.base) >= 1) == True and ask(Q.extended_negative(expr.exp), assumptions):
        return True
    if (abs(expr.base) >= 1) == True and exp_bounded is False:
        return False
    return None

@FinitePredicate.register(exp)
def _(expr, assumptions):
    return ask(Q.finite(expr.exp), assumptions)

@FinitePredicate.register(log)
def _(expr, assumptions):
    # After complex -> finite fact is registered to new assumption system,
    # querying Q.infinite may be removed.
    if ask(Q.infinite(expr.args[0]), assumptions):
        return False
    return ask(~Q.zero(expr.args[0]), assumptions)

@FinitePredicate.register_many(cos, sin, Number, Pi, Exp1, GoldenRatio,
    TribonacciConstant, ImaginaryUnit, sign)
def _(expr, assumptions):
    return True

@FinitePredicate.register_many(ComplexInfinity, Infinity, NegativeInfinity)
def _(expr, assumptions):
    return False

@FinitePredicate.register(NaN)
def _(expr, assumptions):
    return None


# InfinitePredicate


@InfinitePredicate.register_many(ComplexInfinity, Infinity, NegativeInfinity)
def _(expr, assumptions):
    return True


# PositiveInfinitePredicate


@PositiveInfinitePredicate.register(Infinity)
def _(expr, assumptions):
    return True


@PositiveInfinitePredicate.register_many(NegativeInfinity, ComplexInfinity)
def _(expr, assumptions):
    return False


# NegativeInfinitePredicate


@NegativeInfinitePredicate.register(NegativeInfinity)
def _(expr, assumptions):
    return True


@NegativeInfinitePredicate.register_many(Infinity, ComplexInfinity)
def _(expr, assumptions):
    return False