File size: 12,509 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
"""
The classes used here are for the internal use of assumptions system
only and should not be used anywhere else as these do not possess the
signatures common to SymPy objects. For general use of logic constructs
please refer to sympy.logic classes And, Or, Not, etc.
"""
from itertools import combinations, product, zip_longest
from sympy.assumptions.assume import AppliedPredicate, Predicate
from sympy.core.relational import Eq, Ne, Gt, Lt, Ge, Le
from sympy.core.singleton import S
from sympy.logic.boolalg import Or, And, Not, Xnor
from sympy.logic.boolalg import (Equivalent, ITE, Implies, Nand, Nor, Xor)


class Literal:
    """
    The smallest element of a CNF object.

    Parameters
    ==========

    lit : Boolean expression

    is_Not : bool

    Examples
    ========

    >>> from sympy import Q
    >>> from sympy.assumptions.cnf import Literal
    >>> from sympy.abc import x
    >>> Literal(Q.even(x))
    Literal(Q.even(x), False)
    >>> Literal(~Q.even(x))
    Literal(Q.even(x), True)
    """

    def __new__(cls, lit, is_Not=False):
        if isinstance(lit, Not):
            lit = lit.args[0]
            is_Not = True
        elif isinstance(lit, (AND, OR, Literal)):
            return ~lit if is_Not else lit
        obj = super().__new__(cls)
        obj.lit = lit
        obj.is_Not = is_Not
        return obj

    @property
    def arg(self):
        return self.lit

    def rcall(self, expr):
        if callable(self.lit):
            lit = self.lit(expr)
        else:
            lit = self.lit.apply(expr)
        return type(self)(lit, self.is_Not)

    def __invert__(self):
        is_Not = not self.is_Not
        return Literal(self.lit, is_Not)

    def __str__(self):
        return '{}({}, {})'.format(type(self).__name__, self.lit, self.is_Not)

    __repr__ = __str__

    def __eq__(self, other):
        return self.arg == other.arg and self.is_Not == other.is_Not

    def __hash__(self):
        h = hash((type(self).__name__, self.arg, self.is_Not))
        return h


class OR:
    """
    A low-level implementation for Or
    """
    def __init__(self, *args):
        self._args = args

    @property
    def args(self):
        return sorted(self._args, key=str)

    def rcall(self, expr):
        return type(self)(*[arg.rcall(expr)
                            for arg in self._args
                            ])

    def __invert__(self):
        return AND(*[~arg for arg in self._args])

    def __hash__(self):
        return hash((type(self).__name__,) + tuple(self.args))

    def __eq__(self, other):
        return self.args == other.args

    def __str__(self):
        s = '(' + ' | '.join([str(arg) for arg in self.args]) + ')'
        return s

    __repr__ = __str__


class AND:
    """
    A low-level implementation for And
    """
    def __init__(self, *args):
        self._args = args

    def __invert__(self):
        return OR(*[~arg for arg in self._args])

    @property
    def args(self):
        return sorted(self._args, key=str)

    def rcall(self, expr):
        return type(self)(*[arg.rcall(expr)
                            for arg in self._args
                            ])

    def __hash__(self):
        return hash((type(self).__name__,) + tuple(self.args))

    def __eq__(self, other):
        return self.args == other.args

    def __str__(self):
        s = '('+' & '.join([str(arg) for arg in self.args])+')'
        return s

    __repr__ = __str__


def to_NNF(expr, composite_map=None):
    """
    Generates the Negation Normal Form of any boolean expression in terms
    of AND, OR, and Literal objects.

    Examples
    ========

    >>> from sympy import Q, Eq
    >>> from sympy.assumptions.cnf import to_NNF
    >>> from sympy.abc import x, y
    >>> expr = Q.even(x) & ~Q.positive(x)
    >>> to_NNF(expr)
    (Literal(Q.even(x), False) & Literal(Q.positive(x), True))

    Supported boolean objects are converted to corresponding predicates.

    >>> to_NNF(Eq(x, y))
    Literal(Q.eq(x, y), False)

    If ``composite_map`` argument is given, ``to_NNF`` decomposes the
    specified predicate into a combination of primitive predicates.

    >>> cmap = {Q.nonpositive: Q.negative | Q.zero}
    >>> to_NNF(Q.nonpositive, cmap)
    (Literal(Q.negative, False) | Literal(Q.zero, False))
    >>> to_NNF(Q.nonpositive(x), cmap)
    (Literal(Q.negative(x), False) | Literal(Q.zero(x), False))
    """
    from sympy.assumptions.ask import Q

    if composite_map is None:
        composite_map = {}


    binrelpreds = {Eq: Q.eq, Ne: Q.ne, Gt: Q.gt, Lt: Q.lt, Ge: Q.ge, Le: Q.le}
    if type(expr) in binrelpreds:
        pred = binrelpreds[type(expr)]
        expr = pred(*expr.args)

    if isinstance(expr, Not):
        arg = expr.args[0]
        tmp = to_NNF(arg, composite_map)  # Strategy: negate the NNF of expr
        return ~tmp

    if isinstance(expr, Or):
        return OR(*[to_NNF(x, composite_map) for x in Or.make_args(expr)])

    if isinstance(expr, And):
        return AND(*[to_NNF(x, composite_map) for x in And.make_args(expr)])

    if isinstance(expr, Nand):
        tmp = AND(*[to_NNF(x, composite_map) for x in expr.args])
        return ~tmp

    if isinstance(expr, Nor):
        tmp = OR(*[to_NNF(x, composite_map) for x in expr.args])
        return ~tmp

    if isinstance(expr, Xor):
        cnfs = []
        for i in range(0, len(expr.args) + 1, 2):
            for neg in combinations(expr.args, i):
                clause = [~to_NNF(s, composite_map) if s in neg else to_NNF(s, composite_map)
                          for s in expr.args]
                cnfs.append(OR(*clause))
        return AND(*cnfs)

    if isinstance(expr, Xnor):
        cnfs = []
        for i in range(0, len(expr.args) + 1, 2):
            for neg in combinations(expr.args, i):
                clause = [~to_NNF(s, composite_map) if s in neg else to_NNF(s, composite_map)
                          for s in expr.args]
                cnfs.append(OR(*clause))
        return ~AND(*cnfs)

    if isinstance(expr, Implies):
        L, R = to_NNF(expr.args[0], composite_map), to_NNF(expr.args[1], composite_map)
        return OR(~L, R)

    if isinstance(expr, Equivalent):
        cnfs = []
        for a, b in zip_longest(expr.args, expr.args[1:], fillvalue=expr.args[0]):
            a = to_NNF(a, composite_map)
            b = to_NNF(b, composite_map)
            cnfs.append(OR(~a, b))
        return AND(*cnfs)

    if isinstance(expr, ITE):
        L = to_NNF(expr.args[0], composite_map)
        M = to_NNF(expr.args[1], composite_map)
        R = to_NNF(expr.args[2], composite_map)
        return AND(OR(~L, M), OR(L, R))

    if isinstance(expr, AppliedPredicate):
        pred, args = expr.function, expr.arguments
        newpred = composite_map.get(pred, None)
        if newpred is not None:
            return to_NNF(newpred.rcall(*args), composite_map)

    if isinstance(expr, Predicate):
        newpred = composite_map.get(expr, None)
        if newpred is not None:
            return to_NNF(newpred, composite_map)

    return Literal(expr)


def distribute_AND_over_OR(expr):
    """
    Distributes AND over OR in the NNF expression.
    Returns the result( Conjunctive Normal Form of expression)
    as a CNF object.
    """
    if not isinstance(expr, (AND, OR)):
        tmp = set()
        tmp.add(frozenset((expr,)))
        return CNF(tmp)

    if isinstance(expr, OR):
        return CNF.all_or(*[distribute_AND_over_OR(arg)
                            for arg in expr._args])

    if isinstance(expr, AND):
        return CNF.all_and(*[distribute_AND_over_OR(arg)
                             for arg in expr._args])


class CNF:
    """
    Class to represent CNF of a Boolean expression.
    Consists of set of clauses, which themselves are stored as
    frozenset of Literal objects.

    Examples
    ========

    >>> from sympy import Q
    >>> from sympy.assumptions.cnf import CNF
    >>> from sympy.abc import x
    >>> cnf = CNF.from_prop(Q.real(x) & ~Q.zero(x))
    >>> cnf.clauses
    {frozenset({Literal(Q.zero(x), True)}),
    frozenset({Literal(Q.negative(x), False),
    Literal(Q.positive(x), False), Literal(Q.zero(x), False)})}
    """
    def __init__(self, clauses=None):
        if not clauses:
            clauses = set()
        self.clauses = clauses

    def add(self, prop):
        clauses = CNF.to_CNF(prop).clauses
        self.add_clauses(clauses)

    def __str__(self):
        s = ' & '.join(
            ['(' + ' | '.join([str(lit) for lit in clause]) +')'
            for clause in self.clauses]
        )
        return s

    def extend(self, props):
        for p in props:
            self.add(p)
        return self

    def copy(self):
        return CNF(set(self.clauses))

    def add_clauses(self, clauses):
        self.clauses |= clauses

    @classmethod
    def from_prop(cls, prop):
        res = cls()
        res.add(prop)
        return res

    def __iand__(self, other):
        self.add_clauses(other.clauses)
        return self

    def all_predicates(self):
        predicates = set()
        for c in self.clauses:
            predicates |= {arg.lit for arg in c}
        return predicates

    def _or(self, cnf):
        clauses = set()
        for a, b in product(self.clauses, cnf.clauses):
            tmp = set(a)
            tmp.update(b)
            clauses.add(frozenset(tmp))
        return CNF(clauses)

    def _and(self, cnf):
        clauses = self.clauses.union(cnf.clauses)
        return CNF(clauses)

    def _not(self):
        clss = list(self.clauses)
        ll = {frozenset((~x,)) for x in clss[-1]}
        ll = CNF(ll)

        for rest in clss[:-1]:
            p = {frozenset((~x,)) for x in rest}
            ll = ll._or(CNF(p))
        return ll

    def rcall(self, expr):
        clause_list = []
        for clause in self.clauses:
            lits = [arg.rcall(expr) for arg in clause]
            clause_list.append(OR(*lits))
        expr = AND(*clause_list)
        return distribute_AND_over_OR(expr)

    @classmethod
    def all_or(cls, *cnfs):
        b = cnfs[0].copy()
        for rest in cnfs[1:]:
            b = b._or(rest)
        return b

    @classmethod
    def all_and(cls, *cnfs):
        b = cnfs[0].copy()
        for rest in cnfs[1:]:
            b = b._and(rest)
        return b

    @classmethod
    def to_CNF(cls, expr):
        from sympy.assumptions.facts import get_composite_predicates
        expr = to_NNF(expr, get_composite_predicates())
        expr = distribute_AND_over_OR(expr)
        return expr

    @classmethod
    def CNF_to_cnf(cls, cnf):
        """
        Converts CNF object to SymPy's boolean expression
        retaining the form of expression.
        """
        def remove_literal(arg):
            return Not(arg.lit) if arg.is_Not else arg.lit

        return And(*(Or(*(remove_literal(arg) for arg in clause)) for clause in cnf.clauses))


class EncodedCNF:
    """
    Class for encoding the CNF expression.
    """
    def __init__(self, data=None, encoding=None):
        if not data and not encoding:
            data = []
            encoding = {}
        self.data = data
        self.encoding = encoding
        self._symbols = list(encoding.keys())

    def from_cnf(self, cnf):
        self._symbols = list(cnf.all_predicates())
        n = len(self._symbols)
        self.encoding = dict(zip(self._symbols, range(1, n + 1)))
        self.data = [self.encode(clause) for clause in cnf.clauses]

    @property
    def symbols(self):
        return self._symbols

    @property
    def variables(self):
        return range(1, len(self._symbols) + 1)

    def copy(self):
        new_data = [set(clause) for clause in self.data]
        return EncodedCNF(new_data, dict(self.encoding))

    def add_prop(self, prop):
        cnf = CNF.from_prop(prop)
        self.add_from_cnf(cnf)

    def add_from_cnf(self, cnf):
        clauses = [self.encode(clause) for clause in cnf.clauses]
        self.data += clauses

    def encode_arg(self, arg):
        literal = arg.lit
        value = self.encoding.get(literal, None)
        if value is None:
            n = len(self._symbols)
            self._symbols.append(literal)
            value = self.encoding[literal] = n + 1
        if arg.is_Not:
            return -value
        else:
            return value

    def encode(self, clause):
        return {self.encode_arg(arg) if not arg.lit == S.false else 0 for arg in clause}