Spaces:
Sleeping
Sleeping
File size: 19,378 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
"""Module for querying SymPy objects about assumptions."""
from sympy.assumptions.assume import (global_assumptions, Predicate,
AppliedPredicate)
from sympy.assumptions.cnf import CNF, EncodedCNF, Literal
from sympy.core import sympify
from sympy.core.kind import BooleanKind
from sympy.core.relational import Eq, Ne, Gt, Lt, Ge, Le
from sympy.logic.inference import satisfiable
from sympy.utilities.decorator import memoize_property
from sympy.utilities.exceptions import (sympy_deprecation_warning,
SymPyDeprecationWarning,
ignore_warnings)
# Memoization is necessary for the properties of AssumptionKeys to
# ensure that only one object of Predicate objects are created.
# This is because assumption handlers are registered on those objects.
class AssumptionKeys:
"""
This class contains all the supported keys by ``ask``.
It should be accessed via the instance ``sympy.Q``.
"""
# DO NOT add methods or properties other than predicate keys.
# SAT solver checks the properties of Q and use them to compute the
# fact system. Non-predicate attributes will break this.
@memoize_property
def hermitian(self):
from .handlers.sets import HermitianPredicate
return HermitianPredicate()
@memoize_property
def antihermitian(self):
from .handlers.sets import AntihermitianPredicate
return AntihermitianPredicate()
@memoize_property
def real(self):
from .handlers.sets import RealPredicate
return RealPredicate()
@memoize_property
def extended_real(self):
from .handlers.sets import ExtendedRealPredicate
return ExtendedRealPredicate()
@memoize_property
def imaginary(self):
from .handlers.sets import ImaginaryPredicate
return ImaginaryPredicate()
@memoize_property
def complex(self):
from .handlers.sets import ComplexPredicate
return ComplexPredicate()
@memoize_property
def algebraic(self):
from .handlers.sets import AlgebraicPredicate
return AlgebraicPredicate()
@memoize_property
def transcendental(self):
from .predicates.sets import TranscendentalPredicate
return TranscendentalPredicate()
@memoize_property
def integer(self):
from .handlers.sets import IntegerPredicate
return IntegerPredicate()
@memoize_property
def noninteger(self):
from .predicates.sets import NonIntegerPredicate
return NonIntegerPredicate()
@memoize_property
def rational(self):
from .handlers.sets import RationalPredicate
return RationalPredicate()
@memoize_property
def irrational(self):
from .handlers.sets import IrrationalPredicate
return IrrationalPredicate()
@memoize_property
def finite(self):
from .handlers.calculus import FinitePredicate
return FinitePredicate()
@memoize_property
def infinite(self):
from .handlers.calculus import InfinitePredicate
return InfinitePredicate()
@memoize_property
def positive_infinite(self):
from .handlers.calculus import PositiveInfinitePredicate
return PositiveInfinitePredicate()
@memoize_property
def negative_infinite(self):
from .handlers.calculus import NegativeInfinitePredicate
return NegativeInfinitePredicate()
@memoize_property
def positive(self):
from .handlers.order import PositivePredicate
return PositivePredicate()
@memoize_property
def negative(self):
from .handlers.order import NegativePredicate
return NegativePredicate()
@memoize_property
def zero(self):
from .handlers.order import ZeroPredicate
return ZeroPredicate()
@memoize_property
def extended_positive(self):
from .handlers.order import ExtendedPositivePredicate
return ExtendedPositivePredicate()
@memoize_property
def extended_negative(self):
from .handlers.order import ExtendedNegativePredicate
return ExtendedNegativePredicate()
@memoize_property
def nonzero(self):
from .handlers.order import NonZeroPredicate
return NonZeroPredicate()
@memoize_property
def nonpositive(self):
from .handlers.order import NonPositivePredicate
return NonPositivePredicate()
@memoize_property
def nonnegative(self):
from .handlers.order import NonNegativePredicate
return NonNegativePredicate()
@memoize_property
def extended_nonzero(self):
from .handlers.order import ExtendedNonZeroPredicate
return ExtendedNonZeroPredicate()
@memoize_property
def extended_nonpositive(self):
from .handlers.order import ExtendedNonPositivePredicate
return ExtendedNonPositivePredicate()
@memoize_property
def extended_nonnegative(self):
from .handlers.order import ExtendedNonNegativePredicate
return ExtendedNonNegativePredicate()
@memoize_property
def even(self):
from .handlers.ntheory import EvenPredicate
return EvenPredicate()
@memoize_property
def odd(self):
from .handlers.ntheory import OddPredicate
return OddPredicate()
@memoize_property
def prime(self):
from .handlers.ntheory import PrimePredicate
return PrimePredicate()
@memoize_property
def composite(self):
from .handlers.ntheory import CompositePredicate
return CompositePredicate()
@memoize_property
def commutative(self):
from .handlers.common import CommutativePredicate
return CommutativePredicate()
@memoize_property
def is_true(self):
from .handlers.common import IsTruePredicate
return IsTruePredicate()
@memoize_property
def symmetric(self):
from .handlers.matrices import SymmetricPredicate
return SymmetricPredicate()
@memoize_property
def invertible(self):
from .handlers.matrices import InvertiblePredicate
return InvertiblePredicate()
@memoize_property
def orthogonal(self):
from .handlers.matrices import OrthogonalPredicate
return OrthogonalPredicate()
@memoize_property
def unitary(self):
from .handlers.matrices import UnitaryPredicate
return UnitaryPredicate()
@memoize_property
def positive_definite(self):
from .handlers.matrices import PositiveDefinitePredicate
return PositiveDefinitePredicate()
@memoize_property
def upper_triangular(self):
from .handlers.matrices import UpperTriangularPredicate
return UpperTriangularPredicate()
@memoize_property
def lower_triangular(self):
from .handlers.matrices import LowerTriangularPredicate
return LowerTriangularPredicate()
@memoize_property
def diagonal(self):
from .handlers.matrices import DiagonalPredicate
return DiagonalPredicate()
@memoize_property
def fullrank(self):
from .handlers.matrices import FullRankPredicate
return FullRankPredicate()
@memoize_property
def square(self):
from .handlers.matrices import SquarePredicate
return SquarePredicate()
@memoize_property
def integer_elements(self):
from .handlers.matrices import IntegerElementsPredicate
return IntegerElementsPredicate()
@memoize_property
def real_elements(self):
from .handlers.matrices import RealElementsPredicate
return RealElementsPredicate()
@memoize_property
def complex_elements(self):
from .handlers.matrices import ComplexElementsPredicate
return ComplexElementsPredicate()
@memoize_property
def singular(self):
from .predicates.matrices import SingularPredicate
return SingularPredicate()
@memoize_property
def normal(self):
from .predicates.matrices import NormalPredicate
return NormalPredicate()
@memoize_property
def triangular(self):
from .predicates.matrices import TriangularPredicate
return TriangularPredicate()
@memoize_property
def unit_triangular(self):
from .predicates.matrices import UnitTriangularPredicate
return UnitTriangularPredicate()
@memoize_property
def eq(self):
from .relation.equality import EqualityPredicate
return EqualityPredicate()
@memoize_property
def ne(self):
from .relation.equality import UnequalityPredicate
return UnequalityPredicate()
@memoize_property
def gt(self):
from .relation.equality import StrictGreaterThanPredicate
return StrictGreaterThanPredicate()
@memoize_property
def ge(self):
from .relation.equality import GreaterThanPredicate
return GreaterThanPredicate()
@memoize_property
def lt(self):
from .relation.equality import StrictLessThanPredicate
return StrictLessThanPredicate()
@memoize_property
def le(self):
from .relation.equality import LessThanPredicate
return LessThanPredicate()
Q = AssumptionKeys()
def _extract_all_facts(assump, exprs):
"""
Extract all relevant assumptions from *assump* with respect to given *exprs*.
Parameters
==========
assump : sympy.assumptions.cnf.CNF
exprs : tuple of expressions
Returns
=======
sympy.assumptions.cnf.CNF
Examples
========
>>> from sympy import Q
>>> from sympy.assumptions.cnf import CNF
>>> from sympy.assumptions.ask import _extract_all_facts
>>> from sympy.abc import x, y
>>> assump = CNF.from_prop(Q.positive(x) & Q.integer(y))
>>> exprs = (x,)
>>> cnf = _extract_all_facts(assump, exprs)
>>> cnf.clauses
{frozenset({Literal(Q.positive, False)})}
"""
facts = set()
for clause in assump.clauses:
args = []
for literal in clause:
if isinstance(literal.lit, AppliedPredicate) and len(literal.lit.arguments) == 1:
if literal.lit.arg in exprs:
# Add literal if it has matching in it
args.append(Literal(literal.lit.function, literal.is_Not))
else:
# If any of the literals doesn't have matching expr don't add the whole clause.
break
else:
# If any of the literals aren't unary predicate don't add the whole clause.
break
else:
if args:
facts.add(frozenset(args))
return CNF(facts)
def ask(proposition, assumptions=True, context=global_assumptions):
"""
Function to evaluate the proposition with assumptions.
Explanation
===========
This function evaluates the proposition to ``True`` or ``False`` if
the truth value can be determined. If not, it returns ``None``.
It should be discerned from :func:`~.refine()` which, when applied to a
proposition, simplifies the argument to symbolic ``Boolean`` instead of
Python built-in ``True``, ``False`` or ``None``.
**Syntax**
* ask(proposition)
Evaluate the *proposition* in global assumption context.
* ask(proposition, assumptions)
Evaluate the *proposition* with respect to *assumptions* in
global assumption context.
Parameters
==========
proposition : Boolean
Proposition which will be evaluated to boolean value. If this is
not ``AppliedPredicate``, it will be wrapped by ``Q.is_true``.
assumptions : Boolean, optional
Local assumptions to evaluate the *proposition*.
context : AssumptionsContext, optional
Default assumptions to evaluate the *proposition*. By default,
this is ``sympy.assumptions.global_assumptions`` variable.
Returns
=======
``True``, ``False``, or ``None``
Raises
======
TypeError : *proposition* or *assumptions* is not valid logical expression.
ValueError : assumptions are inconsistent.
Examples
========
>>> from sympy import ask, Q, pi
>>> from sympy.abc import x, y
>>> ask(Q.rational(pi))
False
>>> ask(Q.even(x*y), Q.even(x) & Q.integer(y))
True
>>> ask(Q.prime(4*x), Q.integer(x))
False
If the truth value cannot be determined, ``None`` will be returned.
>>> print(ask(Q.odd(3*x))) # cannot determine unless we know x
None
``ValueError`` is raised if assumptions are inconsistent.
>>> ask(Q.integer(x), Q.even(x) & Q.odd(x))
Traceback (most recent call last):
...
ValueError: inconsistent assumptions Q.even(x) & Q.odd(x)
Notes
=====
Relations in assumptions are not implemented (yet), so the following
will not give a meaningful result.
>>> ask(Q.positive(x), x > 0)
It is however a work in progress.
See Also
========
sympy.assumptions.refine.refine : Simplification using assumptions.
Proposition is not reduced to ``None`` if the truth value cannot
be determined.
"""
from sympy.assumptions.satask import satask
from sympy.assumptions.lra_satask import lra_satask
from sympy.logic.algorithms.lra_theory import UnhandledInput
proposition = sympify(proposition)
assumptions = sympify(assumptions)
if isinstance(proposition, Predicate) or proposition.kind is not BooleanKind:
raise TypeError("proposition must be a valid logical expression")
if isinstance(assumptions, Predicate) or assumptions.kind is not BooleanKind:
raise TypeError("assumptions must be a valid logical expression")
binrelpreds = {Eq: Q.eq, Ne: Q.ne, Gt: Q.gt, Lt: Q.lt, Ge: Q.ge, Le: Q.le}
if isinstance(proposition, AppliedPredicate):
key, args = proposition.function, proposition.arguments
elif proposition.func in binrelpreds:
key, args = binrelpreds[type(proposition)], proposition.args
else:
key, args = Q.is_true, (proposition,)
# convert local and global assumptions to CNF
assump_cnf = CNF.from_prop(assumptions)
assump_cnf.extend(context)
# extract the relevant facts from assumptions with respect to args
local_facts = _extract_all_facts(assump_cnf, args)
# convert default facts and assumed facts to encoded CNF
known_facts_cnf = get_all_known_facts()
enc_cnf = EncodedCNF()
enc_cnf.from_cnf(CNF(known_facts_cnf))
enc_cnf.add_from_cnf(local_facts)
# check the satisfiability of given assumptions
if local_facts.clauses and satisfiable(enc_cnf) is False:
raise ValueError("inconsistent assumptions %s" % assumptions)
# quick computation for single fact
res = _ask_single_fact(key, local_facts)
if res is not None:
return res
# direct resolution method, no logic
res = key(*args)._eval_ask(assumptions)
if res is not None:
return bool(res)
# using satask (still costly)
res = satask(proposition, assumptions=assumptions, context=context)
if res is not None:
return res
try:
res = lra_satask(proposition, assumptions=assumptions, context=context)
except UnhandledInput:
return None
return res
def _ask_single_fact(key, local_facts):
"""
Compute the truth value of single predicate using assumptions.
Parameters
==========
key : sympy.assumptions.assume.Predicate
Proposition predicate.
local_facts : sympy.assumptions.cnf.CNF
Local assumption in CNF form.
Returns
=======
``True``, ``False`` or ``None``
Examples
========
>>> from sympy import Q
>>> from sympy.assumptions.cnf import CNF
>>> from sympy.assumptions.ask import _ask_single_fact
If prerequisite of proposition is rejected by the assumption,
return ``False``.
>>> key, assump = Q.zero, ~Q.zero
>>> local_facts = CNF.from_prop(assump)
>>> _ask_single_fact(key, local_facts)
False
>>> key, assump = Q.zero, ~Q.even
>>> local_facts = CNF.from_prop(assump)
>>> _ask_single_fact(key, local_facts)
False
If assumption implies the proposition, return ``True``.
>>> key, assump = Q.even, Q.zero
>>> local_facts = CNF.from_prop(assump)
>>> _ask_single_fact(key, local_facts)
True
If proposition rejects the assumption, return ``False``.
>>> key, assump = Q.even, Q.odd
>>> local_facts = CNF.from_prop(assump)
>>> _ask_single_fact(key, local_facts)
False
"""
if local_facts.clauses:
known_facts_dict = get_known_facts_dict()
if len(local_facts.clauses) == 1:
cl, = local_facts.clauses
if len(cl) == 1:
f, = cl
prop_facts = known_facts_dict.get(key, None)
prop_req = prop_facts[0] if prop_facts is not None else set()
if f.is_Not and f.arg in prop_req:
# the prerequisite of proposition is rejected
return False
for clause in local_facts.clauses:
if len(clause) == 1:
f, = clause
prop_facts = known_facts_dict.get(f.arg, None) if not f.is_Not else None
if prop_facts is None:
continue
prop_req, prop_rej = prop_facts
if key in prop_req:
# assumption implies the proposition
return True
elif key in prop_rej:
# proposition rejects the assumption
return False
return None
def register_handler(key, handler):
"""
Register a handler in the ask system. key must be a string and handler a
class inheriting from AskHandler.
.. deprecated:: 1.8.
Use multipledispatch handler instead. See :obj:`~.Predicate`.
"""
sympy_deprecation_warning(
"""
The AskHandler system is deprecated. The register_handler() function
should be replaced with the multipledispatch handler of Predicate.
""",
deprecated_since_version="1.8",
active_deprecations_target='deprecated-askhandler',
)
if isinstance(key, Predicate):
key = key.name.name
Qkey = getattr(Q, key, None)
if Qkey is not None:
Qkey.add_handler(handler)
else:
setattr(Q, key, Predicate(key, handlers=[handler]))
def remove_handler(key, handler):
"""
Removes a handler from the ask system.
.. deprecated:: 1.8.
Use multipledispatch handler instead. See :obj:`~.Predicate`.
"""
sympy_deprecation_warning(
"""
The AskHandler system is deprecated. The remove_handler() function
should be replaced with the multipledispatch handler of Predicate.
""",
deprecated_since_version="1.8",
active_deprecations_target='deprecated-askhandler',
)
if isinstance(key, Predicate):
key = key.name.name
# Don't show the same warning again recursively
with ignore_warnings(SymPyDeprecationWarning):
getattr(Q, key).remove_handler(handler)
from sympy.assumptions.ask_generated import (get_all_known_facts,
get_known_facts_dict)
|