File size: 16,445 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
from sympy.testing.pytest import slow
from sympy.core.function import diff
from sympy.core.function import expand
from sympy.core.numbers import (E, I, Rational, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.complexes import (Abs, conjugate, im, re, sign)
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acos, asin, cos, sin, atan2, atan)
from sympy.integrals.integrals import integrate
from sympy.matrices.dense import Matrix
from sympy.simplify import simplify
from sympy.simplify.trigsimp import trigsimp
from sympy.algebras.quaternion import Quaternion
from sympy.testing.pytest import raises
import math
from itertools import permutations, product

w, x, y, z = symbols('w:z')
phi = symbols('phi')

def test_quaternion_construction():
    q = Quaternion(w, x, y, z)
    assert q + q == Quaternion(2*w, 2*x, 2*y, 2*z)

    q2 = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3),
                                    pi*Rational(2, 3))
    assert q2 == Quaternion(S.Half, S.Half,
                            S.Half, S.Half)

    M = Matrix([[cos(phi), -sin(phi), 0], [sin(phi), cos(phi), 0], [0, 0, 1]])
    q3 = trigsimp(Quaternion.from_rotation_matrix(M))
    assert q3 == Quaternion(
        sqrt(2)*sqrt(cos(phi) + 1)/2, 0, 0, sqrt(2 - 2*cos(phi))*sign(sin(phi))/2)

    nc = Symbol('nc', commutative=False)
    raises(ValueError, lambda: Quaternion(w, x, nc, z))


def test_quaternion_construction_norm():
    q1 = Quaternion(*symbols('a:d'))

    q2 = Quaternion(w, x, y, z)
    assert expand((q1*q2).norm()**2 - (q1.norm()**2 * q2.norm()**2)) == 0

    q3 = Quaternion(w, x, y, z, norm=1)
    assert (q1 * q3).norm() == q1.norm()


def test_issue_25254():
    # calculating the inverse cached the norm which caused problems
    # when multiplying
    p = Quaternion(1, 0, 0, 0)
    q = Quaternion.from_axis_angle((1, 1, 1), 3 * math.pi/4)
    qi = q.inverse()  # this operation cached the norm
    test = q * p * qi
    assert ((test - p).norm() < 1E-10)


def test_to_and_from_Matrix():
    q = Quaternion(w, x, y, z)
    q_full = Quaternion.from_Matrix(q.to_Matrix())
    q_vect = Quaternion.from_Matrix(q.to_Matrix(True))
    assert (q - q_full).is_zero_quaternion()
    assert (q.vector_part() - q_vect).is_zero_quaternion()


def test_product_matrices():
    q1 = Quaternion(w, x, y, z)
    q2 = Quaternion(*(symbols("a:d")))
    assert (q1 * q2).to_Matrix() == q1.product_matrix_left * q2.to_Matrix()
    assert (q1 * q2).to_Matrix() == q2.product_matrix_right * q1.to_Matrix()

    R1 = (q1.product_matrix_left * q1.product_matrix_right.T)[1:, 1:]
    R2 = simplify(q1.to_rotation_matrix()*q1.norm()**2)
    assert R1 == R2


def test_quaternion_axis_angle():

    test_data = [ # axis, angle, expected_quaternion
        ((1, 0, 0), 0, (1, 0, 0, 0)),
        ((1, 0, 0), pi/2, (sqrt(2)/2, sqrt(2)/2, 0, 0)),
        ((0, 1, 0), pi/2, (sqrt(2)/2, 0, sqrt(2)/2, 0)),
        ((0, 0, 1), pi/2, (sqrt(2)/2, 0, 0, sqrt(2)/2)),
        ((1, 0, 0), pi, (0, 1, 0, 0)),
        ((0, 1, 0), pi, (0, 0, 1, 0)),
        ((0, 0, 1), pi, (0, 0, 0, 1)),
        ((1, 1, 1), pi, (0, 1/sqrt(3),1/sqrt(3),1/sqrt(3))),
        ((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), pi*2/3, (S.Half, S.Half, S.Half, S.Half))
    ]

    for axis, angle, expected in test_data:
        assert Quaternion.from_axis_angle(axis, angle) == Quaternion(*expected)


def test_quaternion_axis_angle_simplification():
    result = Quaternion.from_axis_angle((1, 2, 3), asin(4))
    assert result.a == cos(asin(4)/2)
    assert result.b == sqrt(14)*sin(asin(4)/2)/14
    assert result.c == sqrt(14)*sin(asin(4)/2)/7
    assert result.d == 3*sqrt(14)*sin(asin(4)/2)/14

def test_quaternion_complex_real_addition():
    a = symbols("a", complex=True)
    b = symbols("b", real=True)
    # This symbol is not complex:
    c = symbols("c", commutative=False)

    q = Quaternion(w, x, y, z)
    assert a + q == Quaternion(w + re(a), x + im(a), y, z)
    assert 1 + q == Quaternion(1 + w, x, y, z)
    assert I + q == Quaternion(w, 1 + x, y, z)
    assert b + q == Quaternion(w + b, x, y, z)
    raises(ValueError, lambda: c + q)
    raises(ValueError, lambda: q * c)
    raises(ValueError, lambda: c * q)

    assert -q == Quaternion(-w, -x, -y, -z)

    q1 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
    q2 = Quaternion(1, 4, 7, 8)

    assert q1 + (2 + 3*I) == Quaternion(5 + 7*I, 2 + 5*I, 0, 7 + 8*I)
    assert q2 + (2 + 3*I) == Quaternion(3, 7, 7, 8)
    assert q1 * (2 + 3*I) == \
    Quaternion((2 + 3*I)*(3 + 4*I), (2 + 3*I)*(2 + 5*I), 0, (2 + 3*I)*(7 + 8*I))
    assert q2 * (2 + 3*I) == Quaternion(-10, 11, 38, -5)

    q1 = Quaternion(1, 2, 3, 4)
    q0 = Quaternion(0, 0, 0, 0)
    assert q1 + q0 == q1
    assert q1 - q0 == q1
    assert q1 - q1 == q0


def test_quaternion_subs():
    q = Quaternion.from_axis_angle((0, 0, 1), phi)
    assert q.subs(phi, 0) == Quaternion(1, 0, 0, 0)


def test_quaternion_evalf():
    assert (Quaternion(sqrt(2), 0, 0, sqrt(3)).evalf() ==
            Quaternion(sqrt(2).evalf(), 0, 0, sqrt(3).evalf()))
    assert (Quaternion(1/sqrt(2), 0, 0, 1/sqrt(2)).evalf() ==
            Quaternion((1/sqrt(2)).evalf(), 0, 0, (1/sqrt(2)).evalf()))


def test_quaternion_functions():
    q = Quaternion(w, x, y, z)
    q1 = Quaternion(1, 2, 3, 4)
    q0 = Quaternion(0, 0, 0, 0)

    assert conjugate(q) == Quaternion(w, -x, -y, -z)
    assert q.norm() == sqrt(w**2 + x**2 + y**2 + z**2)
    assert q.normalize() == Quaternion(w, x, y, z) / sqrt(w**2 + x**2 + y**2 + z**2)
    assert q.inverse() == Quaternion(w, -x, -y, -z) / (w**2 + x**2 + y**2 + z**2)
    assert q.inverse() == q.pow(-1)
    raises(ValueError, lambda: q0.inverse())
    assert q.pow(2) == Quaternion(w**2 - x**2 - y**2 - z**2, 2*w*x, 2*w*y, 2*w*z)
    assert q**(2) == Quaternion(w**2 - x**2 - y**2 - z**2, 2*w*x, 2*w*y, 2*w*z)
    assert q1.pow(-2) == Quaternion(
        Rational(-7, 225), Rational(-1, 225), Rational(-1, 150), Rational(-2, 225))
    assert q1**(-2) == Quaternion(
        Rational(-7, 225), Rational(-1, 225), Rational(-1, 150), Rational(-2, 225))
    assert q1.pow(-0.5) == NotImplemented
    raises(TypeError, lambda: q1**(-0.5))

    assert q1.exp() == \
    Quaternion(E * cos(sqrt(29)),
               2 * sqrt(29) * E * sin(sqrt(29)) / 29,
               3 * sqrt(29) * E * sin(sqrt(29)) / 29,
               4 * sqrt(29) * E * sin(sqrt(29)) / 29)
    assert q1.log() == \
    Quaternion(log(sqrt(30)),
               2 * sqrt(29) * acos(sqrt(30)/30) / 29,
               3 * sqrt(29) * acos(sqrt(30)/30) / 29,
               4 * sqrt(29) * acos(sqrt(30)/30) / 29)

    assert q1.pow_cos_sin(2) == \
    Quaternion(30 * cos(2 * acos(sqrt(30)/30)),
               60 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29,
               90 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29,
               120 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29)

    assert diff(Quaternion(x, x, x, x), x) == Quaternion(1, 1, 1, 1)

    assert integrate(Quaternion(x, x, x, x), x) == \
    Quaternion(x**2 / 2, x**2 / 2, x**2 / 2, x**2 / 2)

    assert Quaternion.rotate_point((1, 1, 1), q1) == (S.One / 5, 1, S(7) / 5)
    n = Symbol('n')
    raises(TypeError, lambda: q1**n)
    n = Symbol('n', integer=True)
    raises(TypeError, lambda: q1**n)

    assert Quaternion(22, 23, 55, 8).scalar_part() == 22
    assert Quaternion(w, x, y, z).scalar_part() == w

    assert Quaternion(22, 23, 55, 8).vector_part() == Quaternion(0, 23, 55, 8)
    assert Quaternion(w, x, y, z).vector_part() == Quaternion(0, x, y, z)

    assert q1.axis() == Quaternion(0, 2*sqrt(29)/29, 3*sqrt(29)/29, 4*sqrt(29)/29)
    assert q1.axis().pow(2) == Quaternion(-1, 0, 0, 0)
    assert q0.axis().scalar_part() == 0
    assert (q.axis() == Quaternion(0,
                                   x/sqrt(x**2 + y**2 + z**2),
                                   y/sqrt(x**2 + y**2 + z**2),
                                   z/sqrt(x**2 + y**2 + z**2)))

    assert q0.is_pure() is True
    assert q1.is_pure() is False
    assert Quaternion(0, 0, 0, 3).is_pure() is True
    assert Quaternion(0, 2, 10, 3).is_pure() is True
    assert Quaternion(w, 2, 10, 3).is_pure() is None

    assert q1.angle() == 2*atan(sqrt(29))
    assert q.angle() == 2*atan2(sqrt(x**2 + y**2 + z**2), w)

    assert Quaternion.arc_coplanar(q1, Quaternion(2, 4, 6, 8)) is True
    assert Quaternion.arc_coplanar(q1, Quaternion(1, -2, -3, -4)) is True
    assert Quaternion.arc_coplanar(q1, Quaternion(1, 8, 12, 16)) is True
    assert Quaternion.arc_coplanar(q1, Quaternion(1, 2, 3, 4)) is True
    assert Quaternion.arc_coplanar(q1, Quaternion(w, 4, 6, 8)) is True
    assert Quaternion.arc_coplanar(q1, Quaternion(2, 7, 4, 1)) is False
    assert Quaternion.arc_coplanar(q1, Quaternion(w, x, y, z)) is None
    raises(ValueError, lambda: Quaternion.arc_coplanar(q1, q0))

    assert Quaternion.vector_coplanar(
        Quaternion(0, 8, 12, 16),
        Quaternion(0, 4, 6, 8),
        Quaternion(0, 2, 3, 4)) is True
    assert Quaternion.vector_coplanar(
        Quaternion(0, 0, 0, 0), Quaternion(0, 4, 6, 8), Quaternion(0, 2, 3, 4)) is True
    assert Quaternion.vector_coplanar(
        Quaternion(0, 8, 2, 6), Quaternion(0, 1, 6, 6), Quaternion(0, 0, 3, 4)) is False
    assert Quaternion.vector_coplanar(
        Quaternion(0, 1, 3, 4),
        Quaternion(0, 4, w, 6),
        Quaternion(0, 6, 8, 1)) is None
    raises(ValueError, lambda:
        Quaternion.vector_coplanar(q0, Quaternion(0, 4, 6, 8), q1))

    assert Quaternion(0, 1, 2, 3).parallel(Quaternion(0, 2, 4, 6)) is True
    assert Quaternion(0, 1, 2, 3).parallel(Quaternion(0, 2, 2, 6)) is False
    assert Quaternion(0, 1, 2, 3).parallel(Quaternion(w, x, y, 6)) is None
    raises(ValueError, lambda: q0.parallel(q1))

    assert Quaternion(0, 1, 2, 3).orthogonal(Quaternion(0, -2, 1, 0)) is True
    assert Quaternion(0, 2, 4, 7).orthogonal(Quaternion(0, 2, 2, 6)) is False
    assert Quaternion(0, 2, 4, 7).orthogonal(Quaternion(w, x, y, 6)) is None
    raises(ValueError, lambda: q0.orthogonal(q1))

    assert q1.index_vector() == Quaternion(
        0, 2*sqrt(870)/29,
        3*sqrt(870)/29,
        4*sqrt(870)/29)
    assert Quaternion(0, 3, 9, 4).index_vector() == Quaternion(0, 3, 9, 4)

    assert Quaternion(4, 3, 9, 4).mensor() == log(sqrt(122))
    assert Quaternion(3, 3, 0, 2).mensor() == log(sqrt(22))

    assert q0.is_zero_quaternion() is True
    assert q1.is_zero_quaternion() is False
    assert Quaternion(w, 0, 0, 0).is_zero_quaternion() is None

def test_quaternion_conversions():
    q1 = Quaternion(1, 2, 3, 4)

    assert q1.to_axis_angle() == ((2 * sqrt(29)/29,
                                   3 * sqrt(29)/29,
                                   4 * sqrt(29)/29),
                                   2 * acos(sqrt(30)/30))

    assert (q1.to_rotation_matrix() ==
            Matrix([[Rational(-2, 3), Rational(2, 15), Rational(11, 15)],
                    [Rational(2, 3), Rational(-1, 3), Rational(2, 3)],
                    [Rational(1, 3), Rational(14, 15), Rational(2, 15)]]))

    assert (q1.to_rotation_matrix((1, 1, 1)) ==
            Matrix([
                [Rational(-2, 3), Rational(2, 15), Rational(11, 15), Rational(4, 5)],
                [Rational(2, 3), Rational(-1, 3), Rational(2, 3), S.Zero],
                [Rational(1, 3), Rational(14, 15), Rational(2, 15), Rational(-2, 5)],
                [S.Zero, S.Zero, S.Zero, S.One]]))

    theta = symbols("theta", real=True)
    q2 = Quaternion(cos(theta/2), 0, 0, sin(theta/2))

    assert trigsimp(q2.to_rotation_matrix()) == Matrix([
                                               [cos(theta), -sin(theta), 0],
                                               [sin(theta),  cos(theta), 0],
                                               [0,           0,          1]])

    assert q2.to_axis_angle() == ((0, 0, sin(theta/2)/Abs(sin(theta/2))),
                                   2*acos(cos(theta/2)))

    assert trigsimp(q2.to_rotation_matrix((1, 1, 1))) == Matrix([
               [cos(theta), -sin(theta), 0, sin(theta) - cos(theta) + 1],
               [sin(theta),  cos(theta), 0, -sin(theta) - cos(theta) + 1],
               [0,           0,          1,  0],
               [0,           0,          0,  1]])


def test_rotation_matrix_homogeneous():
    q = Quaternion(w, x, y, z)
    R1 = q.to_rotation_matrix(homogeneous=True) * q.norm()**2
    R2 = simplify(q.to_rotation_matrix(homogeneous=False) * q.norm()**2)
    assert R1 == R2


def test_quaternion_rotation_iss1593():
    """
    There was a sign mistake in the definition,
    of the rotation matrix. This tests that particular sign mistake.
    See issue 1593 for reference.
    See wikipedia
    https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Quaternion-derived_rotation_matrix
    for the correct definition
    """
    q = Quaternion(cos(phi/2), sin(phi/2), 0, 0)
    assert(trigsimp(q.to_rotation_matrix()) == Matrix([
                [1,        0,         0],
                [0, cos(phi), -sin(phi)],
                [0, sin(phi),  cos(phi)]]))


def test_quaternion_multiplication():
    q1 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
    q2 = Quaternion(1, 2, 3, 5)
    q3 = Quaternion(1, 1, 1, y)

    assert Quaternion._generic_mul(S(4), S.One) == 4
    assert (Quaternion._generic_mul(S(4), q1) ==
            Quaternion(12 + 16*I, 8 + 20*I, 0, 28 + 32*I))
    assert q2.mul(2) == Quaternion(2, 4, 6, 10)
    assert q2.mul(q3) == Quaternion(-5*y - 4, 3*y - 2, 9 - 2*y, y + 4)
    assert q2.mul(q3) == q2*q3

    z = symbols('z', complex=True)
    z_quat = Quaternion(re(z), im(z), 0, 0)
    q = Quaternion(*symbols('q:4', real=True))

    assert z * q == z_quat * q
    assert q * z == q * z_quat


def test_issue_16318():
    #for rtruediv
    q0 = Quaternion(0, 0, 0, 0)
    raises(ValueError, lambda: 1/q0)
    #for rotate_point
    q = Quaternion(1, 2, 3, 4)
    (axis, angle) = q.to_axis_angle()
    assert Quaternion.rotate_point((1, 1, 1), (axis, angle)) == (S.One / 5, 1, S(7) / 5)
    #test for to_axis_angle
    q = Quaternion(-1, 1, 1, 1)
    axis = (-sqrt(3)/3, -sqrt(3)/3, -sqrt(3)/3)
    angle = 2*pi/3
    assert (axis, angle) == q.to_axis_angle()


@slow
def test_to_euler():
    q = Quaternion(w, x, y, z)
    q_normalized = q.normalize()

    seqs = ['zxy', 'zyx', 'zyz', 'zxz']
    seqs += [seq.upper() for seq in seqs]

    for seq in seqs:
        euler_from_q = q.to_euler(seq)
        q_back = simplify(Quaternion.from_euler(euler_from_q, seq))
        assert q_back == q_normalized


def test_to_euler_iss24504():
    """
    There was a mistake in the degenerate case testing
    See issue 24504 for reference.
    """
    q = Quaternion.from_euler((phi, 0, 0), 'zyz')
    assert trigsimp(q.to_euler('zyz'), inverse=True) == (phi, 0, 0)


def test_to_euler_numerical_singilarities():

    def test_one_case(angles, seq):
        q = Quaternion.from_euler(angles, seq)
        assert q.to_euler(seq) == angles

    # symmetric
    test_one_case((pi/2,  0, 0), 'zyz')
    test_one_case((pi/2,  0, 0), 'ZYZ')
    test_one_case((pi/2,  pi, 0), 'zyz')
    test_one_case((pi/2,  pi, 0), 'ZYZ')

    # asymmetric
    test_one_case((pi/2,  pi/2, 0), 'zyx')
    test_one_case((pi/2,  -pi/2, 0), 'zyx')
    test_one_case((pi/2,  pi/2, 0), 'ZYX')
    test_one_case((pi/2,  -pi/2, 0), 'ZYX')


@slow
def test_to_euler_options():
    def test_one_case(q):
        angles1 = Matrix(q.to_euler(seq, True, True))
        angles2 = Matrix(q.to_euler(seq, False, False))
        angle_errors = simplify(angles1-angles2).evalf()
        for angle_error in angle_errors:
            # forcing angles to set {-pi, pi}
            angle_error = (angle_error + pi) % (2 * pi) - pi
            assert angle_error < 10e-7

    for xyz in ('xyz', 'XYZ'):
        for seq_tuple in permutations(xyz):
            for symmetric in (True, False):
                if symmetric:
                    seq = ''.join([seq_tuple[0], seq_tuple[1], seq_tuple[0]])
                else:
                    seq = ''.join(seq_tuple)

                for elements in product([-1, 0, 1], repeat=4):
                    q = Quaternion(*elements)
                    if not q.is_zero_quaternion():
                        test_one_case(q)