Spaces:
Sleeping
Sleeping
File size: 47,527 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 |
from sympy.core.numbers import Rational
from sympy.core.singleton import S
from sympy.core.relational import is_eq
from sympy.functions.elementary.complexes import (conjugate, im, re, sign)
from sympy.functions.elementary.exponential import (exp, log as ln)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acos, asin, atan2)
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.simplify.trigsimp import trigsimp
from sympy.integrals.integrals import integrate
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.core.sympify import sympify, _sympify
from sympy.core.expr import Expr
from sympy.core.logic import fuzzy_not, fuzzy_or
from sympy.utilities.misc import as_int
from mpmath.libmp.libmpf import prec_to_dps
def _check_norm(elements, norm):
"""validate if input norm is consistent"""
if norm is not None and norm.is_number:
if norm.is_positive is False:
raise ValueError("Input norm must be positive.")
numerical = all(i.is_number and i.is_real is True for i in elements)
if numerical and is_eq(norm**2, sum(i**2 for i in elements)) is False:
raise ValueError("Incompatible value for norm.")
def _is_extrinsic(seq):
"""validate seq and return True if seq is lowercase and False if uppercase"""
if type(seq) != str:
raise ValueError('Expected seq to be a string.')
if len(seq) != 3:
raise ValueError("Expected 3 axes, got `{}`.".format(seq))
intrinsic = seq.isupper()
extrinsic = seq.islower()
if not (intrinsic or extrinsic):
raise ValueError("seq must either be fully uppercase (for extrinsic "
"rotations), or fully lowercase, for intrinsic "
"rotations).")
i, j, k = seq.lower()
if (i == j) or (j == k):
raise ValueError("Consecutive axes must be different")
bad = set(seq) - set('xyzXYZ')
if bad:
raise ValueError("Expected axes from `seq` to be from "
"['x', 'y', 'z'] or ['X', 'Y', 'Z'], "
"got {}".format(''.join(bad)))
return extrinsic
class Quaternion(Expr):
"""Provides basic quaternion operations.
Quaternion objects can be instantiated as ``Quaternion(a, b, c, d)``
as in $q = a + bi + cj + dk$.
Parameters
==========
norm : None or number
Pre-defined quaternion norm. If a value is given, Quaternion.norm
returns this pre-defined value instead of calculating the norm
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q
1 + 2*i + 3*j + 4*k
Quaternions over complex fields can be defined as:
>>> from sympy import Quaternion
>>> from sympy import symbols, I
>>> x = symbols('x')
>>> q1 = Quaternion(x, x**3, x, x**2, real_field = False)
>>> q2 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q1
x + x**3*i + x*j + x**2*k
>>> q2
(3 + 4*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k
Defining symbolic unit quaternions:
>>> from sympy import Quaternion
>>> from sympy.abc import w, x, y, z
>>> q = Quaternion(w, x, y, z, norm=1)
>>> q
w + x*i + y*j + z*k
>>> q.norm()
1
References
==========
.. [1] https://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/
.. [2] https://en.wikipedia.org/wiki/Quaternion
"""
_op_priority = 11.0
is_commutative = False
def __new__(cls, a=0, b=0, c=0, d=0, real_field=True, norm=None):
a, b, c, d = map(sympify, (a, b, c, d))
if any(i.is_commutative is False for i in [a, b, c, d]):
raise ValueError("arguments have to be commutative")
obj = super().__new__(cls, a, b, c, d)
obj._real_field = real_field
obj.set_norm(norm)
return obj
def set_norm(self, norm):
"""Sets norm of an already instantiated quaternion.
Parameters
==========
norm : None or number
Pre-defined quaternion norm. If a value is given, Quaternion.norm
returns this pre-defined value instead of calculating the norm
Examples
========
>>> from sympy import Quaternion
>>> from sympy.abc import a, b, c, d
>>> q = Quaternion(a, b, c, d)
>>> q.norm()
sqrt(a**2 + b**2 + c**2 + d**2)
Setting the norm:
>>> q.set_norm(1)
>>> q.norm()
1
Removing set norm:
>>> q.set_norm(None)
>>> q.norm()
sqrt(a**2 + b**2 + c**2 + d**2)
"""
norm = sympify(norm)
_check_norm(self.args, norm)
self._norm = norm
@property
def a(self):
return self.args[0]
@property
def b(self):
return self.args[1]
@property
def c(self):
return self.args[2]
@property
def d(self):
return self.args[3]
@property
def real_field(self):
return self._real_field
@property
def product_matrix_left(self):
r"""Returns 4 x 4 Matrix equivalent to a Hamilton product from the
left. This can be useful when treating quaternion elements as column
vectors. Given a quaternion $q = a + bi + cj + dk$ where a, b, c and d
are real numbers, the product matrix from the left is:
.. math::
M = \begin{bmatrix} a &-b &-c &-d \\
b & a &-d & c \\
c & d & a &-b \\
d &-c & b & a \end{bmatrix}
Examples
========
>>> from sympy import Quaternion
>>> from sympy.abc import a, b, c, d
>>> q1 = Quaternion(1, 0, 0, 1)
>>> q2 = Quaternion(a, b, c, d)
>>> q1.product_matrix_left
Matrix([
[1, 0, 0, -1],
[0, 1, -1, 0],
[0, 1, 1, 0],
[1, 0, 0, 1]])
>>> q1.product_matrix_left * q2.to_Matrix()
Matrix([
[a - d],
[b - c],
[b + c],
[a + d]])
This is equivalent to:
>>> (q1 * q2).to_Matrix()
Matrix([
[a - d],
[b - c],
[b + c],
[a + d]])
"""
return Matrix([
[self.a, -self.b, -self.c, -self.d],
[self.b, self.a, -self.d, self.c],
[self.c, self.d, self.a, -self.b],
[self.d, -self.c, self.b, self.a]])
@property
def product_matrix_right(self):
r"""Returns 4 x 4 Matrix equivalent to a Hamilton product from the
right. This can be useful when treating quaternion elements as column
vectors. Given a quaternion $q = a + bi + cj + dk$ where a, b, c and d
are real numbers, the product matrix from the left is:
.. math::
M = \begin{bmatrix} a &-b &-c &-d \\
b & a & d &-c \\
c &-d & a & b \\
d & c &-b & a \end{bmatrix}
Examples
========
>>> from sympy import Quaternion
>>> from sympy.abc import a, b, c, d
>>> q1 = Quaternion(a, b, c, d)
>>> q2 = Quaternion(1, 0, 0, 1)
>>> q2.product_matrix_right
Matrix([
[1, 0, 0, -1],
[0, 1, 1, 0],
[0, -1, 1, 0],
[1, 0, 0, 1]])
Note the switched arguments: the matrix represents the quaternion on
the right, but is still considered as a matrix multiplication from the
left.
>>> q2.product_matrix_right * q1.to_Matrix()
Matrix([
[ a - d],
[ b + c],
[-b + c],
[ a + d]])
This is equivalent to:
>>> (q1 * q2).to_Matrix()
Matrix([
[ a - d],
[ b + c],
[-b + c],
[ a + d]])
"""
return Matrix([
[self.a, -self.b, -self.c, -self.d],
[self.b, self.a, self.d, -self.c],
[self.c, -self.d, self.a, self.b],
[self.d, self.c, -self.b, self.a]])
def to_Matrix(self, vector_only=False):
"""Returns elements of quaternion as a column vector.
By default, a ``Matrix`` of length 4 is returned, with the real part as the
first element.
If ``vector_only`` is ``True``, returns only imaginary part as a Matrix of
length 3.
Parameters
==========
vector_only : bool
If True, only imaginary part is returned.
Default value: False
Returns
=======
Matrix
A column vector constructed by the elements of the quaternion.
Examples
========
>>> from sympy import Quaternion
>>> from sympy.abc import a, b, c, d
>>> q = Quaternion(a, b, c, d)
>>> q
a + b*i + c*j + d*k
>>> q.to_Matrix()
Matrix([
[a],
[b],
[c],
[d]])
>>> q.to_Matrix(vector_only=True)
Matrix([
[b],
[c],
[d]])
"""
if vector_only:
return Matrix(self.args[1:])
else:
return Matrix(self.args)
@classmethod
def from_Matrix(cls, elements):
"""Returns quaternion from elements of a column vector`.
If vector_only is True, returns only imaginary part as a Matrix of
length 3.
Parameters
==========
elements : Matrix, list or tuple of length 3 or 4. If length is 3,
assume real part is zero.
Default value: False
Returns
=======
Quaternion
A quaternion created from the input elements.
Examples
========
>>> from sympy import Quaternion
>>> from sympy.abc import a, b, c, d
>>> q = Quaternion.from_Matrix([a, b, c, d])
>>> q
a + b*i + c*j + d*k
>>> q = Quaternion.from_Matrix([b, c, d])
>>> q
0 + b*i + c*j + d*k
"""
length = len(elements)
if length != 3 and length != 4:
raise ValueError("Input elements must have length 3 or 4, got {} "
"elements".format(length))
if length == 3:
return Quaternion(0, *elements)
else:
return Quaternion(*elements)
@classmethod
def from_euler(cls, angles, seq):
"""Returns quaternion equivalent to rotation represented by the Euler
angles, in the sequence defined by ``seq``.
Parameters
==========
angles : list, tuple or Matrix of 3 numbers
The Euler angles (in radians).
seq : string of length 3
Represents the sequence of rotations.
For extrinsic rotations, seq must be all lowercase and its elements
must be from the set ``{'x', 'y', 'z'}``
For intrinsic rotations, seq must be all uppercase and its elements
must be from the set ``{'X', 'Y', 'Z'}``
Returns
=======
Quaternion
The normalized rotation quaternion calculated from the Euler angles
in the given sequence.
Examples
========
>>> from sympy import Quaternion
>>> from sympy import pi
>>> q = Quaternion.from_euler([pi/2, 0, 0], 'xyz')
>>> q
sqrt(2)/2 + sqrt(2)/2*i + 0*j + 0*k
>>> q = Quaternion.from_euler([0, pi/2, pi] , 'zyz')
>>> q
0 + (-sqrt(2)/2)*i + 0*j + sqrt(2)/2*k
>>> q = Quaternion.from_euler([0, pi/2, pi] , 'ZYZ')
>>> q
0 + sqrt(2)/2*i + 0*j + sqrt(2)/2*k
"""
if len(angles) != 3:
raise ValueError("3 angles must be given.")
extrinsic = _is_extrinsic(seq)
i, j, k = seq.lower()
# get elementary basis vectors
ei = [1 if n == i else 0 for n in 'xyz']
ej = [1 if n == j else 0 for n in 'xyz']
ek = [1 if n == k else 0 for n in 'xyz']
# calculate distinct quaternions
qi = cls.from_axis_angle(ei, angles[0])
qj = cls.from_axis_angle(ej, angles[1])
qk = cls.from_axis_angle(ek, angles[2])
if extrinsic:
return trigsimp(qk * qj * qi)
else:
return trigsimp(qi * qj * qk)
def to_euler(self, seq, angle_addition=True, avoid_square_root=False):
r"""Returns Euler angles representing same rotation as the quaternion,
in the sequence given by ``seq``. This implements the method described
in [1]_.
For degenerate cases (gymbal lock cases), the third angle is
set to zero.
Parameters
==========
seq : string of length 3
Represents the sequence of rotations.
For extrinsic rotations, seq must be all lowercase and its elements
must be from the set ``{'x', 'y', 'z'}``
For intrinsic rotations, seq must be all uppercase and its elements
must be from the set ``{'X', 'Y', 'Z'}``
angle_addition : bool
When True, first and third angles are given as an addition and
subtraction of two simpler ``atan2`` expressions. When False, the
first and third angles are each given by a single more complicated
``atan2`` expression. This equivalent expression is given by:
.. math::
\operatorname{atan_2} (b,a) \pm \operatorname{atan_2} (d,c) =
\operatorname{atan_2} (bc\pm ad, ac\mp bd)
Default value: True
avoid_square_root : bool
When True, the second angle is calculated with an expression based
on ``acos``, which is slightly more complicated but avoids a square
root. When False, second angle is calculated with ``atan2``, which
is simpler and can be better for numerical reasons (some
numerical implementations of ``acos`` have problems near zero).
Default value: False
Returns
=======
Tuple
The Euler angles calculated from the quaternion
Examples
========
>>> from sympy import Quaternion
>>> from sympy.abc import a, b, c, d
>>> euler = Quaternion(a, b, c, d).to_euler('zyz')
>>> euler
(-atan2(-b, c) + atan2(d, a),
2*atan2(sqrt(b**2 + c**2), sqrt(a**2 + d**2)),
atan2(-b, c) + atan2(d, a))
References
==========
.. [1] https://doi.org/10.1371/journal.pone.0276302
"""
if self.is_zero_quaternion():
raise ValueError('Cannot convert a quaternion with norm 0.')
angles = [0, 0, 0]
extrinsic = _is_extrinsic(seq)
i, j, k = seq.lower()
# get index corresponding to elementary basis vectors
i = 'xyz'.index(i) + 1
j = 'xyz'.index(j) + 1
k = 'xyz'.index(k) + 1
if not extrinsic:
i, k = k, i
# check if sequence is symmetric
symmetric = i == k
if symmetric:
k = 6 - i - j
# parity of the permutation
sign = (i - j) * (j - k) * (k - i) // 2
# permutate elements
elements = [self.a, self.b, self.c, self.d]
a = elements[0]
b = elements[i]
c = elements[j]
d = elements[k] * sign
if not symmetric:
a, b, c, d = a - c, b + d, c + a, d - b
if avoid_square_root:
if symmetric:
n2 = self.norm()**2
angles[1] = acos((a * a + b * b - c * c - d * d) / n2)
else:
n2 = 2 * self.norm()**2
angles[1] = asin((c * c + d * d - a * a - b * b) / n2)
else:
angles[1] = 2 * atan2(sqrt(c * c + d * d), sqrt(a * a + b * b))
if not symmetric:
angles[1] -= S.Pi / 2
# Check for singularities in numerical cases
case = 0
if is_eq(c, S.Zero) and is_eq(d, S.Zero):
case = 1
if is_eq(a, S.Zero) and is_eq(b, S.Zero):
case = 2
if case == 0:
if angle_addition:
angles[0] = atan2(b, a) + atan2(d, c)
angles[2] = atan2(b, a) - atan2(d, c)
else:
angles[0] = atan2(b*c + a*d, a*c - b*d)
angles[2] = atan2(b*c - a*d, a*c + b*d)
else: # any degenerate case
angles[2 * (not extrinsic)] = S.Zero
if case == 1:
angles[2 * extrinsic] = 2 * atan2(b, a)
else:
angles[2 * extrinsic] = 2 * atan2(d, c)
angles[2 * extrinsic] *= (-1 if extrinsic else 1)
# for Tait-Bryan angles
if not symmetric:
angles[0] *= sign
if extrinsic:
return tuple(angles[::-1])
else:
return tuple(angles)
@classmethod
def from_axis_angle(cls, vector, angle):
"""Returns a rotation quaternion given the axis and the angle of rotation.
Parameters
==========
vector : tuple of three numbers
The vector representation of the given axis.
angle : number
The angle by which axis is rotated (in radians).
Returns
=======
Quaternion
The normalized rotation quaternion calculated from the given axis and the angle of rotation.
Examples
========
>>> from sympy import Quaternion
>>> from sympy import pi, sqrt
>>> q = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), 2*pi/3)
>>> q
1/2 + 1/2*i + 1/2*j + 1/2*k
"""
(x, y, z) = vector
norm = sqrt(x**2 + y**2 + z**2)
(x, y, z) = (x / norm, y / norm, z / norm)
s = sin(angle * S.Half)
a = cos(angle * S.Half)
b = x * s
c = y * s
d = z * s
# note that this quaternion is already normalized by construction:
# c^2 + (s*x)^2 + (s*y)^2 + (s*z)^2 = c^2 + s^2*(x^2 + y^2 + z^2) = c^2 + s^2 * 1 = c^2 + s^2 = 1
# so, what we return is a normalized quaternion
return cls(a, b, c, d)
@classmethod
def from_rotation_matrix(cls, M):
"""Returns the equivalent quaternion of a matrix. The quaternion will be normalized
only if the matrix is special orthogonal (orthogonal and det(M) = 1).
Parameters
==========
M : Matrix
Input matrix to be converted to equivalent quaternion. M must be special
orthogonal (orthogonal and det(M) = 1) for the quaternion to be normalized.
Returns
=======
Quaternion
The quaternion equivalent to given matrix.
Examples
========
>>> from sympy import Quaternion
>>> from sympy import Matrix, symbols, cos, sin, trigsimp
>>> x = symbols('x')
>>> M = Matrix([[cos(x), -sin(x), 0], [sin(x), cos(x), 0], [0, 0, 1]])
>>> q = trigsimp(Quaternion.from_rotation_matrix(M))
>>> q
sqrt(2)*sqrt(cos(x) + 1)/2 + 0*i + 0*j + sqrt(2 - 2*cos(x))*sign(sin(x))/2*k
"""
absQ = M.det()**Rational(1, 3)
a = sqrt(absQ + M[0, 0] + M[1, 1] + M[2, 2]) / 2
b = sqrt(absQ + M[0, 0] - M[1, 1] - M[2, 2]) / 2
c = sqrt(absQ - M[0, 0] + M[1, 1] - M[2, 2]) / 2
d = sqrt(absQ - M[0, 0] - M[1, 1] + M[2, 2]) / 2
b = b * sign(M[2, 1] - M[1, 2])
c = c * sign(M[0, 2] - M[2, 0])
d = d * sign(M[1, 0] - M[0, 1])
return Quaternion(a, b, c, d)
def __add__(self, other):
return self.add(other)
def __radd__(self, other):
return self.add(other)
def __sub__(self, other):
return self.add(other*-1)
def __mul__(self, other):
return self._generic_mul(self, _sympify(other))
def __rmul__(self, other):
return self._generic_mul(_sympify(other), self)
def __pow__(self, p):
return self.pow(p)
def __neg__(self):
return Quaternion(-self.a, -self.b, -self.c, -self.d)
def __truediv__(self, other):
return self * sympify(other)**-1
def __rtruediv__(self, other):
return sympify(other) * self**-1
def _eval_Integral(self, *args):
return self.integrate(*args)
def diff(self, *symbols, **kwargs):
kwargs.setdefault('evaluate', True)
return self.func(*[a.diff(*symbols, **kwargs) for a in self.args])
def add(self, other):
"""Adds quaternions.
Parameters
==========
other : Quaternion
The quaternion to add to current (self) quaternion.
Returns
=======
Quaternion
The resultant quaternion after adding self to other
Examples
========
>>> from sympy import Quaternion
>>> from sympy import symbols
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> q1.add(q2)
6 + 8*i + 10*j + 12*k
>>> q1 + 5
6 + 2*i + 3*j + 4*k
>>> x = symbols('x', real = True)
>>> q1.add(x)
(x + 1) + 2*i + 3*j + 4*k
Quaternions over complex fields :
>>> from sympy import Quaternion
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q3.add(2 + 3*I)
(5 + 7*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k
"""
q1 = self
q2 = sympify(other)
# If q2 is a number or a SymPy expression instead of a quaternion
if not isinstance(q2, Quaternion):
if q1.real_field and q2.is_complex:
return Quaternion(re(q2) + q1.a, im(q2) + q1.b, q1.c, q1.d)
elif q2.is_commutative:
return Quaternion(q1.a + q2, q1.b, q1.c, q1.d)
else:
raise ValueError("Only commutative expressions can be added with a Quaternion.")
return Quaternion(q1.a + q2.a, q1.b + q2.b, q1.c + q2.c, q1.d
+ q2.d)
def mul(self, other):
"""Multiplies quaternions.
Parameters
==========
other : Quaternion or symbol
The quaternion to multiply to current (self) quaternion.
Returns
=======
Quaternion
The resultant quaternion after multiplying self with other
Examples
========
>>> from sympy import Quaternion
>>> from sympy import symbols
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> q1.mul(q2)
(-60) + 12*i + 30*j + 24*k
>>> q1.mul(2)
2 + 4*i + 6*j + 8*k
>>> x = symbols('x', real = True)
>>> q1.mul(x)
x + 2*x*i + 3*x*j + 4*x*k
Quaternions over complex fields :
>>> from sympy import Quaternion
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> q3.mul(2 + 3*I)
(2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k
"""
return self._generic_mul(self, _sympify(other))
@staticmethod
def _generic_mul(q1, q2):
"""Generic multiplication.
Parameters
==========
q1 : Quaternion or symbol
q2 : Quaternion or symbol
It is important to note that if neither q1 nor q2 is a Quaternion,
this function simply returns q1 * q2.
Returns
=======
Quaternion
The resultant quaternion after multiplying q1 and q2
Examples
========
>>> from sympy import Quaternion
>>> from sympy import Symbol, S
>>> q1 = Quaternion(1, 2, 3, 4)
>>> q2 = Quaternion(5, 6, 7, 8)
>>> Quaternion._generic_mul(q1, q2)
(-60) + 12*i + 30*j + 24*k
>>> Quaternion._generic_mul(q1, S(2))
2 + 4*i + 6*j + 8*k
>>> x = Symbol('x', real = True)
>>> Quaternion._generic_mul(q1, x)
x + 2*x*i + 3*x*j + 4*x*k
Quaternions over complex fields :
>>> from sympy import I
>>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
>>> Quaternion._generic_mul(q3, 2 + 3*I)
(2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k
"""
# None is a Quaternion:
if not isinstance(q1, Quaternion) and not isinstance(q2, Quaternion):
return q1 * q2
# If q1 is a number or a SymPy expression instead of a quaternion
if not isinstance(q1, Quaternion):
if q2.real_field and q1.is_complex:
return Quaternion(re(q1), im(q1), 0, 0) * q2
elif q1.is_commutative:
return Quaternion(q1 * q2.a, q1 * q2.b, q1 * q2.c, q1 * q2.d)
else:
raise ValueError("Only commutative expressions can be multiplied with a Quaternion.")
# If q2 is a number or a SymPy expression instead of a quaternion
if not isinstance(q2, Quaternion):
if q1.real_field and q2.is_complex:
return q1 * Quaternion(re(q2), im(q2), 0, 0)
elif q2.is_commutative:
return Quaternion(q2 * q1.a, q2 * q1.b, q2 * q1.c, q2 * q1.d)
else:
raise ValueError("Only commutative expressions can be multiplied with a Quaternion.")
# If any of the quaternions has a fixed norm, pre-compute norm
if q1._norm is None and q2._norm is None:
norm = None
else:
norm = q1.norm() * q2.norm()
return Quaternion(-q1.b*q2.b - q1.c*q2.c - q1.d*q2.d + q1.a*q2.a,
q1.b*q2.a + q1.c*q2.d - q1.d*q2.c + q1.a*q2.b,
-q1.b*q2.d + q1.c*q2.a + q1.d*q2.b + q1.a*q2.c,
q1.b*q2.c - q1.c*q2.b + q1.d*q2.a + q1.a * q2.d,
norm=norm)
def _eval_conjugate(self):
"""Returns the conjugate of the quaternion."""
q = self
return Quaternion(q.a, -q.b, -q.c, -q.d, norm=q._norm)
def norm(self):
"""Returns the norm of the quaternion."""
if self._norm is None: # check if norm is pre-defined
q = self
# trigsimp is used to simplify sin(x)^2 + cos(x)^2 (these terms
# arise when from_axis_angle is used).
return sqrt(trigsimp(q.a**2 + q.b**2 + q.c**2 + q.d**2))
return self._norm
def normalize(self):
"""Returns the normalized form of the quaternion."""
q = self
return q * (1/q.norm())
def inverse(self):
"""Returns the inverse of the quaternion."""
q = self
if not q.norm():
raise ValueError("Cannot compute inverse for a quaternion with zero norm")
return conjugate(q) * (1/q.norm()**2)
def pow(self, p):
"""Finds the pth power of the quaternion.
Parameters
==========
p : int
Power to be applied on quaternion.
Returns
=======
Quaternion
Returns the p-th power of the current quaternion.
Returns the inverse if p = -1.
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.pow(4)
668 + (-224)*i + (-336)*j + (-448)*k
"""
try:
q, p = self, as_int(p)
except ValueError:
return NotImplemented
if p < 0:
q, p = q.inverse(), -p
if p == 1:
return q
res = Quaternion(1, 0, 0, 0)
while p > 0:
if p & 1:
res *= q
q *= q
p >>= 1
return res
def exp(self):
"""Returns the exponential of $q$, given by $e^q$.
Returns
=======
Quaternion
The exponential of the quaternion.
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.exp()
E*cos(sqrt(29))
+ 2*sqrt(29)*E*sin(sqrt(29))/29*i
+ 3*sqrt(29)*E*sin(sqrt(29))/29*j
+ 4*sqrt(29)*E*sin(sqrt(29))/29*k
"""
# exp(q) = e^a(cos||v|| + v/||v||*sin||v||)
q = self
vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2)
a = exp(q.a) * cos(vector_norm)
b = exp(q.a) * sin(vector_norm) * q.b / vector_norm
c = exp(q.a) * sin(vector_norm) * q.c / vector_norm
d = exp(q.a) * sin(vector_norm) * q.d / vector_norm
return Quaternion(a, b, c, d)
def log(self):
r"""Returns the logarithm of the quaternion, given by $\log q$.
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.log()
log(sqrt(30))
+ 2*sqrt(29)*acos(sqrt(30)/30)/29*i
+ 3*sqrt(29)*acos(sqrt(30)/30)/29*j
+ 4*sqrt(29)*acos(sqrt(30)/30)/29*k
"""
# log(q) = log||q|| + v/||v||*arccos(a/||q||)
q = self
vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2)
q_norm = q.norm()
a = ln(q_norm)
b = q.b * acos(q.a / q_norm) / vector_norm
c = q.c * acos(q.a / q_norm) / vector_norm
d = q.d * acos(q.a / q_norm) / vector_norm
return Quaternion(a, b, c, d)
def _eval_subs(self, *args):
elements = [i.subs(*args) for i in self.args]
norm = self._norm
if norm is not None:
norm = norm.subs(*args)
_check_norm(elements, norm)
return Quaternion(*elements, norm=norm)
def _eval_evalf(self, prec):
"""Returns the floating point approximations (decimal numbers) of the quaternion.
Returns
=======
Quaternion
Floating point approximations of quaternion(self)
Examples
========
>>> from sympy import Quaternion
>>> from sympy import sqrt
>>> q = Quaternion(1/sqrt(1), 1/sqrt(2), 1/sqrt(3), 1/sqrt(4))
>>> q.evalf()
1.00000000000000
+ 0.707106781186547*i
+ 0.577350269189626*j
+ 0.500000000000000*k
"""
nprec = prec_to_dps(prec)
return Quaternion(*[arg.evalf(n=nprec) for arg in self.args])
def pow_cos_sin(self, p):
"""Computes the pth power in the cos-sin form.
Parameters
==========
p : int
Power to be applied on quaternion.
Returns
=======
Quaternion
The p-th power in the cos-sin form.
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 2, 3, 4)
>>> q.pow_cos_sin(4)
900*cos(4*acos(sqrt(30)/30))
+ 1800*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*i
+ 2700*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*j
+ 3600*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*k
"""
# q = ||q||*(cos(a) + u*sin(a))
# q^p = ||q||^p * (cos(p*a) + u*sin(p*a))
q = self
(v, angle) = q.to_axis_angle()
q2 = Quaternion.from_axis_angle(v, p * angle)
return q2 * (q.norm()**p)
def integrate(self, *args):
"""Computes integration of quaternion.
Returns
=======
Quaternion
Integration of the quaternion(self) with the given variable.
Examples
========
Indefinite Integral of quaternion :
>>> from sympy import Quaternion
>>> from sympy.abc import x
>>> q = Quaternion(1, 2, 3, 4)
>>> q.integrate(x)
x + 2*x*i + 3*x*j + 4*x*k
Definite integral of quaternion :
>>> from sympy import Quaternion
>>> from sympy.abc import x
>>> q = Quaternion(1, 2, 3, 4)
>>> q.integrate((x, 1, 5))
4 + 8*i + 12*j + 16*k
"""
# TODO: is this expression correct?
return Quaternion(integrate(self.a, *args), integrate(self.b, *args),
integrate(self.c, *args), integrate(self.d, *args))
@staticmethod
def rotate_point(pin, r):
"""Returns the coordinates of the point pin (a 3 tuple) after rotation.
Parameters
==========
pin : tuple
A 3-element tuple of coordinates of a point which needs to be
rotated.
r : Quaternion or tuple
Axis and angle of rotation.
It's important to note that when r is a tuple, it must be of the form
(axis, angle)
Returns
=======
tuple
The coordinates of the point after rotation.
Examples
========
>>> from sympy import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(Quaternion.rotate_point((1, 1, 1), q))
(sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
>>> (axis, angle) = q.to_axis_angle()
>>> trigsimp(Quaternion.rotate_point((1, 1, 1), (axis, angle)))
(sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
"""
if isinstance(r, tuple):
# if r is of the form (vector, angle)
q = Quaternion.from_axis_angle(r[0], r[1])
else:
# if r is a quaternion
q = r.normalize()
pout = q * Quaternion(0, pin[0], pin[1], pin[2]) * conjugate(q)
return (pout.b, pout.c, pout.d)
def to_axis_angle(self):
"""Returns the axis and angle of rotation of a quaternion.
Returns
=======
tuple
Tuple of (axis, angle)
Examples
========
>>> from sympy import Quaternion
>>> q = Quaternion(1, 1, 1, 1)
>>> (axis, angle) = q.to_axis_angle()
>>> axis
(sqrt(3)/3, sqrt(3)/3, sqrt(3)/3)
>>> angle
2*pi/3
"""
q = self
if q.a.is_negative:
q = q * -1
q = q.normalize()
angle = trigsimp(2 * acos(q.a))
# Since quaternion is normalised, q.a is less than 1.
s = sqrt(1 - q.a*q.a)
x = trigsimp(q.b / s)
y = trigsimp(q.c / s)
z = trigsimp(q.d / s)
v = (x, y, z)
t = (v, angle)
return t
def to_rotation_matrix(self, v=None, homogeneous=True):
"""Returns the equivalent rotation transformation matrix of the quaternion
which represents rotation about the origin if ``v`` is not passed.
Parameters
==========
v : tuple or None
Default value: None
homogeneous : bool
When True, gives an expression that may be more efficient for
symbolic calculations but less so for direct evaluation. Both
formulas are mathematically equivalent.
Default value: True
Returns
=======
tuple
Returns the equivalent rotation transformation matrix of the quaternion
which represents rotation about the origin if v is not passed.
Examples
========
>>> from sympy import Quaternion
>>> from sympy import symbols, trigsimp, cos, sin
>>> x = symbols('x')
>>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
>>> trigsimp(q.to_rotation_matrix())
Matrix([
[cos(x), -sin(x), 0],
[sin(x), cos(x), 0],
[ 0, 0, 1]])
Generates a 4x4 transformation matrix (used for rotation about a point
other than the origin) if the point(v) is passed as an argument.
"""
q = self
s = q.norm()**-2
# diagonal elements are different according to parameter normal
if homogeneous:
m00 = s*(q.a**2 + q.b**2 - q.c**2 - q.d**2)
m11 = s*(q.a**2 - q.b**2 + q.c**2 - q.d**2)
m22 = s*(q.a**2 - q.b**2 - q.c**2 + q.d**2)
else:
m00 = 1 - 2*s*(q.c**2 + q.d**2)
m11 = 1 - 2*s*(q.b**2 + q.d**2)
m22 = 1 - 2*s*(q.b**2 + q.c**2)
m01 = 2*s*(q.b*q.c - q.d*q.a)
m02 = 2*s*(q.b*q.d + q.c*q.a)
m10 = 2*s*(q.b*q.c + q.d*q.a)
m12 = 2*s*(q.c*q.d - q.b*q.a)
m20 = 2*s*(q.b*q.d - q.c*q.a)
m21 = 2*s*(q.c*q.d + q.b*q.a)
if not v:
return Matrix([[m00, m01, m02], [m10, m11, m12], [m20, m21, m22]])
else:
(x, y, z) = v
m03 = x - x*m00 - y*m01 - z*m02
m13 = y - x*m10 - y*m11 - z*m12
m23 = z - x*m20 - y*m21 - z*m22
m30 = m31 = m32 = 0
m33 = 1
return Matrix([[m00, m01, m02, m03], [m10, m11, m12, m13],
[m20, m21, m22, m23], [m30, m31, m32, m33]])
def scalar_part(self):
r"""Returns scalar part($\mathbf{S}(q)$) of the quaternion q.
Explanation
===========
Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{S}(q) = a$.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(4, 8, 13, 12)
>>> q.scalar_part()
4
"""
return self.a
def vector_part(self):
r"""
Returns $\mathbf{V}(q)$, the vector part of the quaternion $q$.
Explanation
===========
Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{V}(q) = bi + cj + dk$.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 1, 1, 1)
>>> q.vector_part()
0 + 1*i + 1*j + 1*k
>>> q = Quaternion(4, 8, 13, 12)
>>> q.vector_part()
0 + 8*i + 13*j + 12*k
"""
return Quaternion(0, self.b, self.c, self.d)
def axis(self):
r"""
Returns $\mathbf{Ax}(q)$, the axis of the quaternion $q$.
Explanation
===========
Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{Ax}(q)$ i.e., the versor of the vector part of that quaternion
equal to $\mathbf{U}[\mathbf{V}(q)]$.
The axis is always an imaginary unit with square equal to $-1 + 0i + 0j + 0k$.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 1, 1, 1)
>>> q.axis()
0 + sqrt(3)/3*i + sqrt(3)/3*j + sqrt(3)/3*k
See Also
========
vector_part
"""
axis = self.vector_part().normalize()
return Quaternion(0, axis.b, axis.c, axis.d)
def is_pure(self):
"""
Returns true if the quaternion is pure, false if the quaternion is not pure
or returns none if it is unknown.
Explanation
===========
A pure quaternion (also a vector quaternion) is a quaternion with scalar
part equal to 0.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(0, 8, 13, 12)
>>> q.is_pure()
True
See Also
========
scalar_part
"""
return self.a.is_zero
def is_zero_quaternion(self):
"""
Returns true if the quaternion is a zero quaternion or false if it is not a zero quaternion
and None if the value is unknown.
Explanation
===========
A zero quaternion is a quaternion with both scalar part and
vector part equal to 0.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 0, 0, 0)
>>> q.is_zero_quaternion()
False
>>> q = Quaternion(0, 0, 0, 0)
>>> q.is_zero_quaternion()
True
See Also
========
scalar_part
vector_part
"""
return self.norm().is_zero
def angle(self):
r"""
Returns the angle of the quaternion measured in the real-axis plane.
Explanation
===========
Given a quaternion $q = a + bi + cj + dk$ where $a$, $b$, $c$ and $d$
are real numbers, returns the angle of the quaternion given by
.. math::
\theta := 2 \operatorname{atan_2}\left(\sqrt{b^2 + c^2 + d^2}, {a}\right)
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(1, 4, 4, 4)
>>> q.angle()
2*atan(4*sqrt(3))
"""
return 2 * atan2(self.vector_part().norm(), self.scalar_part())
def arc_coplanar(self, other):
"""
Returns True if the transformation arcs represented by the input quaternions happen in the same plane.
Explanation
===========
Two quaternions are said to be coplanar (in this arc sense) when their axes are parallel.
The plane of a quaternion is the one normal to its axis.
Parameters
==========
other : a Quaternion
Returns
=======
True : if the planes of the two quaternions are the same, apart from its orientation/sign.
False : if the planes of the two quaternions are not the same, apart from its orientation/sign.
None : if plane of either of the quaternion is unknown.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q1 = Quaternion(1, 4, 4, 4)
>>> q2 = Quaternion(3, 8, 8, 8)
>>> Quaternion.arc_coplanar(q1, q2)
True
>>> q1 = Quaternion(2, 8, 13, 12)
>>> Quaternion.arc_coplanar(q1, q2)
False
See Also
========
vector_coplanar
is_pure
"""
if (self.is_zero_quaternion()) or (other.is_zero_quaternion()):
raise ValueError('Neither of the given quaternions can be 0')
return fuzzy_or([(self.axis() - other.axis()).is_zero_quaternion(), (self.axis() + other.axis()).is_zero_quaternion()])
@classmethod
def vector_coplanar(cls, q1, q2, q3):
r"""
Returns True if the axis of the pure quaternions seen as 3D vectors
``q1``, ``q2``, and ``q3`` are coplanar.
Explanation
===========
Three pure quaternions are vector coplanar if the quaternions seen as 3D vectors are coplanar.
Parameters
==========
q1
A pure Quaternion.
q2
A pure Quaternion.
q3
A pure Quaternion.
Returns
=======
True : if the axis of the pure quaternions seen as 3D vectors
q1, q2, and q3 are coplanar.
False : if the axis of the pure quaternions seen as 3D vectors
q1, q2, and q3 are not coplanar.
None : if the axis of the pure quaternions seen as 3D vectors
q1, q2, and q3 are coplanar is unknown.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q1 = Quaternion(0, 4, 4, 4)
>>> q2 = Quaternion(0, 8, 8, 8)
>>> q3 = Quaternion(0, 24, 24, 24)
>>> Quaternion.vector_coplanar(q1, q2, q3)
True
>>> q1 = Quaternion(0, 8, 16, 8)
>>> q2 = Quaternion(0, 8, 3, 12)
>>> Quaternion.vector_coplanar(q1, q2, q3)
False
See Also
========
axis
is_pure
"""
if fuzzy_not(q1.is_pure()) or fuzzy_not(q2.is_pure()) or fuzzy_not(q3.is_pure()):
raise ValueError('The given quaternions must be pure')
M = Matrix([[q1.b, q1.c, q1.d], [q2.b, q2.c, q2.d], [q3.b, q3.c, q3.d]]).det()
return M.is_zero
def parallel(self, other):
"""
Returns True if the two pure quaternions seen as 3D vectors are parallel.
Explanation
===========
Two pure quaternions are called parallel when their vector product is commutative which
implies that the quaternions seen as 3D vectors have same direction.
Parameters
==========
other : a Quaternion
Returns
=======
True : if the two pure quaternions seen as 3D vectors are parallel.
False : if the two pure quaternions seen as 3D vectors are not parallel.
None : if the two pure quaternions seen as 3D vectors are parallel is unknown.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(0, 4, 4, 4)
>>> q1 = Quaternion(0, 8, 8, 8)
>>> q.parallel(q1)
True
>>> q1 = Quaternion(0, 8, 13, 12)
>>> q.parallel(q1)
False
"""
if fuzzy_not(self.is_pure()) or fuzzy_not(other.is_pure()):
raise ValueError('The provided quaternions must be pure')
return (self*other - other*self).is_zero_quaternion()
def orthogonal(self, other):
"""
Returns the orthogonality of two quaternions.
Explanation
===========
Two pure quaternions are called orthogonal when their product is anti-commutative.
Parameters
==========
other : a Quaternion
Returns
=======
True : if the two pure quaternions seen as 3D vectors are orthogonal.
False : if the two pure quaternions seen as 3D vectors are not orthogonal.
None : if the two pure quaternions seen as 3D vectors are orthogonal is unknown.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(0, 4, 4, 4)
>>> q1 = Quaternion(0, 8, 8, 8)
>>> q.orthogonal(q1)
False
>>> q1 = Quaternion(0, 2, 2, 0)
>>> q = Quaternion(0, 2, -2, 0)
>>> q.orthogonal(q1)
True
"""
if fuzzy_not(self.is_pure()) or fuzzy_not(other.is_pure()):
raise ValueError('The given quaternions must be pure')
return (self*other + other*self).is_zero_quaternion()
def index_vector(self):
r"""
Returns the index vector of the quaternion.
Explanation
===========
The index vector is given by $\mathbf{T}(q)$, the norm (or magnitude) of
the quaternion $q$, multiplied by $\mathbf{Ax}(q)$, the axis of $q$.
Returns
=======
Quaternion: representing index vector of the provided quaternion.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(2, 4, 2, 4)
>>> q.index_vector()
0 + 4*sqrt(10)/3*i + 2*sqrt(10)/3*j + 4*sqrt(10)/3*k
See Also
========
axis
norm
"""
return self.norm() * self.axis()
def mensor(self):
"""
Returns the natural logarithm of the norm(magnitude) of the quaternion.
Examples
========
>>> from sympy.algebras.quaternion import Quaternion
>>> q = Quaternion(2, 4, 2, 4)
>>> q.mensor()
log(2*sqrt(10))
>>> q.norm()
2*sqrt(10)
See Also
========
norm
"""
return ln(self.norm())
|