File size: 47,527 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
from sympy.core.numbers import Rational
from sympy.core.singleton import S
from sympy.core.relational import is_eq
from sympy.functions.elementary.complexes import (conjugate, im, re, sign)
from sympy.functions.elementary.exponential import (exp, log as ln)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acos, asin, atan2)
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.simplify.trigsimp import trigsimp
from sympy.integrals.integrals import integrate
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.core.sympify import sympify, _sympify
from sympy.core.expr import Expr
from sympy.core.logic import fuzzy_not, fuzzy_or
from sympy.utilities.misc import as_int

from mpmath.libmp.libmpf import prec_to_dps


def _check_norm(elements, norm):
    """validate if input norm is consistent"""
    if norm is not None and norm.is_number:
        if norm.is_positive is False:
            raise ValueError("Input norm must be positive.")

        numerical = all(i.is_number and i.is_real is True for i in elements)
        if numerical and is_eq(norm**2, sum(i**2 for i in elements)) is False:
            raise ValueError("Incompatible value for norm.")


def _is_extrinsic(seq):
    """validate seq and return True if seq is lowercase and False if uppercase"""
    if type(seq) != str:
        raise ValueError('Expected seq to be a string.')
    if len(seq) != 3:
        raise ValueError("Expected 3 axes, got `{}`.".format(seq))

    intrinsic = seq.isupper()
    extrinsic = seq.islower()
    if not (intrinsic or extrinsic):
        raise ValueError("seq must either be fully uppercase (for extrinsic "
                         "rotations), or fully lowercase, for intrinsic "
                         "rotations).")

    i, j, k = seq.lower()
    if (i == j) or (j == k):
        raise ValueError("Consecutive axes must be different")

    bad = set(seq) - set('xyzXYZ')
    if bad:
        raise ValueError("Expected axes from `seq` to be from "
                         "['x', 'y', 'z'] or ['X', 'Y', 'Z'], "
                         "got {}".format(''.join(bad)))

    return extrinsic


class Quaternion(Expr):
    """Provides basic quaternion operations.
    Quaternion objects can be instantiated as ``Quaternion(a, b, c, d)``
    as in $q = a + bi + cj + dk$.

    Parameters
    ==========

    norm : None or number
        Pre-defined quaternion norm. If a value is given, Quaternion.norm
        returns this pre-defined value instead of calculating the norm

    Examples
    ========

    >>> from sympy import Quaternion
    >>> q = Quaternion(1, 2, 3, 4)
    >>> q
    1 + 2*i + 3*j + 4*k

    Quaternions over complex fields can be defined as:

    >>> from sympy import Quaternion
    >>> from sympy import symbols, I
    >>> x = symbols('x')
    >>> q1 = Quaternion(x, x**3, x, x**2, real_field = False)
    >>> q2 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
    >>> q1
    x + x**3*i + x*j + x**2*k
    >>> q2
    (3 + 4*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k

    Defining symbolic unit quaternions:

    >>> from sympy import Quaternion
    >>> from sympy.abc import w, x, y, z
    >>> q = Quaternion(w, x, y, z, norm=1)
    >>> q
    w + x*i + y*j + z*k
    >>> q.norm()
    1

    References
    ==========

    .. [1] https://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/
    .. [2] https://en.wikipedia.org/wiki/Quaternion

    """
    _op_priority = 11.0

    is_commutative = False

    def __new__(cls, a=0, b=0, c=0, d=0, real_field=True, norm=None):
        a, b, c, d = map(sympify, (a, b, c, d))

        if any(i.is_commutative is False for i in [a, b, c, d]):
            raise ValueError("arguments have to be commutative")
        obj = super().__new__(cls, a, b, c, d)
        obj._real_field = real_field
        obj.set_norm(norm)
        return obj

    def set_norm(self, norm):
        """Sets norm of an already instantiated quaternion.

        Parameters
        ==========

        norm : None or number
            Pre-defined quaternion norm. If a value is given, Quaternion.norm
            returns this pre-defined value instead of calculating the norm

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy.abc import a, b, c, d
        >>> q = Quaternion(a, b, c, d)
        >>> q.norm()
        sqrt(a**2 + b**2 + c**2 + d**2)

        Setting the norm:

        >>> q.set_norm(1)
        >>> q.norm()
        1

        Removing set norm:

        >>> q.set_norm(None)
        >>> q.norm()
        sqrt(a**2 + b**2 + c**2 + d**2)

        """
        norm = sympify(norm)
        _check_norm(self.args, norm)
        self._norm = norm

    @property
    def a(self):
        return self.args[0]

    @property
    def b(self):
        return self.args[1]

    @property
    def c(self):
        return self.args[2]

    @property
    def d(self):
        return self.args[3]

    @property
    def real_field(self):
        return self._real_field

    @property
    def product_matrix_left(self):
        r"""Returns 4 x 4 Matrix equivalent to a Hamilton product from the
        left. This can be useful when treating quaternion elements as column
        vectors. Given a quaternion $q = a + bi + cj + dk$ where a, b, c and d
        are real numbers, the product matrix from the left is:

        .. math::

            M  =  \begin{bmatrix} a  &-b  &-c  &-d \\
                                  b  & a  &-d  & c \\
                                  c  & d  & a  &-b \\
                                  d  &-c  & b  & a \end{bmatrix}

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy.abc import a, b, c, d
        >>> q1 = Quaternion(1, 0, 0, 1)
        >>> q2 = Quaternion(a, b, c, d)
        >>> q1.product_matrix_left
        Matrix([
        [1, 0,  0, -1],
        [0, 1, -1,  0],
        [0, 1,  1,  0],
        [1, 0,  0,  1]])

        >>> q1.product_matrix_left * q2.to_Matrix()
        Matrix([
        [a - d],
        [b - c],
        [b + c],
        [a + d]])

        This is equivalent to:

        >>> (q1 * q2).to_Matrix()
        Matrix([
        [a - d],
        [b - c],
        [b + c],
        [a + d]])
        """
        return Matrix([
                [self.a, -self.b, -self.c, -self.d],
                [self.b, self.a, -self.d, self.c],
                [self.c, self.d, self.a, -self.b],
                [self.d, -self.c, self.b, self.a]])

    @property
    def product_matrix_right(self):
        r"""Returns 4 x 4 Matrix equivalent to a Hamilton product from the
        right. This can be useful when treating quaternion elements as column
        vectors. Given a quaternion $q = a + bi + cj + dk$ where a, b, c and d
        are real numbers, the product matrix from the left is:

        .. math::

            M  =  \begin{bmatrix} a  &-b  &-c  &-d \\
                                  b  & a  & d  &-c \\
                                  c  &-d  & a  & b \\
                                  d  & c  &-b  & a \end{bmatrix}


        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy.abc import a, b, c, d
        >>> q1 = Quaternion(a, b, c, d)
        >>> q2 = Quaternion(1, 0, 0, 1)
        >>> q2.product_matrix_right
        Matrix([
        [1, 0, 0, -1],
        [0, 1, 1, 0],
        [0, -1, 1, 0],
        [1, 0, 0, 1]])

        Note the switched arguments: the matrix represents the quaternion on
        the right, but is still considered as a matrix multiplication from the
        left.

        >>> q2.product_matrix_right * q1.to_Matrix()
        Matrix([
        [ a - d],
        [ b + c],
        [-b + c],
        [ a + d]])

        This is equivalent to:

        >>> (q1 * q2).to_Matrix()
        Matrix([
        [ a - d],
        [ b + c],
        [-b + c],
        [ a + d]])
        """
        return Matrix([
                [self.a, -self.b, -self.c, -self.d],
                [self.b, self.a, self.d, -self.c],
                [self.c, -self.d, self.a, self.b],
                [self.d, self.c, -self.b, self.a]])

    def to_Matrix(self, vector_only=False):
        """Returns elements of quaternion as a column vector.
        By default, a ``Matrix`` of length 4 is returned, with the real part as the
        first element.
        If ``vector_only`` is ``True``, returns only imaginary part as a Matrix of
        length 3.

        Parameters
        ==========

        vector_only : bool
            If True, only imaginary part is returned.
            Default value: False

        Returns
        =======

        Matrix
            A column vector constructed by the elements of the quaternion.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy.abc import a, b, c, d
        >>> q = Quaternion(a, b, c, d)
        >>> q
        a + b*i + c*j + d*k

        >>> q.to_Matrix()
        Matrix([
        [a],
        [b],
        [c],
        [d]])


        >>> q.to_Matrix(vector_only=True)
        Matrix([
        [b],
        [c],
        [d]])

        """
        if vector_only:
            return Matrix(self.args[1:])
        else:
            return Matrix(self.args)

    @classmethod
    def from_Matrix(cls, elements):
        """Returns quaternion from elements of a column vector`.
        If vector_only is True, returns only imaginary part as a Matrix of
        length 3.

        Parameters
        ==========

        elements : Matrix, list or tuple of length 3 or 4. If length is 3,
            assume real part is zero.
            Default value: False

        Returns
        =======

        Quaternion
            A quaternion created from the input elements.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy.abc import a, b, c, d
        >>> q = Quaternion.from_Matrix([a, b, c, d])
        >>> q
        a + b*i + c*j + d*k

        >>> q = Quaternion.from_Matrix([b, c, d])
        >>> q
        0 + b*i + c*j + d*k

        """
        length = len(elements)
        if length != 3 and length != 4:
            raise ValueError("Input elements must have length 3 or 4, got {} "
                             "elements".format(length))

        if length == 3:
            return Quaternion(0, *elements)
        else:
            return Quaternion(*elements)

    @classmethod
    def from_euler(cls, angles, seq):
        """Returns quaternion equivalent to rotation represented by the Euler
        angles, in the sequence defined by ``seq``.

        Parameters
        ==========

        angles : list, tuple or Matrix of 3 numbers
            The Euler angles (in radians).
        seq : string of length 3
            Represents the sequence of rotations.
            For extrinsic rotations, seq must be all lowercase and its elements
            must be from the set ``{'x', 'y', 'z'}``
            For intrinsic rotations, seq must be all uppercase and its elements
            must be from the set ``{'X', 'Y', 'Z'}``

        Returns
        =======

        Quaternion
            The normalized rotation quaternion calculated from the Euler angles
            in the given sequence.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import pi
        >>> q = Quaternion.from_euler([pi/2, 0, 0], 'xyz')
        >>> q
        sqrt(2)/2 + sqrt(2)/2*i + 0*j + 0*k

        >>> q = Quaternion.from_euler([0, pi/2, pi] , 'zyz')
        >>> q
        0 + (-sqrt(2)/2)*i + 0*j + sqrt(2)/2*k

        >>> q = Quaternion.from_euler([0, pi/2, pi] , 'ZYZ')
        >>> q
        0 + sqrt(2)/2*i + 0*j + sqrt(2)/2*k

        """

        if len(angles) != 3:
            raise ValueError("3 angles must be given.")

        extrinsic = _is_extrinsic(seq)
        i, j, k = seq.lower()

        # get elementary basis vectors
        ei = [1 if n == i else 0 for n in 'xyz']
        ej = [1 if n == j else 0 for n in 'xyz']
        ek = [1 if n == k else 0 for n in 'xyz']

        # calculate distinct quaternions
        qi = cls.from_axis_angle(ei, angles[0])
        qj = cls.from_axis_angle(ej, angles[1])
        qk = cls.from_axis_angle(ek, angles[2])

        if extrinsic:
            return trigsimp(qk * qj * qi)
        else:
            return trigsimp(qi * qj * qk)

    def to_euler(self, seq, angle_addition=True, avoid_square_root=False):
        r"""Returns Euler angles representing same rotation as the quaternion,
        in the sequence given by ``seq``. This implements the method described
        in [1]_.

        For degenerate cases (gymbal lock cases), the third angle is
        set to zero.

        Parameters
        ==========

        seq : string of length 3
            Represents the sequence of rotations.
            For extrinsic rotations, seq must be all lowercase and its elements
            must be from the set ``{'x', 'y', 'z'}``
            For intrinsic rotations, seq must be all uppercase and its elements
            must be from the set ``{'X', 'Y', 'Z'}``

        angle_addition : bool
            When True, first and third angles are given as an addition and
            subtraction of two simpler ``atan2`` expressions. When False, the
            first and third angles are each given by a single more complicated
            ``atan2`` expression. This equivalent expression is given by:

            .. math::

                \operatorname{atan_2} (b,a) \pm \operatorname{atan_2} (d,c) =
                \operatorname{atan_2} (bc\pm ad, ac\mp bd)

            Default value: True

        avoid_square_root : bool
            When True, the second angle is calculated with an expression based
            on ``acos``, which is slightly more complicated but avoids a square
            root. When False, second angle is calculated with ``atan2``, which
            is simpler and can be better for numerical reasons (some
            numerical implementations of ``acos`` have problems near zero).
            Default value: False


        Returns
        =======

        Tuple
            The Euler angles calculated from the quaternion

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy.abc import a, b, c, d
        >>> euler = Quaternion(a, b, c, d).to_euler('zyz')
        >>> euler
        (-atan2(-b, c) + atan2(d, a),
         2*atan2(sqrt(b**2 + c**2), sqrt(a**2 + d**2)),
         atan2(-b, c) + atan2(d, a))


        References
        ==========

        .. [1] https://doi.org/10.1371/journal.pone.0276302

        """
        if self.is_zero_quaternion():
            raise ValueError('Cannot convert a quaternion with norm 0.')

        angles = [0, 0, 0]

        extrinsic = _is_extrinsic(seq)
        i, j, k = seq.lower()

        # get index corresponding to elementary basis vectors
        i = 'xyz'.index(i) + 1
        j = 'xyz'.index(j) + 1
        k = 'xyz'.index(k) + 1

        if not extrinsic:
            i, k = k, i

        # check if sequence is symmetric
        symmetric = i == k
        if symmetric:
            k = 6 - i - j

        # parity of the permutation
        sign = (i - j) * (j - k) * (k - i) // 2

        # permutate elements
        elements = [self.a, self.b, self.c, self.d]
        a = elements[0]
        b = elements[i]
        c = elements[j]
        d = elements[k] * sign

        if not symmetric:
            a, b, c, d = a - c, b + d, c + a, d - b

        if avoid_square_root:
            if symmetric:
                n2 = self.norm()**2
                angles[1] = acos((a * a + b * b - c * c - d * d) / n2)
            else:
                n2 = 2 * self.norm()**2
                angles[1] = asin((c * c + d * d - a * a - b * b) / n2)
        else:
            angles[1] = 2 * atan2(sqrt(c * c + d * d), sqrt(a * a + b * b))
            if not symmetric:
                angles[1] -= S.Pi / 2

        # Check for singularities in numerical cases
        case = 0
        if is_eq(c, S.Zero) and is_eq(d, S.Zero):
            case = 1
        if is_eq(a, S.Zero) and is_eq(b, S.Zero):
            case = 2

        if case == 0:
            if angle_addition:
                angles[0] = atan2(b, a) + atan2(d, c)
                angles[2] = atan2(b, a) - atan2(d, c)
            else:
                angles[0] = atan2(b*c + a*d, a*c - b*d)
                angles[2] = atan2(b*c - a*d, a*c + b*d)

        else:  # any degenerate case
            angles[2 * (not extrinsic)] = S.Zero
            if case == 1:
                angles[2 * extrinsic] = 2 * atan2(b, a)
            else:
                angles[2 * extrinsic] = 2 * atan2(d, c)
                angles[2 * extrinsic] *= (-1 if extrinsic else 1)

        # for Tait-Bryan angles
        if not symmetric:
            angles[0] *= sign

        if extrinsic:
            return tuple(angles[::-1])
        else:
            return tuple(angles)

    @classmethod
    def from_axis_angle(cls, vector, angle):
        """Returns a rotation quaternion given the axis and the angle of rotation.

        Parameters
        ==========

        vector : tuple of three numbers
            The vector representation of the given axis.
        angle : number
            The angle by which axis is rotated (in radians).

        Returns
        =======

        Quaternion
            The normalized rotation quaternion calculated from the given axis and the angle of rotation.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import pi, sqrt
        >>> q = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), 2*pi/3)
        >>> q
        1/2 + 1/2*i + 1/2*j + 1/2*k

        """
        (x, y, z) = vector
        norm = sqrt(x**2 + y**2 + z**2)
        (x, y, z) = (x / norm, y / norm, z / norm)
        s = sin(angle * S.Half)
        a = cos(angle * S.Half)
        b = x * s
        c = y * s
        d = z * s

        # note that this quaternion is already normalized by construction:
        # c^2 + (s*x)^2 + (s*y)^2 + (s*z)^2 = c^2 + s^2*(x^2 + y^2 + z^2) = c^2 + s^2 * 1 = c^2 + s^2 = 1
        # so, what we return is a normalized quaternion

        return cls(a, b, c, d)

    @classmethod
    def from_rotation_matrix(cls, M):
        """Returns the equivalent quaternion of a matrix. The quaternion will be normalized
        only if the matrix is special orthogonal (orthogonal and det(M) = 1).

        Parameters
        ==========

        M : Matrix
            Input matrix to be converted to equivalent quaternion. M must be special
            orthogonal (orthogonal and det(M) = 1) for the quaternion to be normalized.

        Returns
        =======

        Quaternion
            The quaternion equivalent to given matrix.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import Matrix, symbols, cos, sin, trigsimp
        >>> x = symbols('x')
        >>> M = Matrix([[cos(x), -sin(x), 0], [sin(x), cos(x), 0], [0, 0, 1]])
        >>> q = trigsimp(Quaternion.from_rotation_matrix(M))
        >>> q
        sqrt(2)*sqrt(cos(x) + 1)/2 + 0*i + 0*j + sqrt(2 - 2*cos(x))*sign(sin(x))/2*k

        """

        absQ = M.det()**Rational(1, 3)

        a = sqrt(absQ + M[0, 0] + M[1, 1] + M[2, 2]) / 2
        b = sqrt(absQ + M[0, 0] - M[1, 1] - M[2, 2]) / 2
        c = sqrt(absQ - M[0, 0] + M[1, 1] - M[2, 2]) / 2
        d = sqrt(absQ - M[0, 0] - M[1, 1] + M[2, 2]) / 2

        b = b * sign(M[2, 1] - M[1, 2])
        c = c * sign(M[0, 2] - M[2, 0])
        d = d * sign(M[1, 0] - M[0, 1])

        return Quaternion(a, b, c, d)

    def __add__(self, other):
        return self.add(other)

    def __radd__(self, other):
        return self.add(other)

    def __sub__(self, other):
        return self.add(other*-1)

    def __mul__(self, other):
        return self._generic_mul(self, _sympify(other))

    def __rmul__(self, other):
        return self._generic_mul(_sympify(other), self)

    def __pow__(self, p):
        return self.pow(p)

    def __neg__(self):
        return Quaternion(-self.a, -self.b, -self.c, -self.d)

    def __truediv__(self, other):
        return self * sympify(other)**-1

    def __rtruediv__(self, other):
        return sympify(other) * self**-1

    def _eval_Integral(self, *args):
        return self.integrate(*args)

    def diff(self, *symbols, **kwargs):
        kwargs.setdefault('evaluate', True)
        return self.func(*[a.diff(*symbols, **kwargs) for a  in self.args])

    def add(self, other):
        """Adds quaternions.

        Parameters
        ==========

        other : Quaternion
            The quaternion to add to current (self) quaternion.

        Returns
        =======

        Quaternion
            The resultant quaternion after adding self to other

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import symbols
        >>> q1 = Quaternion(1, 2, 3, 4)
        >>> q2 = Quaternion(5, 6, 7, 8)
        >>> q1.add(q2)
        6 + 8*i + 10*j + 12*k
        >>> q1 + 5
        6 + 2*i + 3*j + 4*k
        >>> x = symbols('x', real = True)
        >>> q1.add(x)
        (x + 1) + 2*i + 3*j + 4*k

        Quaternions over complex fields :

        >>> from sympy import Quaternion
        >>> from sympy import I
        >>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
        >>> q3.add(2 + 3*I)
        (5 + 7*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k

        """
        q1 = self
        q2 = sympify(other)

        # If q2 is a number or a SymPy expression instead of a quaternion
        if not isinstance(q2, Quaternion):
            if q1.real_field and q2.is_complex:
                return Quaternion(re(q2) + q1.a, im(q2) + q1.b, q1.c, q1.d)
            elif q2.is_commutative:
                return Quaternion(q1.a + q2, q1.b, q1.c, q1.d)
            else:
                raise ValueError("Only commutative expressions can be added with a Quaternion.")

        return Quaternion(q1.a + q2.a, q1.b + q2.b, q1.c + q2.c, q1.d
                          + q2.d)

    def mul(self, other):
        """Multiplies quaternions.

        Parameters
        ==========

        other : Quaternion or symbol
            The quaternion to multiply to current (self) quaternion.

        Returns
        =======

        Quaternion
            The resultant quaternion after multiplying self with other

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import symbols
        >>> q1 = Quaternion(1, 2, 3, 4)
        >>> q2 = Quaternion(5, 6, 7, 8)
        >>> q1.mul(q2)
        (-60) + 12*i + 30*j + 24*k
        >>> q1.mul(2)
        2 + 4*i + 6*j + 8*k
        >>> x = symbols('x', real = True)
        >>> q1.mul(x)
        x + 2*x*i + 3*x*j + 4*x*k

        Quaternions over complex fields :

        >>> from sympy import Quaternion
        >>> from sympy import I
        >>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
        >>> q3.mul(2 + 3*I)
        (2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k

        """
        return self._generic_mul(self, _sympify(other))

    @staticmethod
    def _generic_mul(q1, q2):
        """Generic multiplication.

        Parameters
        ==========

        q1 : Quaternion or symbol
        q2 : Quaternion or symbol

        It is important to note that if neither q1 nor q2 is a Quaternion,
        this function simply returns q1 * q2.

        Returns
        =======

        Quaternion
            The resultant quaternion after multiplying q1 and q2

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import Symbol, S
        >>> q1 = Quaternion(1, 2, 3, 4)
        >>> q2 = Quaternion(5, 6, 7, 8)
        >>> Quaternion._generic_mul(q1, q2)
        (-60) + 12*i + 30*j + 24*k
        >>> Quaternion._generic_mul(q1, S(2))
        2 + 4*i + 6*j + 8*k
        >>> x = Symbol('x', real = True)
        >>> Quaternion._generic_mul(q1, x)
        x + 2*x*i + 3*x*j + 4*x*k

        Quaternions over complex fields :

        >>> from sympy import I
        >>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
        >>> Quaternion._generic_mul(q3, 2 + 3*I)
        (2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k

        """
        # None is a Quaternion:
        if not isinstance(q1, Quaternion) and not isinstance(q2, Quaternion):
            return q1 * q2

        # If q1 is a number or a SymPy expression instead of a quaternion
        if not isinstance(q1, Quaternion):
            if q2.real_field and q1.is_complex:
                return Quaternion(re(q1), im(q1), 0, 0) * q2
            elif q1.is_commutative:
                return Quaternion(q1 * q2.a, q1 * q2.b, q1 * q2.c, q1 * q2.d)
            else:
                raise ValueError("Only commutative expressions can be multiplied with a Quaternion.")

        # If q2 is a number or a SymPy expression instead of a quaternion
        if not isinstance(q2, Quaternion):
            if q1.real_field and q2.is_complex:
                return q1 * Quaternion(re(q2), im(q2), 0, 0)
            elif q2.is_commutative:
                return Quaternion(q2 * q1.a, q2 * q1.b, q2 * q1.c, q2 * q1.d)
            else:
                raise ValueError("Only commutative expressions can be multiplied with a Quaternion.")

        # If any of the quaternions has a fixed norm, pre-compute norm
        if q1._norm is None and q2._norm is None:
            norm = None
        else:
            norm = q1.norm() * q2.norm()

        return Quaternion(-q1.b*q2.b - q1.c*q2.c - q1.d*q2.d + q1.a*q2.a,
                          q1.b*q2.a + q1.c*q2.d - q1.d*q2.c + q1.a*q2.b,
                          -q1.b*q2.d + q1.c*q2.a + q1.d*q2.b + q1.a*q2.c,
                          q1.b*q2.c - q1.c*q2.b + q1.d*q2.a + q1.a * q2.d,
                          norm=norm)

    def _eval_conjugate(self):
        """Returns the conjugate of the quaternion."""
        q = self
        return Quaternion(q.a, -q.b, -q.c, -q.d, norm=q._norm)

    def norm(self):
        """Returns the norm of the quaternion."""
        if self._norm is None:  # check if norm is pre-defined
            q = self
            # trigsimp is used to simplify sin(x)^2 + cos(x)^2 (these terms
            # arise when from_axis_angle is used).
            return sqrt(trigsimp(q.a**2 + q.b**2 + q.c**2 + q.d**2))

        return self._norm

    def normalize(self):
        """Returns the normalized form of the quaternion."""
        q = self
        return q * (1/q.norm())

    def inverse(self):
        """Returns the inverse of the quaternion."""
        q = self
        if not q.norm():
            raise ValueError("Cannot compute inverse for a quaternion with zero norm")
        return conjugate(q) * (1/q.norm()**2)

    def pow(self, p):
        """Finds the pth power of the quaternion.

        Parameters
        ==========

        p : int
            Power to be applied on quaternion.

        Returns
        =======

        Quaternion
            Returns the p-th power of the current quaternion.
            Returns the inverse if p = -1.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> q = Quaternion(1, 2, 3, 4)
        >>> q.pow(4)
        668 + (-224)*i + (-336)*j + (-448)*k

        """
        try:
            q, p = self, as_int(p)
        except ValueError:
            return NotImplemented

        if p < 0:
            q, p = q.inverse(), -p

        if p == 1:
            return q

        res = Quaternion(1, 0, 0, 0)
        while p > 0:
            if p & 1:
                res *= q
            q *= q
            p >>= 1

        return res

    def exp(self):
        """Returns the exponential of $q$, given by $e^q$.

        Returns
        =======

        Quaternion
            The exponential of the quaternion.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> q = Quaternion(1, 2, 3, 4)
        >>> q.exp()
        E*cos(sqrt(29))
        + 2*sqrt(29)*E*sin(sqrt(29))/29*i
        + 3*sqrt(29)*E*sin(sqrt(29))/29*j
        + 4*sqrt(29)*E*sin(sqrt(29))/29*k

        """
        # exp(q) = e^a(cos||v|| + v/||v||*sin||v||)
        q = self
        vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2)
        a = exp(q.a) * cos(vector_norm)
        b = exp(q.a) * sin(vector_norm) * q.b / vector_norm
        c = exp(q.a) * sin(vector_norm) * q.c / vector_norm
        d = exp(q.a) * sin(vector_norm) * q.d / vector_norm

        return Quaternion(a, b, c, d)

    def log(self):
        r"""Returns the logarithm of the quaternion, given by $\log q$.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> q = Quaternion(1, 2, 3, 4)
        >>> q.log()
        log(sqrt(30))
        + 2*sqrt(29)*acos(sqrt(30)/30)/29*i
        + 3*sqrt(29)*acos(sqrt(30)/30)/29*j
        + 4*sqrt(29)*acos(sqrt(30)/30)/29*k

        """
        # log(q) = log||q|| + v/||v||*arccos(a/||q||)
        q = self
        vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2)
        q_norm = q.norm()
        a = ln(q_norm)
        b = q.b * acos(q.a / q_norm) / vector_norm
        c = q.c * acos(q.a / q_norm) / vector_norm
        d = q.d * acos(q.a / q_norm) / vector_norm

        return Quaternion(a, b, c, d)

    def _eval_subs(self, *args):
        elements = [i.subs(*args) for i in self.args]
        norm = self._norm
        if norm is not None:
            norm = norm.subs(*args)
        _check_norm(elements, norm)
        return Quaternion(*elements, norm=norm)

    def _eval_evalf(self, prec):
        """Returns the floating point approximations (decimal numbers) of the quaternion.

        Returns
        =======

        Quaternion
            Floating point approximations of quaternion(self)

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import sqrt
        >>> q = Quaternion(1/sqrt(1), 1/sqrt(2), 1/sqrt(3), 1/sqrt(4))
        >>> q.evalf()
        1.00000000000000
        + 0.707106781186547*i
        + 0.577350269189626*j
        + 0.500000000000000*k

        """
        nprec = prec_to_dps(prec)
        return Quaternion(*[arg.evalf(n=nprec) for arg in self.args])

    def pow_cos_sin(self, p):
        """Computes the pth power in the cos-sin form.

        Parameters
        ==========

        p : int
            Power to be applied on quaternion.

        Returns
        =======

        Quaternion
            The p-th power in the cos-sin form.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> q = Quaternion(1, 2, 3, 4)
        >>> q.pow_cos_sin(4)
        900*cos(4*acos(sqrt(30)/30))
        + 1800*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*i
        + 2700*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*j
        + 3600*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*k

        """
        # q = ||q||*(cos(a) + u*sin(a))
        # q^p = ||q||^p * (cos(p*a) + u*sin(p*a))

        q = self
        (v, angle) = q.to_axis_angle()
        q2 = Quaternion.from_axis_angle(v, p * angle)
        return q2 * (q.norm()**p)

    def integrate(self, *args):
        """Computes integration of quaternion.

        Returns
        =======

        Quaternion
            Integration of the quaternion(self) with the given variable.

        Examples
        ========

        Indefinite Integral of quaternion :

        >>> from sympy import Quaternion
        >>> from sympy.abc import x
        >>> q = Quaternion(1, 2, 3, 4)
        >>> q.integrate(x)
        x + 2*x*i + 3*x*j + 4*x*k

        Definite integral of quaternion :

        >>> from sympy import Quaternion
        >>> from sympy.abc import x
        >>> q = Quaternion(1, 2, 3, 4)
        >>> q.integrate((x, 1, 5))
        4 + 8*i + 12*j + 16*k

        """
        # TODO: is this expression correct?
        return Quaternion(integrate(self.a, *args), integrate(self.b, *args),
                          integrate(self.c, *args), integrate(self.d, *args))

    @staticmethod
    def rotate_point(pin, r):
        """Returns the coordinates of the point pin (a 3 tuple) after rotation.

        Parameters
        ==========

        pin : tuple
            A 3-element tuple of coordinates of a point which needs to be
            rotated.
        r : Quaternion or tuple
            Axis and angle of rotation.

            It's important to note that when r is a tuple, it must be of the form
            (axis, angle)

        Returns
        =======

        tuple
            The coordinates of the point after rotation.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import symbols, trigsimp, cos, sin
        >>> x = symbols('x')
        >>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
        >>> trigsimp(Quaternion.rotate_point((1, 1, 1), q))
        (sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
        >>> (axis, angle) = q.to_axis_angle()
        >>> trigsimp(Quaternion.rotate_point((1, 1, 1), (axis, angle)))
        (sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)

        """
        if isinstance(r, tuple):
            # if r is of the form (vector, angle)
            q = Quaternion.from_axis_angle(r[0], r[1])
        else:
            # if r is a quaternion
            q = r.normalize()
        pout = q * Quaternion(0, pin[0], pin[1], pin[2]) * conjugate(q)
        return (pout.b, pout.c, pout.d)

    def to_axis_angle(self):
        """Returns the axis and angle of rotation of a quaternion.

        Returns
        =======

        tuple
            Tuple of (axis, angle)

        Examples
        ========

        >>> from sympy import Quaternion
        >>> q = Quaternion(1, 1, 1, 1)
        >>> (axis, angle) = q.to_axis_angle()
        >>> axis
        (sqrt(3)/3, sqrt(3)/3, sqrt(3)/3)
        >>> angle
        2*pi/3

        """
        q = self
        if q.a.is_negative:
            q = q * -1

        q = q.normalize()
        angle = trigsimp(2 * acos(q.a))

        # Since quaternion is normalised, q.a is less than 1.
        s = sqrt(1 - q.a*q.a)

        x = trigsimp(q.b / s)
        y = trigsimp(q.c / s)
        z = trigsimp(q.d / s)

        v = (x, y, z)
        t = (v, angle)

        return t

    def to_rotation_matrix(self, v=None, homogeneous=True):
        """Returns the equivalent rotation transformation matrix of the quaternion
        which represents rotation about the origin if ``v`` is not passed.

        Parameters
        ==========

        v : tuple or None
            Default value: None
        homogeneous : bool
            When True, gives an expression that may be more efficient for
            symbolic calculations but less so for direct evaluation. Both
            formulas are mathematically equivalent.
            Default value: True

        Returns
        =======

        tuple
            Returns the equivalent rotation transformation matrix of the quaternion
            which represents rotation about the origin if v is not passed.

        Examples
        ========

        >>> from sympy import Quaternion
        >>> from sympy import symbols, trigsimp, cos, sin
        >>> x = symbols('x')
        >>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
        >>> trigsimp(q.to_rotation_matrix())
        Matrix([
        [cos(x), -sin(x), 0],
        [sin(x),  cos(x), 0],
        [     0,       0, 1]])

        Generates a 4x4 transformation matrix (used for rotation about a point
        other than the origin) if the point(v) is passed as an argument.
        """

        q = self
        s = q.norm()**-2

        # diagonal elements are different according to parameter normal
        if homogeneous:
            m00 = s*(q.a**2 + q.b**2 - q.c**2 - q.d**2)
            m11 = s*(q.a**2 - q.b**2 + q.c**2 - q.d**2)
            m22 = s*(q.a**2 - q.b**2 - q.c**2 + q.d**2)
        else:
            m00 = 1 - 2*s*(q.c**2 + q.d**2)
            m11 = 1 - 2*s*(q.b**2 + q.d**2)
            m22 = 1 - 2*s*(q.b**2 + q.c**2)

        m01 = 2*s*(q.b*q.c - q.d*q.a)
        m02 = 2*s*(q.b*q.d + q.c*q.a)

        m10 = 2*s*(q.b*q.c + q.d*q.a)
        m12 = 2*s*(q.c*q.d - q.b*q.a)

        m20 = 2*s*(q.b*q.d - q.c*q.a)
        m21 = 2*s*(q.c*q.d + q.b*q.a)

        if not v:
            return Matrix([[m00, m01, m02], [m10, m11, m12], [m20, m21, m22]])

        else:
            (x, y, z) = v

            m03 = x - x*m00 - y*m01 - z*m02
            m13 = y - x*m10 - y*m11 - z*m12
            m23 = z - x*m20 - y*m21 - z*m22
            m30 = m31 = m32 = 0
            m33 = 1

            return Matrix([[m00, m01, m02, m03], [m10, m11, m12, m13],
                          [m20, m21, m22, m23], [m30, m31, m32, m33]])

    def scalar_part(self):
        r"""Returns scalar part($\mathbf{S}(q)$) of the quaternion q.

        Explanation
        ===========

        Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{S}(q) = a$.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(4, 8, 13, 12)
        >>> q.scalar_part()
        4

        """

        return self.a

    def vector_part(self):
        r"""
        Returns $\mathbf{V}(q)$, the vector part of the quaternion $q$.

        Explanation
        ===========

        Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{V}(q) = bi + cj + dk$.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(1, 1, 1, 1)
        >>> q.vector_part()
        0 + 1*i + 1*j + 1*k

        >>> q = Quaternion(4, 8, 13, 12)
        >>> q.vector_part()
        0 + 8*i + 13*j + 12*k

        """

        return Quaternion(0, self.b, self.c, self.d)

    def axis(self):
        r"""
        Returns $\mathbf{Ax}(q)$, the axis of the quaternion $q$.

        Explanation
        ===========

        Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{Ax}(q)$  i.e., the versor of the vector part of that quaternion
        equal to $\mathbf{U}[\mathbf{V}(q)]$.
        The axis is always an imaginary unit with square equal to $-1 + 0i + 0j + 0k$.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(1, 1, 1, 1)
        >>> q.axis()
        0 + sqrt(3)/3*i + sqrt(3)/3*j + sqrt(3)/3*k

        See Also
        ========

        vector_part

        """
        axis = self.vector_part().normalize()

        return Quaternion(0, axis.b, axis.c, axis.d)

    def is_pure(self):
        """
        Returns true if the quaternion is pure, false if the quaternion is not pure
        or returns none if it is unknown.

        Explanation
        ===========

        A pure quaternion (also a vector quaternion) is a quaternion with scalar
        part equal to 0.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(0, 8, 13, 12)
        >>> q.is_pure()
        True

        See Also
        ========
        scalar_part

        """

        return self.a.is_zero

    def is_zero_quaternion(self):
        """
        Returns true if the quaternion is a zero quaternion or false if it is not a zero quaternion
        and None if the value is unknown.

        Explanation
        ===========

        A zero quaternion is a quaternion with both scalar part and
        vector part equal to 0.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(1, 0, 0, 0)
        >>> q.is_zero_quaternion()
        False

        >>> q = Quaternion(0, 0, 0, 0)
        >>> q.is_zero_quaternion()
        True

        See Also
        ========
        scalar_part
        vector_part

        """

        return self.norm().is_zero

    def angle(self):
        r"""
        Returns the angle of the quaternion measured in the real-axis plane.

        Explanation
        ===========

        Given a quaternion $q = a + bi + cj + dk$ where $a$, $b$, $c$ and $d$
        are real numbers, returns the angle of the quaternion given by

        .. math::
            \theta := 2 \operatorname{atan_2}\left(\sqrt{b^2 + c^2 + d^2}, {a}\right)

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(1, 4, 4, 4)
        >>> q.angle()
        2*atan(4*sqrt(3))

        """

        return 2 * atan2(self.vector_part().norm(), self.scalar_part())


    def arc_coplanar(self, other):
        """
        Returns True if the transformation arcs represented by the input quaternions happen in the same plane.

        Explanation
        ===========

        Two quaternions are said to be coplanar (in this arc sense) when their axes are parallel.
        The plane of a quaternion is the one normal to its axis.

        Parameters
        ==========

        other : a Quaternion

        Returns
        =======

        True : if the planes of the two quaternions are the same, apart from its orientation/sign.
        False : if the planes of the two quaternions are not the same, apart from its orientation/sign.
        None : if plane of either of the quaternion is unknown.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q1 = Quaternion(1, 4, 4, 4)
        >>> q2 = Quaternion(3, 8, 8, 8)
        >>> Quaternion.arc_coplanar(q1, q2)
        True

        >>> q1 = Quaternion(2, 8, 13, 12)
        >>> Quaternion.arc_coplanar(q1, q2)
        False

        See Also
        ========

        vector_coplanar
        is_pure

        """
        if (self.is_zero_quaternion()) or (other.is_zero_quaternion()):
            raise ValueError('Neither of the given quaternions can be 0')

        return fuzzy_or([(self.axis() - other.axis()).is_zero_quaternion(), (self.axis() + other.axis()).is_zero_quaternion()])

    @classmethod
    def vector_coplanar(cls, q1, q2, q3):
        r"""
        Returns True if the axis of the pure quaternions seen as 3D vectors
        ``q1``, ``q2``, and ``q3`` are coplanar.

        Explanation
        ===========

        Three pure quaternions are vector coplanar if the quaternions seen as 3D vectors are coplanar.

        Parameters
        ==========

        q1
            A pure Quaternion.
        q2
            A pure Quaternion.
        q3
            A pure Quaternion.

        Returns
        =======

        True : if the axis of the pure quaternions seen as 3D vectors
        q1, q2, and q3 are coplanar.
        False : if the axis of the pure quaternions seen as 3D vectors
        q1, q2, and q3 are not coplanar.
        None : if the axis of the pure quaternions seen as 3D vectors
        q1, q2, and q3 are coplanar is unknown.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q1 = Quaternion(0, 4, 4, 4)
        >>> q2 = Quaternion(0, 8, 8, 8)
        >>> q3 = Quaternion(0, 24, 24, 24)
        >>> Quaternion.vector_coplanar(q1, q2, q3)
        True

        >>> q1 = Quaternion(0, 8, 16, 8)
        >>> q2 = Quaternion(0, 8, 3, 12)
        >>> Quaternion.vector_coplanar(q1, q2, q3)
        False

        See Also
        ========

        axis
        is_pure

        """

        if fuzzy_not(q1.is_pure()) or fuzzy_not(q2.is_pure()) or fuzzy_not(q3.is_pure()):
            raise ValueError('The given quaternions must be pure')

        M = Matrix([[q1.b, q1.c, q1.d], [q2.b, q2.c, q2.d], [q3.b, q3.c, q3.d]]).det()
        return M.is_zero

    def parallel(self, other):
        """
        Returns True if the two pure quaternions seen as 3D vectors are parallel.

        Explanation
        ===========

        Two pure quaternions are called parallel when their vector product is commutative which
        implies that the quaternions seen as 3D vectors have same direction.

        Parameters
        ==========

        other : a Quaternion

        Returns
        =======

        True : if the two pure quaternions seen as 3D vectors are parallel.
        False : if the two pure quaternions seen as 3D vectors are not parallel.
        None : if the two pure quaternions seen as 3D vectors are parallel is unknown.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(0, 4, 4, 4)
        >>> q1 = Quaternion(0, 8, 8, 8)
        >>> q.parallel(q1)
        True

        >>> q1 = Quaternion(0, 8, 13, 12)
        >>> q.parallel(q1)
        False

        """

        if fuzzy_not(self.is_pure()) or fuzzy_not(other.is_pure()):
            raise ValueError('The provided quaternions must be pure')

        return (self*other - other*self).is_zero_quaternion()

    def orthogonal(self, other):
        """
        Returns the orthogonality of two quaternions.

        Explanation
        ===========

        Two pure quaternions are called orthogonal when their product is anti-commutative.

        Parameters
        ==========

        other : a Quaternion

        Returns
        =======

        True : if the two pure quaternions seen as 3D vectors are orthogonal.
        False : if the two pure quaternions seen as 3D vectors are not orthogonal.
        None : if the two pure quaternions seen as 3D vectors are orthogonal is unknown.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(0, 4, 4, 4)
        >>> q1 = Quaternion(0, 8, 8, 8)
        >>> q.orthogonal(q1)
        False

        >>> q1 = Quaternion(0, 2, 2, 0)
        >>> q = Quaternion(0, 2, -2, 0)
        >>> q.orthogonal(q1)
        True

        """

        if fuzzy_not(self.is_pure()) or fuzzy_not(other.is_pure()):
            raise ValueError('The given quaternions must be pure')

        return (self*other + other*self).is_zero_quaternion()

    def index_vector(self):
        r"""
        Returns the index vector of the quaternion.

        Explanation
        ===========

        The index vector is given by $\mathbf{T}(q)$, the norm (or magnitude) of
        the quaternion $q$, multiplied by $\mathbf{Ax}(q)$, the axis of $q$.

        Returns
        =======

        Quaternion: representing index vector of the provided quaternion.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(2, 4, 2, 4)
        >>> q.index_vector()
        0 + 4*sqrt(10)/3*i + 2*sqrt(10)/3*j + 4*sqrt(10)/3*k

        See Also
        ========

        axis
        norm

        """

        return self.norm() * self.axis()

    def mensor(self):
        """
        Returns the natural logarithm of the norm(magnitude) of the quaternion.

        Examples
        ========

        >>> from sympy.algebras.quaternion import Quaternion
        >>> q = Quaternion(2, 4, 2, 4)
        >>> q.mensor()
        log(2*sqrt(10))
        >>> q.norm()
        2*sqrt(10)

        See Also
        ========

        norm

        """

        return ln(self.norm())