File size: 4,194 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
"""
Eigenvalue spectrum of graphs.
"""
import networkx as nx

__all__ = [
    "laplacian_spectrum",
    "adjacency_spectrum",
    "modularity_spectrum",
    "normalized_laplacian_spectrum",
    "bethe_hessian_spectrum",
]


@nx._dispatch(edge_attrs="weight")
def laplacian_spectrum(G, weight="weight"):
    """Returns eigenvalues of the Laplacian of G

    Parameters
    ----------
    G : graph
       A NetworkX graph

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See :func:`~networkx.convert_matrix.to_numpy_array` for other options.

    See Also
    --------
    laplacian_matrix

    Examples
    --------
    The multiplicity of 0 as an eigenvalue of the laplacian matrix is equal
    to the number of connected components of G.

    >>> G = nx.Graph()  # Create a graph with 5 nodes and 3 connected components
    >>> G.add_nodes_from(range(5))
    >>> G.add_edges_from([(0, 2), (3, 4)])
    >>> nx.laplacian_spectrum(G)
    array([0., 0., 0., 2., 2.])

    """
    import scipy as sp

    return sp.linalg.eigvalsh(nx.laplacian_matrix(G, weight=weight).todense())


@nx._dispatch(edge_attrs="weight")
def normalized_laplacian_spectrum(G, weight="weight"):
    """Return eigenvalues of the normalized Laplacian of G

    Parameters
    ----------
    G : graph
       A NetworkX graph

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See to_numpy_array for other options.

    See Also
    --------
    normalized_laplacian_matrix
    """
    import scipy as sp

    return sp.linalg.eigvalsh(
        nx.normalized_laplacian_matrix(G, weight=weight).todense()
    )


@nx._dispatch(edge_attrs="weight")
def adjacency_spectrum(G, weight="weight"):
    """Returns eigenvalues of the adjacency matrix of G.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    weight : string or None, optional (default='weight')
       The edge data key used to compute each value in the matrix.
       If None, then each edge has weight 1.

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    Notes
    -----
    For MultiGraph/MultiDiGraph, the edges weights are summed.
    See to_numpy_array for other options.

    See Also
    --------
    adjacency_matrix
    """
    import scipy as sp

    return sp.linalg.eigvals(nx.adjacency_matrix(G, weight=weight).todense())


@nx._dispatch
def modularity_spectrum(G):
    """Returns eigenvalues of the modularity matrix of G.

    Parameters
    ----------
    G : Graph
       A NetworkX Graph or DiGraph

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    See Also
    --------
    modularity_matrix

    References
    ----------
    .. [1] M. E. J. Newman, "Modularity and community structure in networks",
       Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006.
    """
    import scipy as sp

    if G.is_directed():
        return sp.linalg.eigvals(nx.directed_modularity_matrix(G))
    else:
        return sp.linalg.eigvals(nx.modularity_matrix(G))


@nx._dispatch
def bethe_hessian_spectrum(G, r=None):
    """Returns eigenvalues of the Bethe Hessian matrix of G.

    Parameters
    ----------
    G : Graph
       A NetworkX Graph or DiGraph

    r : float
       Regularizer parameter

    Returns
    -------
    evals : NumPy array
      Eigenvalues

    See Also
    --------
    bethe_hessian_matrix

    References
    ----------
    .. [1] A. Saade, F. Krzakala and L. Zdeborová
       "Spectral clustering of graphs with the bethe hessian",
       Advances in Neural Information Processing Systems. 2014.
    """
    import scipy as sp

    return sp.linalg.eigvalsh(nx.bethe_hessian_matrix(G, r).todense())